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PAPER

Estimating Head Orientation Using a Combination of Multiple
Cues

Bima Sena Bayu DEWANTARA†a), Nonmember and Jun MIURA†b), Member

SUMMARY This paper proposes an appearance-based novel descriptor
for estimating head orientation. Our descriptor is inspired by the Weber-
based feature, which has been successfully implemented for robust texture
analysis, and the gradient which performs well for shape analysis. To fur-
ther enhance the orientation differences, we combine them with an analysis
of the intensity deviation. The position of a pixel and its intrinsic intensity
are also considered. All features are then composed as a feature vector of
a pixel. The information carried by each pixel is combined using a covari-
ance matrix to alleviate the influence caused by rotations and illumination.
As the result, our descriptor is compact and works at high speed. We also
apply a weighting scheme, called Block Importance Feature using Genetic
Algorithm (BIF-GA), to improve the performance of our descriptor by se-
lecting and accentuating the important blocks. Experiments on three head
pose databases demonstrate that the proposed method outperforms the cur-
rent state-of-the-art methods. Also, we can extend the proposed method
by combining it with a head detection and tracking system to enable it to
estimate human head orientation in real applications.
key words: human head orientation, Weber feature, gradient, intensity de-
viation, covariance, block importance feature, head detection and tracking

1. Introduction

The human head and face are the most common parts of the
human body used in computer vision applications such as
detecting the presence of a person, identifying and verifying
a person, and indicating one’s attention. In order to maintain
a good communication or a good interaction, the estimating
of head orientation is important. Head orientation can be
used to estimate an attentional awareness during an interac-
tion process so that one may expect an appropriate response
that is in-line with the degree of attention.

Many methods have been proposed to deal with head
orientation estimation [1]. The methods can be categorized
into three main groups: (1) facial features based method,
(2) model-based method, and (3) appearance-based method.
The facial features based methods detect facial components
such as the eyes, mouth and nose and calculate the geomet-
rical relationship between them for face orientation estima-
tion. This approach normally requires a high precision fa-
cial component detector. However, the detector is usually
sensitive to distance and changes in illumination levels. The
model-based methods use a priori known 3-D models of a
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human’s head or 2-D models of a face such as the face con-
tour and the facial components that are matched with the
unrecognized 3-D head or 2-D face models. This approach
usually works well at limited angles only, e.g., pan angle is
within ±50o. The appearance-based methods assume there
is a relationship between the head or face pose and changes
in some properties in a 2-D facial image. This approach ac-
commodates wider pan, tilt and roll angles in a plane. How-
ever, inaccuracy is the main drawback of this approach.

Some applications such as car driver awareness detec-
tion, human-robot interaction, and video surveillance in-
volve a variety of view-angle ranges, from a tight range
up to a full 360o view. In human-robot interaction, the
range of angle ±90o is commonly used. Therefore, we fo-
cus our work on the appearance-based approach by propos-
ing a novel descriptor that combines more features such as
Weber, gradients and intensity deviation. This descriptor
is named the Covariance of Weber-Gradient-Deviation De-
scriptor (CWGDD). We show that integrating more features
with different capabilities will make our descriptor more ro-
bust in order to discriminate various head orientations.

1.1 Related Works

Many prior works on head pose estimation have been sur-
veyed in [1]. In general, most of them used limited feature
variations such as intensity and edge information.

Han et al. [2] proposed the Image Abstraction and Lo-
cal Directional Quaternary Pattern (IA-LDQP). An edge-
like image is extracted from a precisely segmented-image
using a Difference of Gaussian (DoG) filter. A set of edges
is then extracted into a histogram by following the LDQP
technique. However, distribution of the histograms are fre-
quently similar among different poses due to binary inten-
sity. This issue potentially reduces accuracy.

The Gabor-Filter is frequently used for edge detec-
tion. The multiple-scale and multiple-orientation edge fea-
tures that are extracted from an image using the Gabor-
Filter have been proposed in the Covariance of Gabor Filter
(CovGa) [3]. This feature is then combined with other in-
formation such as pixel positions and intensities using a co-
variance matrix. This method successfully achieves a good
accuracy. However, this approach consumes excessive time
due to large number of scales and orientations used.

One notable work is the Covariance of Oriented Gradi-
ent (COG) by Dong et al. [4]. The idea of using a covariance
matrix for the head pose classification problem was first pro-
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posed in this paper. They argued that a head pose can be as-
sumed as changes in the edges information of a face image.
This assumption can be realized in a low-resolution image
extracted by a gradient approach. This descriptor is mainly
composed of a gradient image and orientations of gradient
combined with other information such as pixel positions and
its intrinsic intensity when using a covariance matrix. The
experimental results showed that this method achieves an
excellent result for classifying head poses. Referring to the
achievements of the last two methods [3], [4], a covariance
matrix seems very promising and suitable to combine and to
compact multiple features.

CovGA and COG are shown to be effective for human
head pose estimation. However, we think that combining
the advantage of gradient features in COG with other fea-
ture that is effective for analyzing different cue may im-
prove the performance. Weber Local Descriptor (WLD) [5]
is a robust descriptor for texture analysis. This descriptor
works well for discriminating and classifying textures (Bro-
datz and KTH-TIPS2 texture databases) by considering two
pieces of information at once; (1) differential excitation and
(2) orientation of the gradient. The differential excitation
elegantly detects the edges and is robust to the illumination
change while the orientation of gradient is very powerful for
characterizing a directional change in the intensity or color
in an image. This descriptor is never used for head orien-
tation estimation. Because of these advantages, we have
adopted into our system.

There are two main contributions in this paper. First,
we combine different types of features such as pixel posi-
tion, intrinsic intensity, Weber, gradients and intensity devi-
ations to create a more robust descriptor. The engagement
of the last three features is proven to be effective for dis-
criminating each pose/orientation. Secondly, we perform a
deeper analysis to measure the degree of importance of each
image’s block. The degree of importance is determined by a
weight. The application of appropriate weights can provide
significant improvement in the results. Determination of the
appropriate and optimal weights are our greatest contribu-
tion. The use of a Genetic Algorithm (GA) [6] to determine
the values of the weights is a further additional contribu-
tions.

1.2 Paper Organization

The rest of this paper is organized as follows. Section 2
describes the development of our descriptor for estimating
head orientation. Section 3 discusses an implementation of
our descriptor for a real scene application of the head ori-
entation estimation. Section 4 presents the experimental re-
sults and discussions. Section 5 concludes our work and
possible future works.

2. Building a Descriptor for Estimating Head Orienta-
tion

2.1 Weber-Based Feature

The head orientation variations can be perceived as the
change of image pattern. Characterizing the image patterns
can be performed in most texture domains, e.g.: SIFT [9],
LBP [10] and WLD [5]. WLD-based feature has been
proven to perform well for texture analysis. The changes
of head orientation are closely related to the changes of tex-
ture.

2.1.1 Generating Features

The Weber-based feature [5] is mainly composed of two
parts (see Fig. 1); (1) The differential excitation and (2) the
orientation of the gradient. The differential excitation mea-
sures the intensity differences between a current pixel with
its neighbors to find the salient variations within an image
that is expressed as

v1 =
∑p−1

i=0 (ΔIi) =
∑p−1

i=0 (Ii − Ic) ,
v2 = Ic,

(1)

where Ic is the center pixel, Ii (i = 0, 1, . . . , p − 1) denotes
the i − th neighbors of Ic and p is the number of neighbors.
The differential excitation ξ can be expressed as:

ξ = tan−1

(
v1

v2

)
= tan−1

⎛⎜⎜⎜⎜⎜⎜⎝
p−1∑
i=0

(
Ii − Ic

Ic

)⎞⎟⎟⎟⎟⎟⎟⎠ . (2)

The orientation of the gradient shows a direction of

Fig. 1 Block diagram of Weber-based features generation
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Fig. 2 Squared symmetric neighborhood for different (P, R)

pixels difference in vertical, v4 = x7 − x1, and horizontal,
v3 = x5 − x3. x1, x3, x5 and x7 are the kernel filters shown
in Fig. 1. The orientation of the gradient φ is expressed as:

φ = tan−1

(
v4

v3

)
= tan−1

(
x7 − x1

x5 − x3

)
. (3)

The Arctangent function is applied since it can limit
the output to prevent it from increasing or decreasing too
quickly when the input becomes larger or smaller. For sim-
plicity and to avoid a negative-value-effect to the log oper-
ator, both features are then quantized into positive values
between 0o-90o using the following expression:

ξ′ = ξ2 + 45,

φ′ = φ2 + 45,
(4)

where ξ′ and φ′ are the new quantized ξ and φ, respectively.

2.1.2 Analysis of Weber Scales

As described in [5], the size of kernel filters of Weber can
be easily scaled. The scale can be generated by regulating
the kernel filter size and the radii of the filter as shown in
Fig. 2. The parameter P denotes the number of the neigh-
bors, whereas R determines the radii of the operator. Based
on our experiments, applying R = 3 gave us improved head
orientation estimation results.

2.2 Gradients-Based Feature

The head orientation can be assumed as the changes of edges
or shapes of particular parts of the face image [4]. Represen-
tation of the changes of edge or shape in the low-resolution
image is suitable for characterizing image variations that are
insensitive to illumination changes. To strengthen the image
characterization, we apply the second order vertical ∇Iyy and
horizontal ∇Ixx gradients to the image as follows.

∇Ixx =
∂2I(x,y)
∂x2 ,

∇Iyy =
∂2I(x,y)
∂y2 .

(5)

2.3 Intensity Deviation

The head orientation can also be defined as a change of
intensities of a particular region in a given image. We
mapped the pixel-based intensity deviation from an image

Fig. 3 Sigmoid function for normalizing intensity deviations (γ = 34)

to describe the changes of intensities. Using this map, the
changes of location of specific intensities describe the head
orientation changes. We apply normalized local and global
intensity deviations to identify the distinctive map between
each orientation. The specific transition area of the sigmoid
function as shown in Fig. 3 is attracted our attention. We
think there are two advantages when using this specific func-
tion: the linearity of the output for deviation up to a partic-
ular value and can hold the output at a particular significant
deviation.

The normalized local intensity deviation p is expressed
as:

pb
x,y =

255

1 + exp(−(Ib
x,y−μb)/γ)

, (6)

where pb
x,y(b = 1, 2, . . . , B) is the normalized local intensity

deviation of b − th block, B is the number of blocks, Ib
x,y is

the pixel’s intensity where (x, y) ⊂ Rb, μb is the mean of
intensity of the b-th block. γ is a scaling factor for the input
deviation. We set γ = 34 for all experiments (see Sect. 4.1
for the detail).

The normalized global intensity deviation q is ex-
pressed as:

qx,y =
255

1 + exp(−(Ix,y−μ)/γ) , (7)

where μ is the mean of intensity of the image.

2.4 Contribution of Each Feature and the Purpose of Com-
bination

Weber feature provides a good representation for texture
analysis that is insensitive to illumination changes. Our pre-
liminary evaluation shows that this feature is also insensi-
tive to image noise. The gradient feature provides a good
representation for object shape, that is also insensitive to il-
lumination changes. Deviation feature can suppress signifi-
cant intensity deviations, while keeping smaller ones which
are useful for classification. The last two features are, how-
ever, sensitive to image noise. Combining the three features
takes advantages of their strong points and is expected to
compensate for the drawbacks, thereby exhibiting a better
performance than using a single feature.
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Fig. 4 Block diagram of our proposed descriptor

2.5 Covariance Matrix for Combining Features

We use a covariance matrix as proposed by Tuzel et al. [11]
to combine all features. We extract a 9-dimensional feature
from a grayscale image so that each pixel is composed as a
vector of features as follows.

Ii = [x y Ixy ξ
′
xy φ
′
xy ∇Ixx ∇Iyy pb

xy qxy]T , (8)

where Ii is a vector of features of i-th pixel, x, y are the
pixel positions, Ixy is the image intensity, ξ′xy, φ′xy are the
new quantized excitation and orientation, respectively. ∇Ixx,
∇Iyy are the second order horizontal and vertical gradients,
respectively. pb

xy, qxy are the normalized local and global
intensity deviations, respectively.

2.6 Symmetric Positive Definite and Distance Metric

The covariance matrix is one example of a symmetric posi-
tive definite (SPD) matrix. Measurement of the distance be-
tween two SPD matrices can be done using Log−Euclidean
metric [12]. Following the Log− Euclidean metric, we treat
our descriptor using the same manner as presented in [4].
The covariance matrix of block (m, n) is transformed to the
matrix logarithm log(Cm,n). Each log(Cm,n) is then unfolded
into a vector space by accommodating d × (d + 1)/2 inde-
pendent values only (half of the upper triangle or the lower
triangle of the symmetrical matrix), where d is the number
of dimensions of the feature vector.

2.7 Weighting Scheme for Accentuating Important Parts

A cropped image of a human head usually includes unnec-
essary parts such as background objects and clothes. Di-
viding an image into several blocks and controlling the fea-
ture’s value of each block may improve the discrimination
power of a descriptor. Therefore, we use a block importance
feature (BIF) scheme, a set of weights that are heuristically
predetermined using a Genetic Algorithm (GA) [6].

We chose GA due to the following reasons: (1) it is
the most widely used algorithm and has matured as a robust
optimization technique [7], and (2) it performs global search
which is faster enough compared to the others [8].

For the GA training purpose, some individuals (vectors

of genes that represent sets of weights) are initialized us-
ing normalized random values. We perform classifier-based
optimization and use the hit rate (HR) of the classifier to
calculate the fitness value. HR is expressed as

HR =
∑

tp∑
tp +

∑
f p
, (9)

where tp and fp are the true positive and the false positive,
respectively.

The fitness of each individual is evaluated using a com-
bination of the HRs for three principal component analy-
sis (PCA) based classifiers, i.e., PCA+ED (Euclidean dis-
tance), PCA+NC (nearest centroid) and PCA+LDA+NC
(linear discriminant analysis) as follows.

f itness = HR(ED)HR(NC)HR(LDA+NC). (10)

This fitness function is intended for learning block im-
portance weights which are effective for various classifiers.
Among five classifiers shown below, we use only PCA+ED,
PCA+NC, and PCA+LDA+NC for this optimization be-
cause they do not need the learning phase, thereby reducing
the optimization cost.

Mutation and crossover are then applied to the selected
parent. Since the GA works iteratively, the optimization pro-
cess is repeated using an iteration number as the stopping
criteria.

2.8 Building a Complete Descriptor to Estimate Head Ori-
entation

We have presented all of the features we used for support-
ing our descriptor. Figure 4 shows an input image that is
preprocessed using histogram equalization to minimize il-
lumination effects. Afterward, it is divided into B-blocks.
A set of determined-features is extracted from each point in
each block and processed using our method. By following
the Log − Euclidean metric, a d × (d + 1)/2-dimensional
of feature can be obtained from each block. This feature is
multiplied by a BIF-GA weight. A final descriptor is then
built using a simple concatenation. For B number of blocks,
we have B × d × (d + 1)/2-dimensional of feature.
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Fig. 5 Block diagram of an online head orientation estimation system

3. Estimating Head Orientation in a Real Application

3.1 Head and Body Detection

We extend our work for real application as shown in Fig. 5.
In a real application, a robust head detector is required.
We train our Viola’s head detector [13] using 6,000 posi-
tive images (mix of original training images of Viola-Jones,
Pointing’04 [14], FEI [15] and our AISL databases [16]) and
8,000 negative images. However, its performance frequently
degrades in-line with a change in distance. We additionally
use a human upper body detector [17] for setting an ROI (re-
gion of interest) for head detection.

3.2 Head Tracking and Orientation Smoothing

Our system is composed of two independent processes as
shown in Fig. 5. The first process is head detection, while
the second is head orientation estimation. To get a stable
head detection result is very difficult because Viola’s detec-
tor is specifically designed for detecting faces. Therefore,
we apply a Kalman filter to assist our detector with track-
ing the detection result. Our state model is composed of the
detected head position (xt, yt), its derivative (ẋt, ẏt), and the
bounding box size (wt, ht). A constant velocity model is uti-
lized to model the head position in an image by considering
a time interval Δt:

xt = xt−1 + Δtẋt−1 + εxt ,
yt = yt−1 + Δtẏt−1 + εyt ,
ẋt = ẋt−1 + εẋt ,
ẏt = ẏt−1 + εẏt .

(11)

The bounding box size is maintained as

wt = wt−1 + εwt ,
ht = ht−1 + εht .

(12)

The state can be expressed as a tuple X = {xt, yt, ẋt,
ẏt,wt, ht}. Our Kalman filter model is expressed as Xt =

FtXt−1 + εt, where Ft is the state transition model and εt =
N(0,Qt) is the process noise which is assumed to be drawn
from a zero mean multivariate normal distribution with co-
variance Qt = {2, 2, 0.5, 0.5, 2, 2}.

On the other hand, the output of the head orientation
estimator also fluctuated. To reduce fluctuations of the ori-
entation estimation results, we also utilize a Kalman filter
to smooth the head orientation estimation. Our state model
is composed of the estimated angles (αt, βt) and its deriva-
tive ωαt , ωβt . Estimation of the pan and the tilt angles use a
constant angular velocity model as follows.

αt = αt−1 + Δtωαt−1 + εαt ,
βt = βt−1 + Δtωβt−1 + εβt ,
ωαt = ωαt−1 + εωαt

,
ωβt = ωβt−1 + εωβt .

(13)

The state can be expressed as a tuple Y =

{αt, βt, ωαt , ωβt }. The Kalman filter model is expressed as
Yt = GtYt−1 + εt, where Gt is the state transition model
and εt = N(0, Pt) is the process noise which is assumed to
be drawn from a zero mean multivariate normal distribution
with covariance Pt = {2, 2, 1, 1}.

4. Experiments

4.1 Analysis of γ-Values

We performed extensive experiments using Pointing’04
head pose database (7 pan angles) to find γ which is suit-
able for our intensity deviation feature. We evaluated several
values of γ within a range [1:128]. We found that γ = 34
achieved the highest classification accuracy and the lowest
angle error in average of five classifiers as shown by Fig. 6.

4.2 Analysis of Different Block Size

To improve the discrimination power of the descriptor, we
divided an input image into a set of blocks. However, find-
ing the best size of blocks is rather difficult. To figure out
this matter, we conducted a small experiment to find the best
size of blocks by trying it on Pointing’04 database using
2 × 2, 3 × 3, 4 × 4, 6 × 6, 9 × 9, and 12 × 12. Based on our
experiment, we found that the block size of 4 × 4 achieves
the best accuracy and the block size of 6 × 6 achieves the
second best accuracy.
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Fig. 6 Comparison of different γ-values; (a) the accuracy, and (b) the
MAAE

4.3 Optimizing Weights Using Genetic Algorithm

4.3.1 Dataset

We use 1,680 cropped-images of 105 subjects that are taken
from two databases; Pointing’04 head pose database [14]
and NCKU database [20]. The ranges of pan and tilt angles
are ±90o and ±60o, respectively. We select a set of images
with interval ±30o only. The first 10 subjects of Pointing’04
and the first 60 subjects of NCKU are utilized as training
data, while the remaining are used as a probe set. All im-
ages are resized into 36 × 36 pixel.

4.3.2 Optimization Results

Based on the result of Sect. 4.2, we only pay attention to
analyze the block size of 4 × 4 and 6 × 6 in our system.
The weights are obtained after running GA for 100 iterations
with 20 generated-individuals. Figure 7 and Fig. 8 show the
optimal weights of 4 × 4 and 6 × 6 blocks, respectively. Ta-
ble 1 shows the comparison of the effectiveness using block

Fig. 7 The optimal weights for 4x4 blocks; (a) pan and (b) tilt

Fig. 8 The optimal weights for 6x6 blocks; (a) pan and (b) tilt

size of 4×4 and 6×6. The Pointing’04 head pose database is
used as the evaluation dataset. For some classifiers, increas-
ing the block size is not give us better results for estimating
pan orientation. However, opposite conditions occur for es-
timating tilt orientation.

Figure 7 shows that the change of weights in the hor-
izontal direction is relatively larger than in the vertical di-
rection for pan and that in the vertical direction is larger for
tilt. It seems that this coincides with our intuition. Figure 8
shows the weights for 6 × 6 blocks and exhibits a similar
weight distribution, although the above tendency is less ob-
vious.

4.4 Offline Experiment Using Head Pose Database

4.4.1 Dataset

We use three head pose databases that are set into datasets
for different purposes as summarized in Table 2. Dataset
DS1, DS2, DS3, DS4 and DS5 are used independently for
offline evaluations. In this section, we compare our method
with COG [4], IA-LDQP [2], WLD [5], and CovGA [3]. We
re-implement COG, IA-LDQP, and WLD, while we used
the result of CovGa directly from their paper. To make fair
re-implementations and comparisons, we also use the same
parameters settings, i.e., 32×32 pixel (COG and WLD) and
36 × 36 pixel (CWGDD), 4 × 4 blocks (COG, IA-LDQP,
WLD and CWGDD).

We use Principal Component Analysis + Euclidean
Distance (PCA+ED), Principal Component Analysis +
Nearest Centroid (PCA+NC), Principal Component Anal-
ysis + Linear Discriminant Analysis + Nearest Centroid
(PCA+LDA+NC), Support Vector Machines (SVMs) [18],
and Decision Forest (DF) [19] as the classifiers. The param-
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Table 1 Experimental results of CWGDD and CWGDD+BIF-GA using different size of blocks. The
Pointing’04 head pose database is utilized to evaluate the performances.

Pose Block BIF Accuracy % MAAE (o)
+PCA +SVM +DF +PCA +SVM +DF

+ED +NC +LDA +ED +NC +LDA
pan 4x4 no 68.57 79.14 77.43 75.71 79.43 12.09 7.20 7.37 7.80 8.06
pan 6x6 no 73.14 77.43 74.29 81.14 77.14 9.00 8.66 9.26 6.69 8.06
pan 4x4 yes 69.43 80.00 77.14 78.57 78.57 11.74 7.20 7.80 6.94 7.97
pan 6x6 yes 70.00 72.86 75.14 79.14 77.43 10.63 9.43 8.49 6.86 8.14
tilt 4x4 no 58.67 63.29 65.29 65.71 74.57 13.49 11.57 11.20 10.34 7.80
tilt 6x6 no 60.86 66.86 67.14 64.00 77.14 14.83 12.09 11.49 12.17 6.94
tilt 4x4 yes 62.86 66.00 67.14 70.40 76.00 12.06 10.94 10.11 9.37 7.37
tilt 6x6 yes 63.14 68.00 70.86 65.71 75.29 13.20 10.63 9.34 11.14 7.29

Table 2 Experimental setup of head pose databases

Dataset Database Number of ROI Angles Number of Cross
Image (Person) Pan Tilt Range Step Image (Class) Valid.

in Use (k-fold)
DS1 CAS-PEAL [21] 4,200 (200) face 7 3 ±45o ±15o 4,200 (7 pans) 4
DS2 Pointing’04 [14] 2,790 (15 (x2)) head 13 9 ±90o ±15o 1,050 (7 pans, ±30o) 3
DS3 Pointing’04 [14] 2,790 (15 (x2)) head 13 9 ±90o ±15o 1,050 (5 tilts, ±30o) 3
DS4 AISL [16] 3,420 (20 (x3)) head 19 3 ±90o ±10o 1,260 (7 pans, ±30o) 4
DS5 AISL [16] 3,420 (20 (x3)) head 19 3 ±45o ±45o 1,260 (3 tilts) 4
DS6 NCKU [20] 6,600 (90) head 19 1 ±90o ±5o 630 (7 yaws, ±30o) -

Table 3 Parameters setting of each classifier

Method Parameter Value
PCA Number of eigenvalues 100
NC Number of centroid 10

Iteration 30
SVMs Type multiclass C-SVC

Kernel type linear
C cost 1

DF Number of tree 500
Number of random features 5

eters used in each classifier are summarized in Table 3. The
performance of each method is measured using the percent-
age of accuracy and the stability of estimated angle of orien-
tation that is expressed as the mean absolute of angle error
(MAAE). k − f old cross validation is used for evaluation.

4.4.2 Experimental Results Using CAS-PEAL Head Pose
Database

The CAS-PEAL dataset (DS1) is used to evaluate the per-
formance of each method in terms of estimating face’s pan
angle. We reduce the effect of background by zooming up
a face region that was precisely cropped using eye position.
The tilt angles are grouped based on its pan angle. This
database gives a distinctive challenge where the appearances
of nearby classes are difficult to distinguish due to close an-
gle. Examples of cropped-faces are shown in Fig. 9.

Our experiments show that our CWGDD outperforms
the others for all classifiers that are proven by its accuracy
and mean absolute angle error (MAAE) as shown in Table 4.
On average, our method’s accuracy is 2.69% higher than
COG. The estimation result stability is also impressive. It
is proven by its MAAE 0.42o smaller than COG.

Fig. 9 Example of CAS-PEAL face pose database

4.4.3 Experimental Results Using Pointing’04 Head Pose
Database

The Pointing’04 database is used to evaluate the perfor-
mances of each method for estimating the head pan and tilt
angles. Each image was manually cropped where we can-
not guarantee its precision. Examples of cropped-heads are
shown in Fig. 10. As in the other works, the pan and the
tilt angles are estimated separately. For estimating pan, tilt
angles are grouped into the same pan angle class while pan
angles are grouped into the same tilt angle class for estimat-
ing tilt angle.

The first experiment is conducted to see the per-
formances of each method to estimate the head pan us-
ing dataset DS2. Table 5 shows that our CWGDD and
CWGDD+BIF-GA outperform the others for all classifiers
for both the accuracy and the MAAE. On average, our
method’s accuracy is 7.45% higher than COG, while its
MAAE is 4.36o smaller than COG. CWGDD+BIF-GA suc-
cessfully improves the accuracy by 0.69% higher and reduce
its MAAE by 0.17o smaller than CWGDD.

The second experiment was performed to see the per-
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Table 4 Experimental results of estimating the pan angle using CAS-PEAL face pose database

Accuracy (%) MAAE (o)
Method +PCA +SVM +DF +PCA +SVM +DF

+ED +NC +LDA +ED +NC +LDA
COG [4] 70.30 90.00 95.10 85.52 90.62 5.46 1.61 0.74 1.89 1.41
IA-LDQP [2] 47.50 70.00 38.00 78.52 44.30 13.26 5.72 18.69 3.09 17.57
CovGa [3] N/A N/A 94.20 N/A N/A N/A N/A N/A N/A N/A
WLD [5] 73.10 82.50 85.80 83.33 60.30 4.75 2.86 2.24 2.87 7.69
CWGDD (Ours) 74.86 91.10 95.71 91.19 93.00 4.41 1.29 0.70 1.34 1.05

Table 5 Experimental results of estimating the pan angle using Pointing’04 head pose database

Accuracy (%) MAAE (o)
Method +PCA +SVM +DF +PCA +SVM +DF

+ED +NC +LDA +ED +NC +LDA
COG [4] 63.10 65.40 69.70 69.14 75.71 15.26 13.29 12.26 14.49 9.00
IA-LDQP [2] 42.90 41.10 54.60 59.43 43.10 38.29 40.29 25.49 16.43 37.54
WLD [5] 45.10 50.60 67.40 66.57 48.90 21.77 31.80 11.57 11.13 21.69
CWGDD (Ours) 68.57 79.14 77.43 75.71 79.43 12.09 7.20 7.37 7.80 8.06
CWGDD+BIF-GA 69.43 80.00 77.14 78.57 78.57 11.74 7.20 7.80 6.94 7.97

Table 6 Experimental results of estimating the tilt angle using Pointing’04 head pose database

Accuracy (%) MAAE (o)
Method +PCA +SVM +DF +PCA +SVM +DF

+ED +NC +LDA +ED +NC +LDA
COG [4] 61.14 65.14 65.43 71.71 72.00 13.89 11.40 11.23 8.66 9.43
IA-LDQP [2] 43.40 44.00 47.10 52.86 20.00 25.29 23.40 25.49 13.25 36.00
WLD [5] 57.70 55.40 56.60 57.00 46.00 14.23 14.23 13.63 19.60 20.06
CWGDD (Ours) 58.67 63.29 65.29 65.71 74.57 13.49 11.57 11.20 10.34 7.80
CWGDD+BIF-GA 62.86 66.00 67.14 70.40 76.00 12.06 10.94 10.11 9.37 7.37

Fig. 10 Example of Pointing’04 head pose database

formances of each method to estimate the head tilt using
dataset DS3. Table 6 shows that our CWGDD performances
are bit worse than COG. In average, our CWGDD accuracy
is 1.38% lower than COG, however, its MAAE is better than
COG by achieving 0.04o lower. Improving CWGDD with
BIF-GA increases its accuracy by 2.77% and reduces the
MAAE by 0.91o.

From the experiments, gradient-based method is par-
ticularly effective to characterize a human head tilt. How-
ever, our BIF-GA scheme is able to gain the performance
of CWGDD. Figure 11 shows examples of incorrect estima-
tion. They are due to an incompletely cropped head area
(Fig. 11 (a)) or a high portion of background (Fig. 11 (b)).

Fig. 11 Examples of failure cases on Pointing’04 database

4.4.4 Experimental Results Using AISL Head Orientation
Database

The AISL head orientation database is used to evaluate the
performance of each method in estimating the head pan and
tilt angles when the background changes. This database
simulates the changes of background for indoor environ-
ments which might confound the estimation results. In this
experiment, again, we cannot precisely crop each image.
The pan and the tilt angles are estimated separately. All
background variations are combined together as shown in
Fig. 12.

The first experiment is conducted to see the per-
formances of each method to estimate the head pan us-
ing dataset DS4. Table 7 shows that our CWGDD and
CWGDD+BIF-GA outperform the others for all classifiers.
On average, CWGDD accuracy is 2.54% higher than COG.
BIF-GA successfully improves the accuracy by 2.60%. The
second experiment was performed to see the performances
of each method to estimate the head tilt using dataset DS5.
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Table 7 Experimental results of estimating the pan and the tilt angles using AISL head orientation
database

Pan - Accuracy (%) Tilt - Accuracy (%)
Method +PCA +SVM +DF +PCA +SVM +DF

+ED +NC +LDA +ED +NC +LDA
COG [4] 67.62 77.78 79.05 80.63 77.46 65.40 64.76 41.59 77.14 71.75
IA-LDQP [2] 17.46 19.68 16.83 47.62 53.65 34.92 33.65 35.24 63.81 64.76
WLD [5] 34.29 60.95 67.30 65.08 58.73 56.51 54.60 33.97 66.44 61.90
CWGDD (Ours) 66.35 79.37 83.49 85.40 80.63 67.94 73.02 70.79 73.97 67.94
CWGDD+BIF-GA 73.65 79.05 81.59 90.48 83.49 72.70 73.65 73.97 74.29 68.25

Fig. 12 Example of AISL head orientation database

Fig. 13 Examples of failure cases on AISL database

Our CWGDD outperforms the other methods for PCA-
based classifiers. On average, CWGDD accuracy is 6.60%
higher than COG. BIF-GA successfully improves the accu-
racy by 1.84%. From the experiments, a single cue-based
methods cannot get good results because of their sensitivity
to the noises.

Figure 13 shows examples of incorrect results. Our
method fails for Fig. 13 (a) and Fig. 13 (b) due to a different
hair color from black, which causes a wrong intensity map-
ping when we used a dataset with only black hair persons for
training. Figure 13 (c) shows an unbalanced cropped head
area case.

4.4.5 Comparison with a Deep Learning-Based Method

Deep Learning has recently been gaining much popularity
due to its high performance in image and speech process-
ing. Cai et al. [23] developed a multi-class classification in
head pose estimation based on a Deep Convolutional Neural
Network (DCNN). They used an eight-layer DCNN.

We compared our CWGDD+PCA+LDA+NC with
Cai’s method using the CASPEAL head pose database. For
our method, we used a subset containing 4,200 images of
200 subjects whose IDs range from 401 through 600, and
performed 3-fold cross validation. They used the same 200
subjects for testing with using the remaining 840 subjects
for training. They also enriched the variation of training
dataset by shifting and scaling the training images, thereby
generating 410,700 images for training. The 4,200 test im-

Table 8 The comparison result against the Deep Convolutional Neural
Network

Method #Training #Test Classification
samples samples Accuracy (%)

DCNN [23] 410,700 1,400 97.17
Ours 2,800 1,400 95.86

ages were divided into three subsets, each of which includes
1,400 images, and the results for these subsets are averaged
to obtain the final accuracy.

Table 8 shows the comparison result. DCNN outper-
forms ours with 1.31% higher accuracy. This result is, how-
ever, obtained by using about 147 times larger training data.
It seems necessary to test the methods with more various
conditions for more detailed comparison. This is one of our
future work.

4.5 Online Experiment Using Videos

We have successfully built a simple yet robust head orien-
tation descriptor that works very fast and is applicable to
real applications. To test our method online, we utilized two
captured videos of a real scene at our campus. We combine
DS2, DS3 and DS6 as the training dataset. COG is utilized
as a baseline method because it is the closest competitor to
ours. In this experiment, we utilize Epsilon Support Vec-
tor Regression (epsilon-SVR) [24] with polynomial kernel
as the estimator. The tolerance of termination criterion is set
to 0.001, coef0 is set to 0, and degree in kernel function is
set to 3. We select block size of 6 × 6 due to the best esti-
mation results of pan orientation using SVMs as shown in
Table 1.

The main objective of this experiment was to com-
pare the feasibility of our descriptor and COG for estimat-
ing the head orientation in a video sequence in both indoor
and outdoor environments. We roughly divide the pan into
three general directions: right (α > +10o), upright frontal
(−10o ≤ α ≤ +10o) and left (α < −10o), while the tilt is also
divided into three general directions: up (β > +10o), upright
frontal (−10o ≤ β ≤ +10o) and down (β < −10o).

The first video is taken in a corridor where a targeted
person is walking and following a moving camera with a
distance of 1.5 - 2 meters. In this experiment, human upper
body detection is used to localize the targeted person’s body
due to the reduced stability of our head detector for a dis-
tant person. Our system performs head detection, estimates
the pan and the tilt angles at once, and tracks them to pro-
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Fig. 14 Experimental results of an online indoor scene. First, the human upper body is detected and
tracked (red bounding box). Head detection and head orientation estimation supported by tracking is
performed within the body’s bounding box. The estimated head orientation is shown by yellow (pan) and
green (tilt) arrows within the bounding box. Miss-orientation estimation (#159) occurs due to a severe
illumination, while false positive detections of the human upper body and miss-orientation estimation
(#387) occur due to an ambient light and a less fit of the head tracking.

Table 9 Comparison result in the indoor experiment

Method #Frame #Detected #Detected Accuracy (%)
Body Head Pan Tilt

COG 460 357 309 59.52 39.46
CWGDD+BIF-GA (Ours) 460 357 305 52.96 61.90

Fig. 15 Experimental results of an online outdoor scene. First, the human upper body is detected and
tracked (blue bounding box). Head detection and head orientation estimation supported by tracking is
performed within the body’s bounding box. The estimated head orientation is shown by yellow (pan)
and green (tilt) arrows within the bounding box. The human upper body detection, the head detection
and the head orientation estimation achieve good performances in this experiment.

vide more robust estimation. Our system is able to estimate
the target’s head orientation in frames as shown in Fig. 14.
However, the pan and the tilt errors sometimes occur dur-
ing the experiment due to a severe illuminations (#159), an

ambient lights and a less fit of the head tracking (#387).
We quantitatively compare the performance of our

CWGDD+BIF-GA against COG by manually counting
the number of frame, precision detected-body, precision
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Table 10 Comparison result in the outdoor experiment

Method #Frame #Detected #Detected Accuracy (%)
Body Head Pan Tilt

COG 345 273 260 68.56 62.33
CWGDD+BIF-GA (Ours) 345 270 255 74.33 78.43

detected-head, pan and tilt orientations accuracies as shown
in Table 9.

The second video is taken outdoor where a targeted
person is walking and following a moving camera with a
distance of 2 - 2.5 meters. In this experiment, the perfor-
mance of our head orientation estimation and the human
upper body is better than it was in the first experiment as
shown in Fig. 15. False body and head detection, and miss-
orientation estimation are reduced. The comparison results
of our CWGDD+BIF-GA and COG are shown in Table 10.

Based on the experimental results, the pan estimation
accuracy of COG is slightly better than ours in the indoor ex-
periment. However, COG fails to retain the accuracy for es-
timating the tilt. In general, our CWGDD+BIF-GA outper-
forms COG for indoor and outdoor experiments by achiev-
ing a better average in the accuracies.

The performance of our feature is stable because it uti-
lizes a more variety of cues, that is, edge/shape (gradient),
texture (Weber), and intensity patterns (deviation), while
COG uses only gradient features. If a noise level of image
is high, this affects the quality of gradient features, thereby
degrading the performance of COG-based method. This
is supported by our experiments that COG performs good
for the off-line databases (CASPEAL and Pointing’04) but
worse for AISL database and in real experiments.

4.6 Computation Time

Besides the accuracy, we also measured the averaged pro-
cessing time of each method to complete the descriptor gen-
eration. The average time for completing the descriptor
generation using COG, IA-LDQP, WLD, CovGa, CWGDD,
and CWGDD+BIF-GA are around 0.69 ms, 32.44 ms,
0.98 ms, more than 96.79 ms, 0.79 ms, and 0.79 ms, respec-
tively. The evaluation is conducted using Microsoft Visual
C++ running on a personal computer system equipped with
3.60 GHz Intel processor i7 supported by 16 GB of RAM.
Our weighting scheme does not burden our method because
the optimization process has been undertaken in advance.
Increasing the block size from 4 × 4 to 6 × 6 increases the
computation time by about 0.15 ms.

Online experiments using indoor and outdoor videos
show that our method is fast enough by achieving 11 -
16 fps. It implies that all processes such as the human up-
per body detection and tracking, the head detection, and the
head orientation estimation only take about 90.5 - 62.5 ms
in total.

5. Conclusion

We have presented our novel descriptor for estimating hu-

man head orientation. The combination of many features
such as Weber, gradient and intensity deviation collectively
was proven to be more effective to characterize the dif-
ferences of each head orientation than just using a single
feature. This combination significantly strengthens our de-
scriptor to estimate the head orientation. A covariance suc-
cessfully reduces the dimension of the descriptor, so that it
can work very fast while still maintaining a strong discrimi-
nation ability. Our Genetic Algorithm-based optimization of
the block important feature also significantly improved the
performance of the head orientation estimation. Based on
the experiments, our descriptor outperforms the other base-
line methods by reaching a high accuracy and better stability
than the other methods for almost all classifiers. A compar-
ison with the Deep Convolutional Neural Network method
exhibits our method is also comparable.

The experiments in a real scene environment show that
our method is very promising and is applicable for an online
application. However, some incorrect results while estimat-
ing head pan and tilt angles remain. Finding the best solu-
tion to solve this problem is a major concern for us and may
provide a focus for our future works.
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