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Abstract— This paper describes a road boundary estimation
method for autonomous navigation. We consider navigation in a
campus environment, where roads (or traversable regions) are
not necessarily modeled by a typical road model with a pair of
parallel lines, but have a variety of shapes. We therefore use a
set of flexible road models with model transition mechanisms
for a robust road boundary estimation. This new modeling
is incorporated into our multiple sensory feature-based road
boundary estimation framework using a particle filter. The
proposed method has been successfully applied to various scenes
in our campus to realize autonomous navigation.

Index Terms— Outdoor navigation, Mobile robot, Road
boundary estimation, Stereo vision, Particle filter.

I. INTRODUCTION

Personal service robots are expected to help people in

various scenes of their everyday life. Since activities in

outdoor is an important part of life and the autonomous

outdoor navigation capability is therefore indispensable for

such a robot. A fully autonomous navigation entails many

functions such as route planning, localization, road detection

and following, and obstacle avoidance. This paper focuses on

road (or traversable region) detection.

Vision has been widely used for road boundary detection

and estimation. Some methods detect road and lane bound-

aries directly [3], while others first detect road regions using

color information [14]. Most of these works rely on a single

or a few predefined visual features. Range sensors [15], [7]

or stereo cameras [11] are also popular for detecting roads

or traversable regions; they assume geometric discontinuity

(e.g., curbs) at road boundaries, and might not be effective

in some roads like a small trail among low grasses.

It is also necessary to cope with occasional sensing failures

or missing effective features (e.g., a discontinuity of curbs).

Many model-based filtering approaches using Kalman filters

[6], particle filters [1], [5], or swarm-based optimization [12]

have been shown to be effective.

One important issue in road boundary estimation, espe-

cially for personal service robots, is how to cope with a

variety of road scenes; effective sensory information for

road boundary detection may vary from place to place

and the road shape may be complex (see Fig. 1). Use of

multiple visual/sensory features is effective for increasing

the robustness to the variety of boundary appearances; for

example, filter-based methods are suitable for integrating

multiple cues [1], [9]. Concerning estimation of complex

road shape, Bai et al. [2] deal with the parametric estimation

(a) various road appearances.

(b) various road shapes.

Fig. 1. Examples of road scenes.

of road boundaries composed of a sequence of connected

arcs using multiple particle filters. Few methods, however,

have dealt with various road shapes as shown in Fig. 1.

We have been developing a particle filter-based road

boundary estimation method [10], [4]. By using flexible road

models with branches, the method can recognize branching

roads, which most of existing works have not dealt with. In

this paper, we greatly extend the road models to cope with a

much larger variety of road scenes. Thanks to our approach

which handles road model changes at the state transition

step in particle filtering, we can achieve the extension in

a principled manner.

The rest of the paper is organized as follows. Sec. II

explains our road boundary estimation framework. Sec. III

describes road models and their parameter update. Sec. IV

describes the transition between road models to cope with

road type changes. Sec. V shows experimental results. Sec.

VI concludes the paper and discusses future work.

II. ROAD BOUNDARY ESTIMATION FRAMEWORK

This section provides basic ideas of our multi-sensory road

estimation framework [10], [4]; Fig. 2 shows an overview.

The right-hand side of the figure indicates the iteration of

a particle filter, while the left-hand side indicates the sensor

data processing. We here use the simplest road model, that

is, the unbranched road model as an introductory example.

A. Road model and state vector

In the field of road shape design, straight lines, circular

curves, and transition spirals such as clothoids [13] are

usually used. Many previous road boundary estimation meth-

ods use straight and/or parametric curve models. Since a
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Fig. 2. Overview of road boundary estimation process.

greater variety of road shape may exist in local environments,

however, and since precise reconstruction of road shape is

not the purpose of the method, we use piecewise-linear road

models to represent a road shape in a local region visible

from the robot.

An unbranched road is the one which does not have any

branches and has almost constant widths along the road.

This type of road is modeled by a sequence of segments,

as shown in Fig. 3 (left). Each segment Si has as parameters

two boundary points on both sides ((xr
i , y

r
i ) and (xl

i, y
l
i)),

local curvature νi, and length hi. This road type also has road

width w, which is common to the current set of segments but

is estimated on-line, and gap parameter G = [g r
e , g

l
e, g

r
h, gl

h],
which is to deal with the case where different boundaries

are supported by different visual features. Refer to [4] for

the effect of the gap parameter.

The proposed method estimates the robot pose and the

road parameters simultaneously. So we use the following

state vector:

Xu = [U, w, G, S1, S2, . . . , S6] , (1)

U = [∆x, ∆y, ∆θ] , (2)

where U is the robot pose. The robot pose and the road

parameters are defined in the previous robot coordinates. The

number of segments is fixed to six for unbranched roads.

B. State transition

The state transition step in the particle filter transforms a

set of particles to another set by a robot ego-motion estimate

and road parameter updates. The former is calculated from

x

y

w

robot

ith segment Si

(xr
i, y

r
i)

(xl
i, y

l
i)

hi νi

boundary point

new road segment

Fig. 3. Unbranched road model (left) and road parameter update (right).

(a) input image (b) color gradient image

(c) intensity gradient image (d) height gradient image

Fig. 4. Input and gradient images for road boundary features.

visual odometry [10]. The latter takes place when the robot

is judged to enter a new road segment. The previous segment

where the robot was is deleted and a new one is attached,

as shown in Fig. 3 (right). The curvature of the newly added

segment is determined to follow a normal distribution; their

mean and variance are set to that of the rear-most segment to

which the new one is attached and 0.04 [1/m], respectively.

Road model changes, the other type of transitions such as

the one from an unbranched to a branching, will be described

in Sec. IV.

C. Likelihood calculation

This step calculates the likelihood of each particle using

stereo image data. We extract three types of image informa-

tion, color, edge, and height, as evidence for the existence

of road boundaries, and suppose that at least one type of the

information exhibits a large change at boundary positions.

We do not explicitly extract road boundaries. Instead, we

calculate gradient images for the three types of information

and calculate the weight of a particle by projecting the road

boundary given by the road parameters of the particle and

by summing up the gradient values at the mapped boundary

positions. The summed value is converted to a likelihood

using some sigmoid function. Fig. 4 shows an example set

of three gradient images.

The likelihood of a particle is calculated by multiplying

the six likelihood values for every combination of the three

features (color, edge, and height) and the two side (left and

right). When the values for a combination become very small

for any particles due to, for example, a discontinuity of curb

or strong cast shadows, that combination is not used for

preventing the likelihood values for all particle becoming

very small.

D. Resampling step

This step performs a resampling for obtaining a new set of

particles. To avoid particle deprivation, we do the resampling

only when needed. If the so-called effective number of

particles is less than the half of the number of particles,

the resampling is performed [8].
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(a) cast shadows.

(b) unclear boundaries.

Fig. 5. Estimation results for an unbranched road.

E. Estimation result

Fig. 5 shows results of road boundary estimation. For

each pair of images, the left one indicates road boundaries

obtained from the particle set superimposed on the input

image. To see which feature is effective, we assign the three

primary colors, red, green, and blue, to color, edge, and

height information, respectively. If a boundary is yellow, for

example, it shows that both color and edge information are

dominant for the corresponding particle.

The right image is a kind of certainty distribution of

road regions in the robot local coordinates, obtained by

voting road regions coming from the current set of particles.

Brighter pixels indicate higher certainties.

These figures show that road boundaries are estimated

reasonably well for a variety of scenes.

III. ROAD MODELS

Our road boundary estimation framework deals with vari-

ous road scenes by preparing multiple road models. Our pre-

vious works [10], [4] used two road models for unbranched

and branching roads. We here extend the road models to

use six models: unbranched, branching, both-sided, left-

sided, right-sided, and no-boundary. Examples of road scenes

corresponding to these models are shown in Fig. 6.

A. Branching model

A branching model (see Fig. 7) has a branching part with

two road parts on its front and rear sides. The branching part

specifies its entry position (xl, yl) and (xr , yr) , the width wb

of branching road(s), and the radius r of the curved parts. We

have three branching road types, crossing, right-T, and left-

T, but all types have the same representation; two branching

road on the left and the right direction of a crossing are

assumed to have the same width.

The representation of branching part is:

Sb =
[

xl, yl, xr, yr, wb, r
]

. (3)

The state vector for the branching road model is given by:

Xb =
[

U, w, G, Sf
1
, Sf

2
, . . . , Sb, S

r
1
, Sr

2
, . . .

]

, (4)

where Sf
i and Sr

i are the segments for the front and the rear

part; the number of these segments varies according to width

wb of the branch. U , w, and G are the same as in eq. (1).

no-boundary

single-sided 

(right)

single-sided 

(left)

both-sided unbranched branching

Fig. 6. Road models and transitions.

boundary point
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Fig. 7. Branching road model.

B. Both-sided, single-sided, and no-boundary models

A both-sided road, which is different from unbranched

road, is composed of a pair of boundaries with a varying dis-

tance between them; no explicit constraints like parallelism

exist on the shapes and the positions of the left and the right

boundary. Both boundaries are tracked independently.

When the boundary on one side does not exist (i.e., single-

sided road), we keep searching for any boundary which may

will appear on that side and, at the same time, keep tracking

the boundary on the other side. When no boundary exist in

the field of view (i.e., open space), we independently search

for boundaries on both sides.

We prepare three models, both-sided model, single-sided

model, and no-boundary model, for these three road types. To

realize tracking or search operations mentioned above, how-

ever, all of the three models use the same road representation

shown in Fig. 8. Each model has a pair of this single-sided

representation but sets the mode of each boundary to the

tracking mode or the search mode depending on the model.

The single-sided representation is composed of a sequence

of segments, each of which has front position (x, y), orien-

tation θ, and length h. The number of segments and the

segment length depend on the robot speed, the road width,

and the field of view and may have a larger distance along

the segments than unbranched roads. We currently set the

number of segments to nine and the length h is fixed to

1.0 [m] for every segment. The state vector for the single-

sided road model is then given by:

Xs = [U, G, S1, S2, . . . , S9] , (5)

Si = [xi, yi, θi] , (6)
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Fig. 8. Single-sided road representation.

where U and G are the same as in eq. (1).

The parameter update is carried out when the robot is

judged to pass by the front-most segment; that segment is

deleted and a new one is added. In the search mode, the

variety of parameters (i.e., the variances of road parameter

distributions) are set larger than in the tracking mode. In

addition, a part of the particle set (currently, 30 %) are given

random parameters within a predetermined range to catch

newly-appearing boundaries because they may not have any

relationships with the past ones.

IV. ROAD MODEL CHANGES

A road model change is a transition from one road model

to another. Each road model change is defined by a pair

of the transition condition and the transition operation. In

a particle filter framework, it could be possible to always

test hypotheses for all road models and to see how each

of them fits to the current situation. That approach will be,

however, costly because for each model, we need to generate

multiple hypotheses with many different parameter values

(i.e., many particles) for a reliable estimation. We therefore

try to find signs of road model changes and if they exist, we

make particles for possible road models those signs suggest.

Regardless of the sign being true or false, correct road models

are expected to survive in the subsequent resampling steps.

Edges in the graph shown in Fig. 6 indicate possible transi-

tions between the road models. The transitions are classified

into five types. Each transition type will be explained below.

A. Transition by modification

This type of transition happens when an unbranched model

changes to a branching or a both-sided model. In such

changes, as the robot moves, a branching part or some

deviation of road boundaries will gradually visible. We

always check how well the current unbranched model fits

to the data, and if we find a sign of such changes, we add

particles for both models into a particle set.

The sign is detected by examining the trends of the

likelihood values for the three features along the direction of

the robot. We calculate their averaged values for all particles

and describe them as functions of the distance from the robot.

If we find a region where all averaged values are less than

some threshold (currently, 0.25 for color and edge features

and 0.35 for height features) and whose length is larger than
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(a) left boundary.
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(b) right boundary.

Fig. 9. An example of likelihood trend

starting position of 

both-sided model

maximum distance

Fig. 10. Transition from unbranched to both-sided.

another threshold (currently, 1 [m]), we randomly choose a

certain number of particles for unbranched roads from the

current particle set and modify them to generate branching

or both-sided models.

Fig. 9 shows an example of likelihood trend. Since there

is a region with low likelihood values on the right beyond

5 [m], particles for right-T branching and both-sided models

are generated. Fig. 10 shows a procedure of modifying an

unbranched model into a both-sided one for the a low-

likelihood region on the right; a sequence of segments are

added beyond the starting position of the region.

B. Transition by temporal consequence

This type of transitions is for those from branching to

unbranched models. When the robot is at a crossing, for

example, its branching part (see Fig. 7) will soon disappear in

the image as the robot moves, and unbranched road segments

will then be added, as in the case of Fig. 3(right), and the

model will naturally be an unbranched one.

C. Transition by composition

This type of transitions is for those from both-sided to

unbranched models. This happens when two single-sided

models on both sides are considered almost in parallel. We

examine each particle to see if its single-sided models (see

Fig. 8) are almost linear and in parallel; a boundary is

considered linear if the sum of absolute relative orienta-

tions between segments is less than a threshold (currently,

18.0 [deg.]). If this condition holds, that particle is changed

to an unbranched model and the boundaries on both sides

are estimated simultaneously in subsequent steps.

D. Transition by disappearance

This type of transition occurs when a boundary (or a

pair of boundaries) disappears by getting out of the field

of view, and is for transitions from a both-sided model to

a left-sided, a right-sided, or a no-boundary model. Since

in the both-sided model, the left and the right boundary are
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Fig. 11. Transition from both-sided to single-sided.

independently estimated as described before, the operation

of this transition is to just switch the mode of a single-sided

model from tracking to search.

It is not necessary to always consider this type of tran-

sition. We therefore try to find a sign of disappearance, as

in the case of transition by modification. In transition by

modification, we need to analyze the trend to determine the

position on the boundary where a branching part begins. In

transition by disappearance, however, we need to only judge

if a boundary still exists or not. For this purpose, we define

a fitness criterion, which indicates how much portion of a

road boundary of a particle fits to the current situation. We

check every pixel on the mapped boundary in the image to

see if the likelihood value for that pixel is effective (i.e.,

above a threshold) or not. We use the same thresholds for

the three likelihood values as above (i.e., 0.25 for color and

edge features and 0.35 for height features). The fitness is then

defined as the ratio of effective pixels. Finally, if the average

of the fitness values of all particles is less than a threshold

(currently, 0.2), the current model is considered unfitted, and

a mode switching from tracking to search occurs.

Fig. 11(a) shows a sequence of images for a transition

from both-sided to single-sided; we can see that the majority

of the particle set changes gradually from both-sided to

single-sided. Fig. 11(b) shows changes of the averaged fitness

values for the left and the right boundaries. The model is

switched from both-sided to single-sided at step 72.

E. Transition by appearance

This type of transition occurs when a boundary on either

side appears as it enters the field of view of the camera, and

is for transitions from a no-boundary model to a single-sided

or a single-sided model to a both-sided. This is an inverse

transition of that by disappearance, and if the averaged fitness

values for at least one feature becomes larger than a threshold

(currently, 0.4), the operation is to switch the mode of a

single-sided model from search to tracking.

Fig. 12(a) shows a sequence of images for a transition

from a single-sided model to a both-sided one. At each step,

the left image is the estimation result of single-sided models

in track mode, while the right one in search mode. We

searchtrack
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track search

track search track
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search

(a) image sequence.

color fitness
edge fitness

height fitness

0.0

0.1

0.2

0.3

0.4

0.5

fi
tn

es
s

step

145 150 155 160 165
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Fig. 12. Transition from single-sided to both-sided.

can see that distinctive (i.e., brighter) boundaries gradually

change from search mode to track mode, as the robot moves.

Fig. 12(c) shows the changes of the averaged fitness values

for the right boundary. The model is switched from single-

sided to both-sided at step 168.

V. EXPERIMENTAL RESULTS

Fig. 13 shows some of experimental courses in our cam-

pus, which have a large variety of shape and appearance.

Fig. 14 shows the estimation results for a crossing in course

1. It is shown that both branching and both-sided models are

generated at the entry and the former ones then gradually

gain the majority.

Fig. 15 shows the results for a place where the road type

frequently changes (course 2). From steps 60 to 75, the right

boundary got out of the field of view and the transition

from both-sided to left single-sided occurred. From steps

105 to 115, the right boundary re-appeared and both-sided

models gained the majority. From steps 530 to 575, since

the boundaries on both sides became almost in parallel, the

transition from both-sided to unbranched occurred. From step

660 to 685, the left boundary disappeared and the transition

from both-sided to right single-sided occurred. Fig. 16 shows

the change of the portions of models for this scene.

The processing speed is about two frames per second for

600 particles by a Corei7 (2.80GHz, 3GB) laptop PC with

a Bumblebee2 stereo camera (Point Grey Co.). We have

already realized an autonomous navigation with on-line road

boundary estimation in a part of experimental site [4].

VI. CONCLUSIONS AND FUTURE WORK

This paper has described a road boundary estimation

method using a stereo camera and multiple road models.

By appropriately switching road models, it can robustly and

reliably estimate road boundaries in various road scenes in-

cluding unbranched road, branches, and open spaces. Multi-
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(a) course 1 (b) course 2

Fig. 13. Experimental courses.

(a) step15 (b) step20

(c) step25 (d) step030

Fig. 14. Estimation of a crossing on course 1.

sensory fusion and road model switching are naturally incor-

porated in a particle filter framework. We implemented the

method on our mobile robot and have done several on-line

road boundary estimation and navigation experiments in our

university campus where not only well-structured roads but

also other spaces to walk through exist.

Although the result is very promising, we need to do more

extensive navigation experiments. We also plan to extend

the method to cover most of traversable regions in our

campus including, for example, slopes. Combination with

global localization capabilities such as GPS or view-based

localization methods is another future work.
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