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Abstract—We consider the object search problem, where a
robot has to explore its environment in order to localize some
objects. We use a two step process, where the robot first
detects candidate objects, and later identifies them using another
algorithm. Since there are several candidate objects and the
outcomes of the object recognition algorithm are uncertain, we
model the planning process as an MDP. Furthermore, we give a
certain amount of time to the robot to fulfil its mission. This leads
to a problem where we want the robot to find as many objects
as possible and as fast as possible within a limited time. This
paper shows early results for the deterministic case. We model
this by a Constrained Deterministic MDP, and we propose an
incremental algorithm, based on a sequence of Mixed Integer
Linear Program to compute the policy.

I. INTRODUCTION

In order to perform more and more complex tasks, robots
have to get a better understanding of their environment. We
are considering an indoor environment, like offices or personal
houses, where the robot can interact with humans. One of
the most important tasks for a mobile robot is to preserve its
integrity, and thus has to know where it may go safely. This
issue has been well studied and has leaded to many SLAM
algorithms (Simultaneous Localization and Mapping) [1]. To
fulfil complex tasks, the information present on this map is
not sufficient anymore. Instead, the robot has to know what
kind of objects are in its environment and should be able to
locate them on a map. The problem of searching and locating
those objects on the map is called the objects search problem.

Many work has been done to search efficiently for objects.
Sjöö et al. [2] present an attention mechanism and methods
for depth computation, used to control the zoom level in
order to perform an SIFT matching at an accurate distance
measure. In [3], Meger et al. present Curious George, a
combination between an attention system and a SLAM al-
gorithm. This attention system allows the robot to take high
definition pictures of potentially interesting area, which are
used offline to perform the object detection. The principle of
alternatively performing a move and an observation action is
used by Shubina and Tsotsos in [4], where they compute the
probability of an object’s presence and the probability of an
object detection using a certain type of recognition algorithm.

The lack of a long term policy, by selecting only the best
next viewpoint, may lead to sub-optimal results. To obtain
a long term plan, Aydemir et al. [5] are using a high level
planner to select low level strategies to find a target object. The
algorithm of Masuzawa et al. [6] that first detects candidates
objects. Instead of directly selecting the best next viewpoint,
they compute a long term policy. The authors rely on an ad-

hoc world modelization in order to speed up their planning
algorithm, but still, since they are performing an exhaustive
search, is too slow to be solved for larger problems online.

Our problem is to recognize as many objects as possible
and as fast as possible given a time limit. The contributions
of this paper are the modelization of the problem as a
Constrained Markov Decision Process (CMDP), a simplified
Mixed Integer Linear Program (MILP) to solve it, and an
incremental algorithm to control the calls to the MILP solver.

II. PROBLEM

We define a candidate object as the location where some-
thing has been detected as potentially being a searched object.
We call the location from where this candidate object can be
identified a viewpoint. Fig.1 shows the object search prob-
lem. First, candidate objects are detected using a long range
algorithm (here a color histogram search). Those detections
are set as candidate objects on the map. Those candidates
objects can be identified using an accurate and short ranged
algorithm (here SIFT matches). For each object we define
a set of viewpoints from where it is possible to apply the
identification algorithm. We assume that this algorithm is not
perfect and that we can estimate its probability of success for
each viewpoint. We obtain a planning problem to select the
optimal sequence of viewpoints, and once solved we can apply
the selected action. At the end of the mission, we obtain a map
augmented by objects information. In this paper, we will add a
time constraint for the mission. We will focus on the planning
algorithm, thus the exploration part will not be presented here.
Furthermore, we will remove the uncertainty and will focus
on how to manage the constrained planning problem.

(a) Detect (b) Detect (c) Plan

(d) Identify (e) Identify (f) Return map

Fig. 1. Object searching
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III. MODEL

A. Markov Decision Processes

MDPs [7], [8] allow the formalization of a sequential
decision problem under uncertainty. This process is fully
observable, i.e. the observed state is the actual state of the
system. A fully observable MDP is a 4-tuple 〈S,A, P,R〉
• S is the (finite) set of states,
• A is the (finite) set of actions,
• P : S ×A× S → [0; 1] is the transition function,
• R : S ×A→ R is the reward function.

The unique optimal value function V ∗ is given by the Bellman
equation [7] for the discounted expected reward for a discount
factor γ ∈ [0; 1]. ∀s ∈ S :

V ∗(s) = min
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s, a, s′)V ∗(s′)

)
(1)

B. Observation planning model

From the raw sensor data, we need to build an MDP to
compute the observation policy. We use model presented in
[9], and defined by :

a) States set S: Since transitions are history independent,
the states have to contain all previous information needed to
take the decision. It is a way to handle the partial observability.
• the current position (x, y) of the robot,
• the list of visited viewpoints. Since the robot should

not observe twice the same object from the same view-
point, we need to keep the list of visited viewpoints
{{vp1

1, vp
2
1, . . . , vp

m
1 }, . . . , {vp1

n, vp
2
n, . . . , vp

m
n }} for all

n objects, and vpji is the jth observation for the ith object
and m the maximum number of observations allowed.

• the information Ii about object i’s status. it can be
identified, rejected, or unknown.

A state s can be written :
s = 〈x, y,

{
{vp1

1, . . . vp
m
1 }, . . . , {vp1

n, . . . vp
m
n }
}
, {I1, . . . In}〉

b) Actions set A: The robot has only one kind of action.
It is a macro action preforming a move action followed by
an observation action. The robot selects a viewpoint, goes
there and observes the related object. Its outcomes will be
described by the transition function. We also add a stop action,
available in every state, which makes the robot move to the
starting position and reach the final state. This stop action is
also executed when there is no more candidate objects.

c) Transition function P : In a general model, we con-
sider move actions as deterministic and observation actions
as stochastic. The probability of successfully identifying a
candidate can be computed for each viewpoint according to
known parameters (object type, location etc.). Since it is
impossible to observe twice from the same viewpoint, this
MDP is acyclic.

d) Reward and Cost function R: The observation plan-
ning problem can be naturally expressed by two criteria : the
overall mission time, and the number of recognized objects. In
[9], the authors focused on optimizing only the time criteria,
whereas in this paper we want to recognize as many objects

as possible given a time constraint. We define C(s, a) < 0 the
cost (time) of executing a in s (the time to reach the viewpoint
plus the time to recognize the object), and R(s, a) > 0 the
reward for having identified an object (set to 1 if s has just
recognized one object, 0 otherwise. This value can be changed
to introduce preferences between objects).

In the following, we will restrict this general model to
the deterministic case, where observations always succeed.
This process becomes a Deterministic MDP. Observing one
object immediately change its status to identified, hence the
observation history can be removed from the state’s definition.
Even, this simplified model is a first step towards the stochastic
one, the obtained plan can still be useful. For instance, it
can be used to decompose the whole problem into the object
observation order planning and the viewpoint planning for
each object or as a heuristic value.

IV. CONSTRAINED MDP

As previously shown, the robot has to deal with rewards and
costs of different natures and we don’t optimize a weighted
sum of the two criteria. Instead, we manage those two criteria
separately through a CMDP, see [10] for a survey. It is an
extension of MDP where the long term expected reward is
subject to constraints on other resources. A mutli-criteria
reinforcement learning algorithm has been proposed in [11]
which ensures a minimum expected reward for every state
before optimizing the other criterion. But it is working on a
sub-class of CMDP where our problem can’t be expressed.

When optimizing the number of objects using a time
constraint, once satisfied, it is not optimized anymore. For
instance, if a mission is given an infinite time, any policy
that selects, for each object, the viewpoints having highest
probability of recognition will be optimal, regardless to the
global observation order! Even this behaviour is rational from
an optimization perspective, it is unacceptable for a real
application. Thus we have to optimize the mission’s time using
an expected number of recognized objects as a constraint.

The methods the most widely used are based on linear
programming. The linear programming approach has been first
introduced in [12]. We present here the dual of this linear
program (LP) since it is more suited to solve CMDP [13]. The
occupation measure xs,a represents the discounted number of
time action a is taken in s, and αs : S → [0, 1] the initial
probability distribution over states ; C being negative, the dual
linear program to find the fastest policy is formulated as :

Maximise ∑
s,a

C(s, a)xs,a

Subject to ∑
a xs′,a − γ

∑
s,a xs,ap(s, a, s

′) = αs′

xs,a ≥ 0

(2)



Once this linear program solved the optimal policy1 can be
computed by :

π(s, a) =

{ xs,a∑
a
xs,a

, if
∑
a xs,a > 0

arbitrary, if
∑
a xs,a = 0

(3)

It is possible to add extra constraints on the minimum expected
number of recognized object Rmin to the linear program LP.2.
Those constraints are defined by the Eq.4 :∑

s,a

R(s, a)xs,a ≥ Rmin (4)

Adding Eq.4 to LP.2 implies that the optimal policy be-
comes stochastic, which is not wanted. In [14] the authors
showed that computing an optimal deterministic policy is NP-
Complete. They compute a deterministic policy by adding a
non linear constraint to the LP, ∀s ∈ S, a, a′ ∈ A, a 6= a′ :

|xs,a − xs,a′ | = xs,a + xs,a′ , (5)

In [13], the authors change those additional constraints so
that the mathematical program becomes an MILP. Since more
tools are available to solve MILP than general mathematical
program, the MILP may be easier to solve. They introduce
∆s,a a binary variable to express the (unique) selected action
a in s, and X ≥ xs,a a constant to force xs,a/X ∈ [0; 1[.
They compute the optimal deterministic policy by adding to
LP.2 : 

∑
a ∆s,a ≤ 1

xs,a/X ≤ ∆s,a

∆s,a ∈ {0; 1}
(6)

The CMDP defined to solve the observation planning problem,
see Sec.III-B2 has interesting properties : the starting state is
known, it is acyclic and any policy will lead to the final state.
Then we will use the same principle that combines LP.2 and
Eq.6, but here, thanks to those properties, we can simplify Eq.6
by defining xs,a as binary variables and we finally propose the
following MILP :

Maximise ∑
s,a

C(s, a)xs,a

Subject to ∑
a

xs′,a −
∑
s,a

xs,ap(s, a, s′) = αs′∑
s,a

R(s, a)xs,a ≥ Rmin

xs,a ∈ {0; 1}
(7)

Theorem 1: MILP.7 computes the optimal deterministic
policy for an acyclic DMDP with unique and known starting
state and γ = 1.

1Note that even the policy may appear stochastic, without constraint this
policy is always deterministic

2We add for the constrained problem a stop action which can end the
mission.
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Fig. 2. MILP solving time

Proof: The starting state s0 is known, thus : for the start-
ing state s0, with γ = 1 and αs0 = 1 we have

∑
a xs0,a = 1.

Since xs,a ∈ {0; 1} one and only one action a0 will be selected
having xs0,a0 = 1. Since the problem is deterministic, there
is only one state s′ such that p(s0, a0, s1) = 1, furthermore,
since the MDP is acyclic, there is no other state s′ such that
xs′,a′p(s′, a′, s1) 6= 0. We have

∑
a xs′,a − xs0,a = 0, and so

on until the process reach the final absorbing state.

V. RESULTS

Fig.2 shows the computation time to solve the MILP for
six and seven objects in the model, different number of
viewpoints, and for various constraint value Rmin. We use Ilog
CPLEX with default options. For highly constrained problem
(Rmin = 7 obj) or low constrained problem (Rmin = 1
obj), the optimal policy can be found quickly. But for ”in-
between” problems the computation time increases dramat-
ically (6 candidates, 4 obj and 7candidates, 5 obj). Fig.3
shows the computed policy for different constraint values. In
this picture, each color represents one object, and each circle
represents one viewpoint for that particular object.

VI. ITERATIVE MILP

We propose an iterative algorithm, Alg.1, which will at
every step, find a solution to a problem constrained by a given
minimum number of expected identified objects. Thus the
solution found will be the fastest for that number of objects.
We define nbObj as the total number of candidate objects in
the model. If the expected mission time

∑
s,a C(s, a)x(s, a) is

under the time limit, we increase the constraint value (line 6) in
order to find a suitable plan. Fig.2 shows that some instances
are very difficult to solve and should be avoided if possible.
Alg.1 controls the search and can try to avoid those particular
values when selecting Rmin (line 6). For instance, if the robot
has a lot of time, it can first plan for the maximum number of
objects and, if succeed, doesn’t need to solve for other values.
When a little time remains, even many candidates could be
checked, it is better to first search for a plan that recognize a
few objects.

VII. DISCUSSION

We showed how we can compute an observation plan for
object recognition under time constraint. This is an early work,
and the next step is to include uncertainty in the transition
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Fig. 3. Policy execution for different constraint values Rmin

function. The MILP can’t simply use binary occupation mea-
sure variables anymore, we have to use one of the previous
approach [13], [14]. Since the observations may fail, and since
we want the robot to be able to try again, we have to keep a
history of observation in the state, leading to a huge increment
of the state space size. In previous works, this is solved by
using Monte-Carlo algorithm and a limited horizon planning.
It is possible to quickly compute a heuristic for the best policy
to recognized all object (see [9]), and we can use it to get a
high-level object recognition order, and then use it build an
approximate, potentially sub-optimal, MILP. This observation
order will force the plan to finish recognizing one object before
continuing to the next one. In that case, the object observation

Algorithm 1: Iterative MILP
Data: MDP model, mission time tmax
Result: π satisfying tmax
Generate MILP (see MILP.7) from model;1

Rmin ← 1;2

repeat3

Set constraint Rmin;4

Solve MILP;5

Rmin + + ;6

until Eπ
[ ∞∑
t=0

γtCt|s0 = s

]
> tmax or Rmin > nbObj ;

7

return π∗8

history will be limited to the current object, the previous
object being solved, and the next one not yet observed so the
transition function will be limited to the current local plan.

VIII. CONCLUSION AND FUTURE WORKS

In this paper we presented the observation planning problem
with limited time resource. We showed how we can use the
properties of the observation planning problem to propose a
simplified MILP. We showed early works using an iterative
algorithm that solve a sequence of MILP. Once the observation
planning problem is viewed as a MILP it is possible to
use both the optimization techniques on the problem itself
(Hierarchical planning, approximate MILP generation) or on
the way of solving the MILP itself (approximate the solution of
the generated MILP). Since the MILP are well-studied, having
the observation planning expressed by those enables the use
of many proved property, and also many efficient algorithms.
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