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Abstract—This paper proposes a generation of guiding be-
haviors of a guide robot under a social force framework that is
aware of a human social aspect. This framework is supported by
a Q-learning algorithm to optimize the social force parameters
to deal with a variety of stimulations. It implies that we let
our robot learn by itself by interacting with the environments
directly. We named this framework as Q-Learning based Social
Force Guiding Model (QL-SFGM). However, let the real robot
learn in the real environments under Q-learning framework is
difficult, time-consuming, and hazardous. Therefore, in this study,
we utilize a realistic simulator, V-Rep, for both training and
testing. The simulation results show that our proposed framework
is effective to reduce over-reactive behavior of our guide robot
so that smoothness, safety, and comfort can be achieved.

I. INTRODUCTION

Human-Robot Interaction (HRI) has become a rapidly
growing research area in last two decades. Along with the
development of social needs, interaction between human and
robot is expanded in a wider range of applications, such as a
companion robot [1], person following robot [2], guide robot
[3], [4], [5], [6], [7], etc. To support person’s activities, an
appropriate service provided by a robot is a crucial factor
for successful interaction. This service reflects two important
things, that are skill and behavior. The skill is used to indicate
the ability of a robot to meet the purpose of design, while
the behavior is an impact exhibited by a robot when executes
its skill to react stimulations. When interacting with a human,
a behavior demonstrated by a robot should be acceptable. It
means that behaving as smooth as possible by still considering
safety is crucial. In this paper, we focus our work on the
generation of a socially aware behavior of a guide robot when
guiding a target person.

Basically, a guiding task can be decomposed into two
smaller tasks: navigation among social environment and co-
ordination with the target person. A conventional robot nav-
igation system usually concerns of the generation of a path
(safe and shortest). However, this concern sometimes does not
deal with human comfort. In a socially aware robot navigation,
human comfort becomes a major concern than just the shortest
path. Comfort is a psychological condition that a human
feels safe supporting by the absence of a sense of being
intimidated or threatened by something. Having an enough
space to perform his/her current or upcoming activity is crucial.
Hall [8] proposed proxemic interpersonal distance to categorize
the spaces around human with respect to social interactions and
norms. This space categorization has now become very popular
and is adopted in some robot applications [1], [9], [10].

A coordination with the target person is a one-to-one or a

private interaction task. In this task, a guide robot monitors the
target person activities and measures his/her awareness with
respect to the guiding task completion. The main goal of this
task is to provide an appropriate action which is proportional
to the target partner state, for example, the robot will stop or
wait when the target partner left behind, and the robot will
speed up when the target partner tends to follow at a closer
distance. We propose to use three features which are obtained
from the target partner such as a relative distance to the robot, a
movement direction, and a head orientation to indicate his/her
intention and attention.

In this work, we combined both tasks using the Social
Force Model (SFM) [11]. The reasons we used SFM are:
(1) this model is specifically designed for observing agent
behavior when to interact each other, (2) this model has been
adopted and successfully implemented by many researchers
who work with socially aware robot applications for example
in [1], [9], [10], and (3) this model is flexible, because we can
easily combine tasks. However, working with SFM requires
some parameters that must be tuned. Some previous works [1],
[9], [10] dealt with the tuning of these parameters in advanced
by utilizing evolutionary-based optimization approaches, i.e.,
Genetic Algorithm (GA) [12]. This approach may be practical;
however, the optimized parameters are not always in accor-
dance with various conditions, i.e., a robot which is trained
for indoor may exhibit strange behavior when operated in
an outdoor environment and vice versa. As the consequence,
the robot makes an unexpected behavior that is probably
dangerous, threatening to the others, and potentially damaging
itself.

Therefore, we assume that adaptively tuning the parameters
is an effective way to affect the interaction behavior. We
perform an online learning by utilizing Q-learning to optimize
the parameters, and we call it as Q-learning based Social Force
Guiding Model (QL-SFGM). There are two main contributions
of this paper: (1) To the best of the authors’ knowledge, there
are no previous works which exploiting all potential features
from a human for handling a guiding task under social force
framework. (2) This work is also the first which adjusts all
of the SFM parameters adaptively for a mobile guide robot
application. Adaptive adjustment of the parameters is effective
to reduce an over-reactive behavior of the robot.

The remainder of this paper is organized as follows. We
present our social force guiding model in section II. Our
proposed behavior learning strategy is described in section III.
Section IV shows the experimental results. And finally, the
conclusion of our work is delivered in section V.
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II. SOCIAL FORCE GUIDING MODEL

A. Social Force Navigation Model

Under Social Force perspective, a guide robot is a mobile
robot with mass m which tries to reach a goal with a desired
speed v0 in the desired direction e0, thereby the desired
velocity v0 = v0e0. The robot tends to adapt its actual velocity
v to the desired velocity within a period of relaxation time τ .
Hence, the basic equation of motion of the robot towards a
goal is given by the social force term:

Fg = m
v0 − v
τ

(1)

During its movement from the start position to the goal,
the robot will try to keep a distance both from the closest
dynamic obstacle, κ, and the closest static obstacle, h̄, by the
interaction force Fκ and Fh̄ respectively, as shown in Fig. 1(a).
This behavior is referred to in term of the repulsive effects.
Both Fκ and Fh̄ are the result of a combination of social
repulsive force, fsoc, and physical repulsive force, fphy . Fκ
can be expressed as

Fκ = fκsoc + fκphy, (2)

fκsoc = kκ exp

(
rRκ − dRκ

Ψκ

)
eRκω, (3)

fκphy = kκ(rRκ − dRκ)eRκ, (4)

where kκ is the magnitude of force w.r.t. a dynamic obstacle.
rRκ = rR + rκ is a sum of the robot’s radius, rR, and the
dynamic obstacle’s radius, rκ, at an intersection point between
their interaction space. dRκ is a distance between the robot
to the closest dynamic obstacle. Ψκ is an effective range of
influence of the force w.r.t. a dynamic obstacle. eRκ is a vector
indicating the direction from the dynamic obstacle to the robot.
When the distance between the robot and the dynamic obstacle,
dRκ, is larger than rRκ, the force will be ignored.

Fig. 1. The social force for modeling robot navigation. (a) An example
of behavior of the robot when interacts with the environment, and (b) An
anisotropic factor to define a limited awareness of an agent; λ = 1 means the
same level of awareness for all ϕ, and λ < 1 means the level of awareness
is gradually decreasing depends on ϕ.

Due to a limited field of view of a human, an anisotropic
factor expressed by ω = λ + 0.5(1 − λ) (1 + cos(ϕ)) is
introduced into the equation. λ is a parameter which defines
an anisotropic influence region that represents the fact that the
obstacle in front of an agent are usually more relevant than
that located behind it and ϕ is an angle between obstacle and
robot as illustrated in Fig. 1(b). Fh̄ can be expressed as

Fh̄ = fh̄soc + fh̄phy, (5)

fh̄soc = kh̄ exp

(
rR − dRh̄

Ψh̄

)
eRh̄ω, (6)

fh̄phy = kh̄(rR − dRh̄)eRh̄, (7)

where kh̄ is a magnitude of force w.r.t. a static obstacle. rR
is a robot’s radius. dRh̄ is a distance between the robot to the
closest static obstacle. Ψh̄ is an effective range of influence
of the force w.r.t. a static obstacle. eRh̄ is a vector indicating
the direction from the dynamic obstacle to the robot. When
the distance between the robot and the static obstacle, dRh̄,
is larger than rR, the force will be ignored. We can define
a resulting force with respect to the navigation among social
environment, Fnav , as follows.

Fnav = Fg + Fκ + Fh̄. (8)

B. Social Force Coordination Model

In the case of a guide robot, the robot navigation is not
influenced by interactions with obstacles only, but it is also
affected by an interaction with the target partner state. We
defined the state of the target partner by using three features:
a relative position of the partner, ρ, a movement direction, α,
and a head orientation, β.

The human partner’s relative position under social force
framework is expressed as a combination of a social force and
a physical force (both can be repulsive or an attractive) as a
function of distance. We adopted a bipolar sigmoid function
for this social force. All forces are then expressed as follows.

fρsoc =

2kρ
1

1 + exp
(
−dRρ−µρΨρ

) − kρ
 eRρ, (9)

fρphy = kρ(dRρ − µρ)eRρ, (10)

Fρ = fρsoc + fρphy, (11)

where Fρ, fρsoc, and fρphy are respectively a total force, a social
force and a physical force given by the target partner to the
guide robot w.r.t. his/her relative position. kρ is a magnitude of
force w.r.t. the target partner relative position. dRρ is a relative
distance between the human partner and the guide robot. µρ
is a mean value which represents a comfortable distance when



the human partner follows the guide robot. Currently, this mean
value is set to 2.2 meters. We conducted a separate study to
determine this value by collecting data from six persons. Ψρ

is an effective range of influence of the force. eRρ is a vector
indicating the direction from the human partner to the guide
robot, and vice versa.

We also formulate the target partner movement direction
under social attractive force assumption as follows.

Fα = kα(1− cos(α+ ϕ))eRρ, (12)

where Fα is an attractive force due to the human movement di-
rection, kα is a magnitude of the force w.r.t. human movement
direction, α and ϕ are a human partner movement direction
and a relative direction of the human partner from the guide
robot, respectively. The last feature is the human partner’s head
orientation that can be expressed as follows.

Fβ = kβ(1− cos(β + ϕ))eRρ, (13)

where Fβ is an attractive force due to the human partner’s
head orientation, kβ is a magnitude of the force w.r.t. human
partner’s head orientation, β is a human partner’s head orien-
tation. Since the human partner movement direction and head
orientation only affect to the social related context, we defined
them as the social forces only. Therefore, we can define a
resulting force with respect to the coordination with the human
partner, Fcoord, used for influencing the motion planning and
control of the guide robot as follows.

Fcoord = Fρ + Fα + Fβ . (14)

Finally, we can obtain our Social Force Guiding Model
(SFGM) by combining both tasks and resulting a guiding force,
Fguide, by following an expression as follows.

Fguide = Fnav + Fcoord (15)

C. PID Controller

We employ a Proportional-Integral-Derivative (PID) con-
troller as shown in Fig. 2 to reduce bouncing effects exhibited
by SFM and to speed up focusing our robot heading to the goal
direction. Employing this PID controller can greatly speed up
the Q-learning convergence or reducing the number of learning
episodes. All of the PID coefficients are also optimized.

Fig. 2. Block diagram of our proposed social force guiding model.

III. REINFORCEMENT-BASED BEHAVIOR LEARNING

A. Problem definitions

Under social force perspective, the motion of a guide robot
is driven by a velocity as the result of the navigation force and
the coordination force at that time step, Fguidet . Obtaining an
appropriate Fguidet for each circumstance is, however, crucial
to exhibit a socially acceptable behavior, i.e. smooth and
safe. With respect to smooth and safe navigation, a trade-
off between keeping direction towards the goal, abilities to
avoid collision with obstacles, and keeping coordination with
the human partner is a crucial factor to produce a reliable
Fguidet . Therefore, we argue that this trade-off problem can be
solved using Reinforcement Learning (RL) technique.

B. Q-learning based Parameters Optimization

In general, the RL problem can be formulated as a discrete
time, finite state, finite action Markov Decision Process (MDP)
[13]. The learning environment can be modeled by a 4-tuple
{x, a, p, r}, where:

• x ∈ X ; S is a finite set of states.

• a ∈ A; A is a set of actions that the agent can perform.

• p ∈ P; P : X ×A → Π(X ) is a state transition func-
tion, where Π(X ) is a probability distribution over X .
p(x, a, x′) represents the probability of moving from state
x to x′ by performing action a.

• R : X ×A → R is a scalar reward function.

The goal of the agent in an RL problem is to learn an optimal
policy Π∗ : X → A. We use Q-learning (QL); the most
successful method of RL. In Q-learning, the policy is computed
using Q-value which is referred to as the state-action value and
is updated by Q(x, a) = Q(x, a)+η(r(x, a)+γmaxQ(x′, a)−
Q(x, a)), where Q(x, a) is a Q value of the state, x, and action,
a, pair. η is a learning rate within range (0,1). r(x, a) is a direct
reward value for the state-action pair. γ is a discount factor.
maxQ(x′, a) is the estimated maximum Q-value of the next
state.

C. Configuring A State

A state describes a local situation faced by the robot during
its travel. The local situation is composed of several features
as shown in Fig. 3. We built and specify our own interaction
zone by modifying the proxemic interpersonal distance that
was introduced by Hall in [8]. In the proxemic interpersonal
distance, each distance is specified within a specific shape,
e.g., circular or elliptical. Due to simplify the computational
problem and the generation of states, we discretized all features
using binary segmentation and assigning a constant real value,
w, as the identity of each segment as shown in Table. I. The
state w.r.t. each feature can be expressed as

x1 =
∑3
i=0 piwi,

x2 =
∑2
i=0 biwi,

x3 =
∑3
i=0 fiwi,

x4 =
∑2
i=0 hiwi,

x5 =
∑4
i=0 siwi,

x6 =
∑4
i=0 diwi,

(16)



Fig. 3. Features for composing the state: (a) A zone for observing the human partner position, (b) A division of the human partner’s movement direction, (c)
A division of the human partner’s head orientation, (d) A division of the guide robot’s heading direction, (e) A zone for observing static obstacles, and (f) A
zone for observing dynamic obstacles.

TABLE I. IDENTIFYING REGIONS W.R.T. EACH FEATURE USED IN
DEFINING STATES

Feature w4 w3 w2 w1 w0

Partner’s position - 4 3 2 1
Partner’s movement direction - - 15 10 5
Partner’s head orientation - 80 60 40 20
Robot’s heading direction - - 200 100 0
Static obstacle 2,400 1,200 900 600 300
Dynamic Obstacle 28,800 14,400 10,800 7,200 3,600

x = x1 + x2 + x3 + x4 + x5 + x6, (17)

where x1, x2, x3, x4, x5, and x6 are the state of each
feature w.r.t. the target partner’s position, the target partner’s
movement direction, the target partner’s head orientation, the
robot’s heading direction, the static obstacle, and the dynamic
obstacle, respectively. p, b, f , h, s, and d are codes of fulfilling
circumstance of each feature in a binary digit ”0” and ”1”. x
is a state which represents the combination of all features.

D. Defining and Selecting an Action

In the MDP framework, action is a set of variables
that can be chosen and executed to switch from cur-
rent state to the other. In our case, an action is de-
fined as a set of social force guiding model parameters,
a = {kκ,ΨRκ, k

h̄,ΨRh̄, λ, k
ρ,ΨRρ, k

α, kβ ,Kp,Ki,Kd}.
Taking an action means adjusting those parameters. An action
is selected based on its highest probability of a state-action
pair, p(x, a), from Q-value normalization as follows.

p(x, a) =

{
1.0 if Q(x, a) = maxQ(x)
Q(x,a)−minQ(x)

maxQ(x)−minQ(x) otherwise
(18)

E. Reward Value

A reward value is used to update the Q-value of a state-
action pair. Referring to section III. A, the main objective of
using Q-learning is to solve the trade off problem between
those three objectives. We proportionally calculate this reward
value using a linear equation for representing the reward
function as follows.

r = mf(g, h) + c (19)

where r is a reward value, m is a constant multiplier or a slope,
f(g, h) is a function derived from a specific objective, and c is
a constant. A small positive reward value (e.g. +1) is required
to keep the action to stay on the list of the best actions when a
learner successfully does a job. A negative reward value (e.g.
-10) is required to remove the action from the list when a
learner failed. If we expect the result of f(g, h) = [0, 1] and
c is a negative reward value (c← −10), then we got m = 11.
By following the formulation, we heuristically defined three
objectives as follows.

1) Completing an episode:

rsuccess =

{
+100 if robot can reach the goal
−10 if robot fails .

2) Minimizing the robot runs in different direction with the
goal:
rΘ = 11 cos(θt −Θt)− 10,



where θt and Θt are the relative goal direction from
the robot’s position and the robot’s heading at time t,
respectively.

3) Controlling the magnitude of forces: the dynamic ob-
stacle, (rfκt ), the static obstacle, (rfh̄t ), and the human
partner force, (rfραβt

).

rfκ =


11 exp(−(Fκt −F

g
max)2/(2(F gmax)2))−10

if region D = d1, d2, d4, d1 ∪ d4 or d2 ∪ d4

11 exp(−Fκt /F
g
max)−10

otherwise

rfh̄ =


11 exp(−(F h̄t −F

g
max)2/(2(F gmax)2))−10

if region S = s1, s2, s4, s1 ∪ s4 or s2 ∪ s4

11 exp(−F h̄t /F
g
max)−10

otherwise

rfραβt
=


11 exp(−(Fραβt /F gmax)−10
if region P = p1 or p3

1
otherwise

where F gmax is the maximum F g without repulsive
forces, when v = 0.

The direct reward value of each step, ri, can be expressed as

ri = rΘ + rfκ + rfh̄ + rfραβt
. (20)

The total reward value, R, after completing one episode is
expressed as

R =

N∑
i=1

γiri + rsuccess. (21)

where i = 1, 2, 3, ..., N , N is the number of steps, and γ is
a discount rate applied to the expected maximum Q-value of
the next state.

IV. EXPERIMENTAL RESULTS

A. Experimental Platform and Robot Model

We validated our system using the V-Rep simulator [14].
Several simulated environments are built for training and test-
ing purposes. The Social Force Guiding Model (SFGM) and
Q-learning (QL) algorithm are implemented using Visual C++
programming that is remotely connected to V-Rep through an
API client-server. We used a modified Pioneer P3DX robot
model that is equipped with a Hokuyo laser sensor (LRF) in
front of the robot and a back-facing camera on the top of
the robot. The LRF is used to detect the static and dynamic
objects (in this paper, the dynamic object positions are obtained
directly from the simulator). The back-facing camera is used
to capture the target partner actions (in this paper, we bypass
its function by directly simulating the target partner actions
using a separated partner behavior module).

B. Modeling The Target Partner’s Action

The target partner’s actions are modeled by following our
design as follows.

1) The target partner is designed to always follow the robot
from behind with a random speed from 0 up to 0.75
m/sec.

2) The target partner movement direction is determined
by V-Rep when he is blocked by an obstacle, and is
determined using the robot position when following the
robot.

3) The target partner head orientation is represented using
three models, that are always looking at the robot, always
alternating his head (modeled using sinusoidal function),
and looking at a certain direction (modeled using sigmoid
function) along guiding task. The executed model is
chosen randomly for each episode. Execution time of
the model is also randomized.

C. Learning Phase

1) Fixed-parameter setting: Before starting the training, we
set several robot’s parameters: m = 20 kg, v0

max = 1 m/sec,
τ = 0.015 sec, kmax = 20 N, Ψmax = 3.6 m, λmax = 1,
and the ellipse’s major and minor radius are 1.8 m and 0.7
m, respectively. The Q-learning algorithm parameters setting
is shown in Table. II. All of the parameters with subscript max
are proportionally divided by the number of actions.

2) Scenarios: We built three scenarios as shown in Fig. 4
to train our robot. These scenarios are used to complete as
much as possible states.

3) Training results: As the training result, we show several
examples of the behaviors of the robot during learning in
Fig. 5. From those figures, we can show that our Q-learning
based system tries to obtain the optimal policy in each episode
by slowly but surely updating the Q-values for each parameter.

D. Testing Phase

1) Scenarios: We built three scenarios as shown in Fig. 6
to evaluate our robot performance. We performed 30 trials for
each scenario.

TABLE II. Q-LEARNING PARAMETERS SETTINGS

Parameters Value
Number of training episodes 2,000
Number of states 43,200
Number of actions 25
Initial ε 0.6
Learning rate α 0.1
Discount factor γ 0.7
Fgmax 200 N

Fig. 4. Training scenarios: (a) indoor with static obstacles, (b) outdoor with
two persons (static and dynamic with defined-trajectory route), and (c) narrow
indoor with two persons (dynamic and free movement).



Fig. 5. Examples of the training behaviors of the robot in indoor scenario. The
environment setting (a), and the progress of the online learning is presented
by the last step of each learning episode (b-f). Red lines represent the robot’s
trajectories and magenta lines represent the human partner’s trajectories. Green
circle represents the target goal. Robot achieves smoother trajectory after 400
episodes.

Fig. 6. Testing scenarios: (a) indoor with static obstacles and two free moving
persons, (b) outdoor with 10 free moving persons, and (c) narrow indoor
with two persons (dynamic and defined-trajectory routes). A bluish cylinder
represents the target goal.

2) Smoothness: A smoothness of the robot motions is
measured using a mean and a standard deviation of the
robot altered-headings along its movements toward the goal.
A simple moving difference filter is applied on the robot’s
heading with a kernel [−1, 0, 1] to count how many the robot
makes sudden unexpected movements with an angle more than
30o. The smoothness of our robot movements is shown in
Table. III. From scenario (a) and (c) our robot is able to
minimize the number of sudden movements because of a little
number of dynamic obstacles. In a more complex situation (b),
our robot also successfully curbs its unecessary movements.

3) Safety: Safety can be measured using a percentage of
successful task completion without threatening humans or the
robot. The percentage of successful and safe movements of
our robot are shown in Table. III. From the table, our robot
achieves 66.67% of successful trials of all scenarios. Almost all
failures are caused by unnatural movements of the simulated
dynamic obstacles (the other persons), where how they avoid
the collision with the robot often even crashing into the robot.

TABLE III. THE SMOOTHNESS OF MOTIONS, SUCCESSFUL TRIALS AND
TIME NEEDED TO COMPLETE THE TASK.

Scenario Smoothness (times) Successful Trials (%) Time (sec)
(a) 4.53± 4.24 70.00 16.73
(b) 10.90± 6.77 63.33 8.59
(c) 5.60± 4.29 66.67 15.60

V. CONCLUSION

We have developed a self-learning framework for a mobile
guide robot which is able to navigate among social environ-
ments while guiding a target partner. The proposed framework
is more emphasis on the behavior of the robot that meets
smoothness and safety when performing its task. Our robot is
equipped with Q-Learning based Social Force Guiding Model
(QL-SFGM) to find the best socio-psychological-based con-
trol action for each particular situation. Experimental results
show that using the self-learning framework, the over-reactive
behaviors can be minimized by still considering the safety.
The experimental results using the simulator show that our
method is very promising and is applicable to the real robot.
Implementing this method in a real robot application and
measuring the real human comfort will be our next focus.
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