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Abstract

This paper discusses the estimation of time-dependent
utility that is used for decision-theoretic planning in
dynamic environments. A general approach to mod-
eling the time-dependent utility is presented which is
based on the decomposition of time-dependent utility
into time-dependent state description (SEM: situation

evolution model) and state-dependent utility descrip-
tion (PUM: plan utility model). This approach makes
the designing process of time-dependent utility clearer
and the estimating process less costly in some cases.
An example application to a robot motion planning
in a dynamic environment is described. The relation-
ships between the proposed approach and MDP-based
approaches is also discussed.

Introduction

Decision-theoretic planning is an e�ective way to gen-
erate a plan under uncertainty of available informa-
tion (Blythe 1999). Many works applied decision
theory to vision and/or motion planning tasks (e.g.,
(Hutchinson & Kak 1989) (Cameron & Durrant-Whyte
1990) (Miura & Shirai 1997a)) of autonomous agents
(robots). These works, however, assumed that the en-
vironment is static.
In a dynamic environment, the state evolves as time

advances; a plan generated for the current state may
not be e�ective in future states. For example, a plan to
move towards the current target position may be use-
less if the target changes the position frequently. Usu-
ally an agent in a dynamic environment has to consider
the balance between: (1) the increasing plan quality by
obtainingmore information or by searching for a better
plan and (2) the decreasing plan quality by loosing a
good opportunity of executing a plan. Time-dependent
utility is an appropriate representation to be used for
this balancing task in a context of decision-theoretic
planning (Zilberstein 1993).
In planning in a dynamic environment, therefore,

an important issue is how to represent utilities which
are inherently time-dependent. A simple way is to
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assess the utility every time it is needed; however
this approach provides no guidelines in modeling time-
dependent utility; also, this could be computationally
expensive. Thus we propose a systematic way to ob-
tain time-dependent utility values, based on the con-
cept of state-time decomposition. We applied the pro-
posed approach to a mobile robot planning problem in
the environment where moving obstacles exist.

Related Works on Time-Dependent

Utility

In a dynamic environment, utility of an action (or plan)
changes over time. Usually the utility of a selected
action decreases as time advances because the action
is most suitable for a speci�c past state and is not the
best for the current state in general.
Zilberstein (1993) de�ned the time-dependent utility

as follows: a utility function U (r; s; t), that measures
the value of a result r in situation s at time t, is said
to be time-dependent if:

9r; s; t1; t2 U (r; s; t1) 6= U (r; s; t2):

Russell and Wefald (1991) discussed the notion of
the cost of time. This re
ects the loss of utility due
to deliberation, sensing, or delay in action. Using the
above de�nition of utility, the cost of time C(t) is de-
�ned as:

C(t) = U (rt; s0; 0) � U(rt; st; t);

where rt is the result at time t and st is the state at t.
This is the di�erence between the utility of rt assuming
that it is obtained now and that of rt at the time it
is actually obtained. In simple cases where the cost
of computation is independent of the action, the cost
of time depends only on time t; for example, if the
change of the environment is slow enough compared
with the agent's reasoning speed, the loss of utility
due to deliberation is the time of deliberation itself.
In such a case, a time-dependent utility can easily be
described as:

U (rt; st; t) = U (rt; s0; 0)� C(t): (1)

The �rst term of the right side is often referred to as
intrinsic utility, which corresponds to the utility in a



static environment. The equation indicates how much
the utility decreases from the intrinsic utility as time
advances.
Horvitz and Rutledge (1991) proposed the following

two types of functions to represent the time-dependent
decrease of the utility:

u(AiHj; t) = u(AiHj; t0)e
�k

a
t (exponential)

u(AiHj; t) = u(AiHj; t0)� cbt; (linear)

(u(AiHj; t) � 0);

where u(AiHj; t) indicates the value of action Ai ex-
ecuted at time t when state Hj is true, ka and cb are
parameter constants derived through assessments with
real data.
Modeling the time-dependent utility with the intrin-

sic utility and the time-dependent decrease of utility
seems suitable for approximating (or inducing) time-
dependent utility in the case where the mechanism of
utility change is not well understood. However, if the
mechanism is well modeled, a more constructive ap-
proach is e�ective. In addition, the change of utility
may not be represented by a simple form as above.

State-Time Decomposition for

Estimating Time-Dependent Utility

In this paper, we consider the case where the time de-
pendency of the utility mainly comes from the dynam-
ics of the environment. In such a case, the dynamics
has an e�ect not directly on the utility but on the
future state of the environment; in other words, the
dynamics has an indirect e�ect on the utility via the
state in the future.
To model this indirect e�ect from the dynamics

to the utility, we propose to decompose the time-
dependent utility into the state-dependent utility and
the time-dependent state. Two decomposed parts are
called the state evolution model (SEM), and the plan

utility model (PUM), respectively (see Figure 1). The
time-dependent utility is thus estimated through the
two-step consideration of dependency.
This two-step approach is quite natural. However,

by explicitly manifesting the decomposition, we think
we will obtain the following two merits:

1. The designing process becomes easier. This decom-
position provides a clear guideline to determine what
should be modeled for estimating time-dependent
utility.
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Figure 1: State-time decomposition of time-dependent
utility using SEM and PUM.

2. The estimating process may become less costly.
Since we make two mappings, one is from time to
state and the other is from state to utility, in ad-
vance, we do not have to perform utility calcula-
tion from scratch. When two di�erent evolution
processes reach the same state, state-based utility
estimation needs to be done only once.

State Evolution Model (SEM)

A state evolution model (SEM) describes how the sit-
uation evolves as time advances. It is a function of the
current state s0, action (or action sequence) a to be
executed, and time t. This model describes the predic-
tion ability of an agent. Since the prediction usually
includes uncertainty, the function returns a set of pos-
sible states fstig and their probabilities fP t

i g. Sources
of uncertainty include ones due to an agent as well
as other agents or the dynamics of the environment.
Action a can be omitted from the model if the agent's
action does not a�ect the dynamics of the environment.

Plan Utility Model (PUM)

A plan utility model (PUM) describes the relationship
between state-action pairs and utilities. It is a func-
tion of action (or action sequence) a and state vector
s, which returns a real-valued utility u. There is no
restrictions on the form of the function; it may be an
analytically derived closed-form function or may be a
lookup table describing a mapping from action-state
pairs to utilities.

Decision Making using SEM and PUM

Using SEM and PUM, planning is performed as fol-
lows. We here consider an agent that repeatedly se-
lects and executes the next one action. The best next
action is selected with a multi-step lookahead search.
Evaluation of each candidate action is given by cal-
culating the maximum expected utility of the corre-
sponding AND/OR tree as shown in Figure 2. Possi-
ble states to be obtained by executing an action are
predicted using the SEM. For each predicted state be-
low the candidate action, the best subsequent action
is selected; for a certain state at which the best action
can be selected deterministically (this state is a leaf
node of the AND/OR tree), the utility is calculated
using PUM; for an uncertain state at whcih the best
action cannot be determined without further search,
the best action is recursively selected which maximizes
the expected utility. The search depth may be limited
using a certain threshold or using a meta-level control
considering the tradeo� between planning cost and the
plan quality (Miura & Shirai 1997b).

Example Problem: Mobile Robot

Navigation in a Dynamic Environment

This section describes an example planning problem in
mobile robot domain. Figure 3 illustrates an example
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Figure 2: AND/OR tree for a candidate action.
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Figure 3: Simulation problem.

situation. A vision-based mobile robot, which has a
rough map of the environment, is going to the desti-
nation while selecting routes. There is a short route
which passes the narrow space (called the gate) be-
tween static obstacles; however the passability of the
gate is initially unknown due to the uncertainty of vi-
sual data obtained at the initial position. The detour
on the right side is known to be passable, although it is
longer. A moving obstacle is going to cross the robot's
route towards the gate. It will also make a pause for a
predetermined period at the crossing point; this forces
the robot to wait for the obstacle leaving.

There is an area in front of the robot where the robot
would make observation of the gate to determine if
it is passable, and based on the observation result, it
would make a decision on route selection. If the gate
is passable, the robot takes the left route; if the gate
is impassable, it takes the right; otherwise, it observes
the gate again while moving. The option the robot has
is the speed inside the area, at which it moves while

observing the gate. If the passability is determined, or
if the robot exits from the area, the robot moves at
the predetermined maximum speed. If the passability
is still unknown when the robot exits the area, it takes
the detour.

Tradeo� to be Considered

In this problem, the robot changes the speed in the ob-
servation & decision area. If the robot moves slowly,
it can observe the gate many times, thereby obtaining
more accurate information for better decision; but at
the same time, the possibility of being obstructed by
the moving obstacle increases. If the robot move fast,
it observe the gate only a few times and more likely
to give up the left route, while it is less likely to be
obstructed. Therefore, the robot has to trade the in-
crease of plan quality by obtaining more information
with the decrease of plan quality by being obstructed
by the moving obstacle.

State Evolution Model

The moving obstacle is the only activity in the en-
vironment. Its movement is modeled using a simple
linear motion model, that is, the future position of the
obstacle is predicted by assuming that it will continue
moving at the current speed. No uncertainty is consid-
ered for the obstacle's motion in this paper. In a real
situation, however, various sources of uncertainty exist
in predicting obstacles' movement such as: the obstacle
motion itself cannot be completely predictable; the ob-
servation of the obstacle position and velocity includes
uncertainty. We have developed a more elaborated
probabilistic model of prediction uncertainty(Miura &
Shirai 2000). Such a model can be incorporated in the
state evolution model.
The other factor described in the SEM is the obser-

vation result of the gate, in which vision uncertainty
is considered. We adopt a simpli�ed version of the
uncertainty model of vision which we have already de-
veloped (Miura & Shirai 1997a). From this model, the
passability (i.e., being passable or impassable) of the
gate is determined with a certain probability, which
increases as the distance from the robot to the gate
is smaller. As observations are repeatedly made, the
probability of the gate being passable or impassable
increases. This is modeled as follows.

P 0

ok = P 0

ng = 0;

P 0

ud = 1;

P i
ok = P i

obs � Ptrue � P
i�1

ud ;

P i
ng = P i

obs � (1� Ptrue) � P
i�1
ud ;

P i
ud = (1� P i

obs) � P
i�1

ud
;

where P i
ok (P

i
ng, P

i
ud) is the probability that the gate's

state become known to be passable (impassable, un-
known) by the ith observation; P 0

ok, P
0

ng, and P 0

ud are

the initial probabilities, P i
obs is the probability that the
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Figure 4: An example PUM.

gate's state is determined by the ith observation, which
depends on the observation position; Ptrue is the ac-
tual probability of the gate being passable, which is of
course not known to the robot.

Plan Utility Model

Plan utility model provides the utility value for a pair
of state and action. Since the e�ect of the dynamics of
the environment to the utility is additive, we represent
a plan utility model as function text(Dr; Do; vo) which
returns the estimated extra time imposed by the obsta-
cle; Dr (Do) is the distance of the robot (the obstacle)
to the crossing at the time when the robot makes the
commitment to the action of taking the left route. vo
is the speed of the obstacle.
Figure 4 shows an example text for the case where the

velocity of the obstacle vo = 10:0(cm=s), the velocity
of the robot is 30:0(cm=s), and the pause time of the
obstacle is 20(s). Once this kind of table is generated,
the utility can be calculated by simply looking it up.

Simulation Results

Figure 5 shows a simulation result. The robot moved
at the speed by which the robot can observe four times
in the observation & decision area. After making four
observations, the gate ahead became known to be pass-
able; the robot then moved towards the goal at the
maximum speed.
Figure 6 shows how the utility (or loss in this case)

and the best robot action change as the dynamics of
the environment changes. When the obstacle speed is
low, the robot moves relatively slowly to observe the
gate several times to collect enough information for
decision; since enough information is collected, the re-
sultant behavior has a low expected time (high utility).
When the obstacle speed is high, the robot moves fast
so that it can pass the crossing point before the obsta-
cle reach there. The resultant behavior has a relatively
hige expected time (low utility) because enough infor-
mation has not been collected and, therefore, the robot
sometimes takes the detour even when the gate is ac-
tually passable. The obstacle speed is much higher,
the e�ect of obstacle becomes very small again, and
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Figure 5: A simulation result. vm = 10 [cm=s].
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Figure 6: Simulation results for various obstacle ve-
locity. Circles indicate the best speed of the robot for
each obstacle velocity.

the robot moves slowly while observing the gate sev-
eral times. The �gure shows the robot can trade the
increase of plan quality by obtaining more information
with the decrease of plan quality by being obstructed
by the moving obstacle.
Figure 6 shows the e�ect of the dynamics of the

environment (change of obstacle velocity) is di�erent
for each action (a robot velocity). Thus, a single
model (e.g., exponential decreasing model) cannot be
adopted; the state-time decomposition approach is ef-
fective.

Relation with MDP-Based Approaches

Markov decision processes have been recognized as a
useful tool for describing and solving planning prob-
lems under uncertainty (Dean et al. 1993). There exist



e�cient algorithms to �nd optimal policies for MDPs;
however such standard algorithms has a di�culty to be
applied to a large-sized MDP.
A planning problem in our domain (i.e., robot mo-

tion and observation planning in a dynamic and un-
certain world) often has a large state-space. For ex-
ample, we used a simpli�ed state description on the
gate's state (passable, impassable, or unknown) in the
presented problem. But for the unknown cases, we
can use a more elaborated description such as the esti-
mate of the probabilistic distribution of the gate width
(e.g., by a pair of the mean and the variance (Miura &
Shirai 1997a)); this classi�es the unknown state more
precisely, thereby, enabling the robot to select better
actions. We can also elaborate the description of the
state of the moving obstacle. If we introduce such more
expressive descriptions, the state-space will be large
and it will be unrealistic to enumerate all states and
to specify all state transitions.
Many techniques have been developed to reduce the

complexity of solving large MDPs (e.g., (Boutilier,
Dearden, & Goldszmidt 1995)); they mainly focus on
obtaining optimal policies (state-action rules for every
state). As Blythe (1999) has described, however, a
search-based approach like ours has more interest in
obtaining the best action (or action sequence) for a
given state. For a time-separable sequential decision
problem (Dean, Basye, & Lejter 1990), we can obtain
the optimal policy for an initial state using dynamic
programming; since this is almost the same as what
is done in action selection using an AND/OR search
tree (see Fig. 2), our approach is not computationally
inexpensive as compared with MDP-based methods.
In real applications, many problem speci�c tech-

niques have been developed to predict the future state
of the environment. Our approach may have an ad-
vantage that such techniques can be straightforwardly
adopted, without explicitly considering the state-space
of planning problem.

Execution Monitoring using PUM

If the situation changes (unexpectedly) drastically, the
current plan being executed (or the current planning
process) may be no longer e�ective. In such a case,
the agent has to terminate the current execution to
initiate another execution or planning according to the
new situation as soon as possible. Such an execution
management is important for agents in the real world.
The plan utility model (PUM) can be a useful tool

for execution management. By referring to the PUM,
an agent can determine if the current plan is still e�ec-
tive in the coming future state, and if not, the agent
can terminate it to release the computing resources to a
new planning process or other activities. We are now
investigating such a use of PUM in planning in dy-
namic environments. Hansen and Zilberstein (1996)
proposes to use time-dependent utility for decision-
theoretic control of execution monitoring.

Concluding Remarks
This paper has presented an approach to estimat-
ing time-dependent utility used for decision-theoretic
planning in dynamic environments. The approach is
based on the state-time decomposition, based on which
the time-dependent utility is estimated from both the
time-dependent state (state evolution model) and the
state-dependent utility (plan utility model). This ap-
proach is expected to provide both a clear guideline
for designing the time-dependent utility and an e�-
cient utility estimation. We have applied the approach
to a mobile robot navigation problem in a dynamic en-
vironment. We also discussed the relation between the
proposed approach and the MDP-based approaches.
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