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ABSTRACT
This paper deals with player tracking in broadcast soccer
video. In soccer games, players sometimes gather in a small
area in the case of, for example, a corner kick. In such a case,
due to a heavy occlusion, a simple detection-and-tracking
method will certainly fail. We cope with such difficult cases
using a constraint satisfaction approach. To integrate pieces
of evidence at various places/frames, we construct a graph
of player blobs representing possible player transitions. The
view of each blob provides a constraint on the number of
players in the blob. All such constraints are propagated
through the graph to reduce the ambiguities in the numbers.
The remaining ambiguities after the propagation is handled
by a statistical approach in which a set of the most likely
interpretations on the numbers is selected. Finally the play-
ers’ trajectory are determined based on their smoothness.
Experimental results show the effectiveness of the method.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—video analysis; I.4.8 [Image Processing and
Computer Vision]: Scene Analysis—tracking

General Terms
Algorithms

Keywords
Player tracking, broadcast soccer video, constraint satisfac-
tion

1. INTRODUCTION
There is an increasing demand for summarizing broad-

cast soccer videos (or other sports videos) to make a digest
of interesting scenes in a game (e.g., goal scenes) so that
viewers can quickly survey the game. We are now develop-
ing a system for retrieving interesting and informative scenes
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(a) An easy scene.

(b) A difficult scene.

Figure 1: An easy and a difficult scene.

based on scene understanding. As viewers’ interests spread
and deepen, more various scenes should be recognized and
detected; for example, not only goal scenes but also scenes
with a specific player delivers a nice pass to a forward player.
Some previous works use image and sound features directly
[2, 9, 10] for recognition and summarization. To meet vari-
ous and detailed requirements of viewers, however, it is es-
sential to know the movements of players and a ball [6].

In a certain portion of a whole video, most of players
exist in isolation in a video and are thus easily detected and
tracked. In a cluttered scene like a corner kick and a free
kick in front of the goal, however, tracking players become
very difficult due to heavy occlusions between players. Fig.
1 shows examples of easy and difficult scenes.

Some previous methods deal with occlusions using filtering-
based approaches based on motion continuity [5, 4, 12]. Such
an approach will most probably fail in a heavy occluded
scene as shown in Fig. 1(b) because several players of a
team sometimes form one region, from which each player
cannot be segemented, and because several occlusions be-
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tween various players occur continuously without a period
during which each player exists in isolation. In addition,
players sometimes perform feint motions against opponent
players, which violate the motion continuity assumption.

To cope with such heavily occluded scenes, a promising
approach is to deliberately examine what transitions of oc-
clusions would be possible by observing the whole sequence.
We [7] took a similar approach in tracking a ball when the
ball overlaps with a series of objects (players, lines, and the
stands) without the period of isolation in the image. A key
of this approach is to construct a graph representing possible
transitions of overlaps.

Such a graph-based approach has been tackled by sev-
eral previous works. Chia et al. [1] proposed a method of
first constructing small-sized graphs which connect blobs of
a player and then merging the graphs considered to come
from the same player into a larger one using color and spa-
tial similarities. This method may merge graphs of multiple
players because it uses only local information for merging.
Figueroa et al. [3] proposed to represent possible correspon-
dence between player blobs in adjacent frames as a graph
and to select the most probable correspondence using pieces
of evidence obtained at various places and frames. Since this
method assumes that each player is isolated at the first frame
of the sequence, it is not applicable to the case where oc-
clusions have already existed at the first frame of the shot.
Sullivan and Carlsson [8] also proposed a graph-based ap-
proach. They used a wide-screen soccer video which cap-
tures the entire field with a high resolution for the entire
game period. The use of the wide-screen video enables us to
use strong information such as the position of each player,
a long period of each player being isolated, and the max-
imum number of field players in the image (that is, ten).
Such information cannot be always available in the case of
broadcast soccer videos.

Our method also takes a graph-based approach with so-
called least-commitment strategy. We gradually reduce pos-
sible interpretations of the scene using pieces of evidence
which appear at various locations and frames; each piece of
evidence may not be strong but if we integrate them, they
will become strong. Fig. 2 shows the overview of the pro-
posed method. We start by generating a graph, nodes and
edges of which are the player blobs and their temporal cor-
respondence, respectively. We then performs a constraint
propagation through the graph. For an efficient propaga-
tion, we extract and organize subgraphs in a hierarchical
way. This propagation greatly reduces the ambiguity but
not completely. We then introduce the plausibility evalua-
tion of possible assignments of players to nodes using prob-
abilistic model of player size and sampling-based MAP-like
estimation. After reducing the ambiguities as much as pos-
sible, we extract players’ routes.

The rest of the paper is organized as follows. Sec. 2
briefly explains the image processing techniques used in the
method. Sec. 3 describes the hierarchical structure of the
graph and the constraints used. Sec. 4 describes a proba-
bilistic player appearance model and its use as a unary con-
straints on each node. Sec. 5 explains the constraint prop-
agation process and Sec. 6 explains the subsequent proba-
bilistic sampling-based search for probable interpretations.
Sec. 7 describes the route candidate generation and route
extraction. Sec. 8 shows some results of our methods. Sec.
9 concludes the paper and discusses future work.

Route extraction

Sampling-based search

 Constraint propagation

Graph generation

Figure 2: Overview of the proposed method.

2. IMAGE PROCESSING FOR SOCCER
VIDEO ANALYSIS

This section briefly explains image processing procedures
used for player tracking. See [7] for more details.

2.1 Shot detection
A soccer image sequence is divided into shots. We use

a color histogram for shot change detection. If the differ-
ence between the histograms in the current and the previous
frame exceeds a threshold, the current frame is considered
to be the first frame of a new shot and is analyzed to deter-
mine which camera takes the shot. In this analysis, the size
of the ground-colored (green) blob, the size of the players,
and the number of horizontal lines are used.

2.2 Camera parameter estimation in a shot
Several cameras are used in broadcasting soccer video. We

estimate the camera positions once in advance by manually
matching the lines and the frame of the goal in the image
and those of a model of the field. Each camera has the other
there parameters (pan, tilt, and zoom). We estimate the
parameters at every frame since they usually change from
frame to frame.

The initial values of the camera parameters can be esti-
mated from two pairs of intersections of lines in the image
and those in the field model. We first generate a set of such
pairs using the possible ranges of the gradients of the model
lines in the image and then select the one which maximizes
the degree of matching between the projected model lines
and the line regions in the image.

Once the initial parameters are determined, the parame-
ters are continuously estimated in subsequent frames using
a local search-based method [11]. Fig. 3 shows a result of
the camera parameter estimation. Fig. 3(a) indicates the
result of projecting model lines onto the ground using the
estimated parameters. In Fig. 3(b), the bright area corre-
sponds to the field of view of the camera, and red and blue
points indicate the positions of players.

2.3 Player blob detection
We detect player blobs using colors of shirts and pants

for each team. Fig. 4 shows an example of player blob
detection. Fig. 4(a) is an input image from World Cup 2002,
Japan vs. Belgium and Fig. 4(b) shows the detected blobs;
the blue, red, and white blobs indicate Japan (uniform is
blue and white), Belgium (red) players, and a goalkeeper,
respectively.



(a) projected lines.

(b) Field of view and player positions.

Figure 3: Camera parameter estimation.

(a) An input image.

(b) Extracted player blobs.

Figure 4: Extraction of player blobs using color.

3. PLAYER TRANSITION GRAPH AND
CONSTRAINTS

Integration of many pieces of evidence, which arise at var-
ious places in the image and at various frames, is necessary
for recognizing a difficult scene. For such an integration, we
use a graph representation called player transition graph. A
node of the graph is a player blob and an edge is a possible
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Figure 5: An example player transition graph.

transition between player blobs at two consecutive frames.
We consider the transition is possible between the player
blobs if they overlap with each other in the image coordi-
nates.

Each node has, as the attribute, a pair of the minimum
and the maximum number of players included in the corre-
sponding blob. We call the attribute the range of the num-
ber of players or RNP. Each RNP is represented in the form
of (min, max). We propagate the RNP information of all
nodes through the graph for obtaining tighter RNP’s.

In a highly complex scene with many occlusions, a player
(or players) of one team may exist behind a player (or play-
ers) of the other team. We therefore prepare two RNP’s for
each blob. The team corresponding to the color of a blob is
called the front team of the blob and the other the behind
team. A graphs is generated for each team and processed
independently.

In one shot, players sometimes forms mutually-independent
clusters, each of which can be analyzed separately. This cor-
responds to the case where the entire graph can be divided
into several connected graphs. In addition, if we focus on
a short period among the whole sequence of the shot, we
can find smaller independent subgraphs. Considering such
subgraphs makes it efficient to propagate RNP’s. For find-
ing subgraphs, we use a prominent feature of the graph that
there are no edges between nodes at a frame.

3.1 Constraints to be used
Two classes of constraints are used. One class is for unary

constraints on nodes obtained from the size and the shape
of each player blob in the image at each frame. The other is
for n-ary constraints between nodes connected by edges.

We use the following three types of n-ary constraints in the
RNP propagation: equality constraint, inequality constraint,
and summation constraint. The first two constraints come
from the fact that no player disappear or appear during the
transition. The last one comes from the fact that the total
number of players of a team is limited (or constant) at each
frame. We explain these constraints using Fig. 5. Let ni

be the number of players of node-i. Then, the following
constraints exist:

• Equality constraints: n1 + n2 + n3 = n5 + n6 + n7,
n4 = n8.

• Inequality constraints: n1 ≤ n5+n6, n2 ≤ n5+n6+n7,
n3 ≤ n7, n5 ≤ n1 + n2, n6 ≤ n1 + n2, n7 ≤ n2 + n3.

• Summation constraints: n1 + n2 + n3 + n4 ≤ N , n5 +
n6 + n7 + n8 ≤ N . N is the total number of players
of one team (i.e., 10) when the number of players in a
shot is not known. If that number is known, it is used
and the above inequality becomes the equality.

3.2 Hierarchy in player transition graph
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Figure 9: Maximum constant
blocks.

We generate the following hierarchy of subgraphs. Each
subgraph also has the RNP for an efficient constraint prop-
agation.

3.2.1 Basic block
When two nodes at frame t are both connected to a node

at frame t− 1 and both connected to a node at frame t + 1,
such two nodes are called to be related (see Fig. 6). A set
of related nodes at a frame forms a basic block. A node
not having any such relations with others also forms a basic
block by itself. Fig. 7 shows examples of generated basic
blocks.

3.2.2 Maximum constant block
We then collect basic blocks in consecutive frames whose

numbers of players are equal. This is for applying the equal-
ity constraints to a set of basic blocks. Fig. 8 shows an
example pair of basic blocks satisfying this constraint. We
extract locally-longest such sequences of basic blocks; each
resultant collection of basic blocks is called a maximum con-
stant block or MCB. Fig. 9 shows the generated MCB’s from
the basic blocks shown in Fig. 7.

3.2.3 Maximum constant subgraph
We next consider the constraints between maximum con-

stant blocks (MCB’s) having edges between them. We col-
lect such MCB’s so that the equality constraint holds within

t+1

t-1

t

... ...
...

Figure 10: A set
of MCB’s with the
equality constraint.

Figure 11: Maximum constant
subgraphs.

the collected set. Fig. 10 shows an example; the number of
players of the lower MCB is equal to the sum of those of the
upper MCB’s. To use the summation constraint on such a
set of MCB’s, we generate such sets so that they have the
same temporal boundaries. Each generated set is called a
maximum constant subgraph or MCS.

There are in general multiple ways to construct MCS’s
for a graph. We currently use a greedy algorithm. Other
algorithms can be used but they should divide all nodes
into sets of MCS’s exhaustively and exclusively. Fig. 11
shows the generated maximum constant subgraphs (drawn
in purple) from the MCS’s (in blue) shown in Fig. 9. Note
that an MCB may belong to several MCS’s.

3.2.4 Top-level connected graph
The top-level of the hierarchy is the whole connected graph.

There may be several top-level, connected graphs for one
team. Each connected graph also has an RNP and can be
analyzed independently of the other connected graphs of the
same team. The summation constraint based the total num-
ber of the players in the scene is applied to a set of connected
graphs.

3.3 Players going out to or coming from the
outside of the field of view

Some players may go out to or come from the outside
of the field of view (FOV) during a shot. We deal with
such cases by using a special node for players outside the
FOV. This special node also contains the range of number
of players, as others do.

4. PLAYER APPEARANCE MODEL AND
UNARY CONSTRAINTS ON NODES

The shape and the size of a player blob provide evidence
for the possible number of players of the blob. If the feet
of a player are detected in a player blob, we can determine
confidently that only one player exists there. In that case,
we set (1, 1) for the front team and (0, 0) for the behind
team, respectively.

Concerning the evidence from the size, a qualitative ob-
servation is that the larger the size is, the more players prob-
ably exist. We, however, need some quantitative evidence
to be used for constraining RNP’s. We therefore manually
examined the actual numbers of players for over one thou-
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sand player blobs. The examination results are summarized
in Fig. 12; four distributions in the width-height space cor-
responding to respective numbers of players are shown in
different colors. We then approximated each distribution
with a two-dimensional normal distribution:

p(s|n) =
1

2π|Σn|1/2
exp

j
−1

2
(s − µn)T Σ−1

n (s − µn)

ff
, (1)

where s = (w, h) is the size vector, µn and Σn are the mean
vector and the covariance matrix of the distribution for the
blobs with n players, respectively.

For the behind team, whose colors do not exist in the
player blob under consideration, there is a large possibility
that the players of that team do not exist there. The prob-
ability of player existence for the behind team will decrease
as the size of the blob decreases. We, again, need some
quantitative evidence measure. We performed the above-
mentioned examination for the cases where the number of
players is zero for the behind team. Fig. 13 shows the ob-
tained size distribution for zero-player blobs.

We chose the following sigmoid function as a model and fit
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Figure 14: The approximate probability of the num-
ber of behind team players being zero.

it to the data so that the mean squared error is minimized:

f(x) =
1

1 + e−a(x−b)
(2)

x =
p

w2 + (kh)2, (3)

where a, b, and k are the parameters to be adjusted. The
value of this function ranges in [0.0, 1.0]. Since the existence
probability should not be very low or very high consider-
ing the uncertainty in probability estimation, we narrow the
range to 100 p0 percentage of the whole scale by using the
following function as the probability:

P (x) = f(x) · p0 +
1 − p0

2
. (4)

Currently we set p0 = 0.8. Fig. 14 shows the estimated
P (x) from the data shown in Fig. 13.

5. CONSTRAINT PROPAGATION THROUGH
THE GRAPH HIERARCHY

The first step in determining the number of players of each
blob is to propagate RNP information through the entire
graph to obtain tighter RNP’s with adopting the equality,
the inequality, and the summation constraints.

This step is composed of three parts: initialization, prop-
agation using equality and summation constraints in the
tree structure, and propagation using inequality constraints
among nodes. The second and the third part are alternately
executed until no change of RNP’s is obtained by either of
those parts. Fig. 15 shows the process of the proposed con-
straint propagation.

5.1 Initialize the ranges of the number of play-
ers

The initial RNP of a node is determined from the width
and the height of the corresponding blob using the proba-
bilistic distributions of eq. (1); the minimum and the max-
imum number of players is obtained from the distributions
with some margins added. The minimum number of behind
team is set to zero.

5.2 Constraint propagation using equality and
summation constraints

The graph hierarchy has the tree structure; from the root
to leaves, we have a top-level connected graph, maximum
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constant subgraphs (MCS’s), maximum constant blocks (MCB’s),
basic blocks, and nodes. The constraint propagation starts
at the nodes and goes upward to the top-level, and then it
comes back downward to the nodes (see the right-hand part
of Fig. 15).

We first describe the propagation between basic blocks
and a maximum constant block (green marks in Fig. 7 and
blue ones in Fig. 9, respectively). Let (Bmin, Bmax) be the
RNP of an MCB and (Ct

min, Ct
max) be the RNP of the ba-

sic block at frame t included in the MCB. For the upward
propagation from basic blocks, we perform the following cal-
culations:

Bmax = min
t

Ct
max, (5)

Bmin = max
t

Ct
min. (6)

For the downward propagation from the MCB to basic blocks,
we perform the following for all frames included in the MCB:

Ct
max = Bmax, (7)

Ct
min = Bmin. (8)

This two-way calculation basically applies the equality con-
straint but at the same time introduces information from
the other parts of the graph.

We next explain the propagation between a maximum
constant subgraph and maximum constant blocks (purple
and blue marks in Fig. 11, respectively). Let (Gmin, Gmax)
be the RNP of the MCS and (Bi,t

min, Bi,t
max) be the RNP of

the ith MCB at frame t. For the upward propagation from
MCB’s to MCS, we perform the following calculations:

Gmax = min
t

 X
i

Bi,t
max

!
, (9)

Gmin = max
t

 X
i

Bi,t
min

!
. (10)

For the downward propagation from MCS to MCB’s, we

perform the following:

Bi,t
max = min

0
@Bi,t

max, Gmax −
X
j �=i

M j,t
min

1
A , (11)

Bi,t
min = max

0
@Bi,t

min, Gmin −
X
j �=i

M j,t
max

1
A . (12)

Similar propagation operations are also performed for nodes
and a basic block, maximum constant subgraphs and the
top-level connected graph, and between connected graphs.

5.3 Constraint propagation using inequality
constraints

Constraint propagation using inequality constraints are
applied to only connected nodes. Although similar con-
straints can also be applied to connected MCS’s (see Fig.
11, for example), we do not do so because the ambiguity in
the number of players will be large in upper levels of the
graph hierarchy and inequality constraints are expected to
be not very effective when the ambiguity is larger.

6. SAMPLING-BASED SEARCH FOR DE-
TERMINING PLAUSIBLE NUMBERS OF
PLAYERS

The constraint propagation explained in the previous sec-
tion is the propagation of hard constraints; that is, the nec-
essary conditions are checked which should certainly be sat-
isfied. It is, however, difficult to completely determine the
numbers of players of the nodes at that stage and, there-
fore, ambiguities on the numbers still remain. To cope with
such remaining ambiguities and to obtain a plausible inter-
pretation (i.e., a combination of the numbers of players of
all nodes), we take a probabilistic approach.

We have constructed the probabilistic distributions of blob
size for each specific number of players. Using this knowl-
edge, we would like to obtain the maximum likelihood inter-
pretation. Since the remaining interpretations satisfy all the
constrains (equality, inequality, and summation), the likeli-
hood of an interpretation is calculated as the product of the
likelihood values of the number of players of every ambigu-
ous node in the interpretation. Calculating the maximum
likelihood interpretation is, however, very hard because the
set of possible interpretation is huge. We therefore use a
sampling-based method. In addition, to avoid the case where
a not-so-good interpretation happens to gain the maximum
likelihood, we keep a certain number of good interpretations
and merge them to determine the RNP’s of all nodes.

6.1 Normalized distribution of numbers of
players

In the sampling-based method, for an ambiguous node
whose RNP has not collapsed into a single number (i.e.,
the minimum number is equal to the maximum one) yet,
we select one number in the RNP probabilistically using the
normalized probabilistic distribution of the numbers.

The normalized distribution for a node is calculated by
normalizing the set of likelihood values obtained for the re-
maining numbers in the RNP and the probability values for
the size of the node. Whenever the RNP is reduced, this nor-
malized distribution is updated. Fig. 16 shows a schematic
view of calculating the normalized distribution.
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6.2 Algorithm
We use the following sampling-based algorithm for obtain-

ing a set of plausible interpretation.

1. Repeat the following hypothesis generation and evalu-
ation for N times.

(a) (hypothesis generation) Repeat the following steps
until all ambiguities are resolved.

i. Select an ambiguous node at random and se-
lect one number in the current RNP based on
the normalized probabilistic distribution.

ii. After fixing the number of players of that
node, we perform the constraint propagation
described in Sec. 5.

(b) (evaluation) Calculate the likelihood of the hy-
pothesis.

2. Reduce all RNP’s using the top n hypotheses; that is,
keep only the numbers of players which match with at
least one of the hypotheses.

Currently we use N = 1000 and n = 50.

6.3 Using hypotheses on the total number of
players

The constraint on the total number of players in the im-
age is strong for resolving the ambiguities of RNP’s. It is
not, however, always the case where all players are in a shot
and the constraint that the total number of field players is
ten can be applied. We therefore hypothesize the number of
players in a shot in several ways, and use it for the sampling-
based search. We sample data for possible numbers of the
total number in the image and select the best interpreta-
tion. Fig. 17 shows the samples for a connected graph of
Japan team; the horizontal axis indicates the log-likelihood
of an interpretation and the vertical one indicates the sum
of the errors in the number of players of all nodes compared
with the correct numbers. In this case, the samples for the
case where the total number is hypothesized as six are best
and the actual total number is also six. Note that inap-
propriate hypotheses are automatically eliminated using the
constraint propagation steps if they are actually incorrect.
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ber of players

7. EXTRACTING PLAYER ROUTES
Determining the number of players of the nodes is not

equivalent to determining the routes (a sequence of nodes) of
players; several combinations of player routes may be possi-
ble for a single interpretation of the numbers of players of the
nodes. In addition, there usually remain multiple interpre-
tations after the constraint propagation and the sampling-
based search. The number of possible player routes, there-
fore, may still be large.

If we analyze a zoomed-up image sequences, players ap-
pear in large sizes in the image and, therefore, visual cues
such as faces and uniform numbers may be effective in iden-
tifying players. In the case of video sequences as shown in
Fig. 1, however, each player is too small to use such visual
cues. We need to use other cues such as the smoothness
and/or continuity of the route.

It is costly to generate the possible routes directly at the
node level. So we first generate them at the maximum con-
stant block (MCB) level. For each route at the MCB level,
we then generate a route at the node level.

7.1 Generating possible combinations of player
routes at MCB level

At the MCB level, a route of a player is a sequence of
MCB’s on which the player moves. We analyze the graph of
MCB’s (such as the one shown in Fig. 9) to enumerate all
possible routes on that graph. For each route, we determine
the RNP from the RNP’s of all MCB’s on the route. Next we
generate combinations of the routes by enumerating possible
combinations and then checking their compatibility with the
RNP’s of the related nodes.

7.2 Extracting a combination of player routes
at node level

Given a combination of MCB-level routes, we then deter-
mine which sequence of nodes each of the MCB-level route
passes. A certain portion of the node-level route can be de-
termined without ambiguity from a MCB-level route; that is,
we can determine many nodes on which the route certainly
passes. We then interpolate the route segement between two
such nodes. Fig. 18 schematically explains the process of
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interpolation.
The figure shows two cases of player movements and one

graph with RNP’s corresponding to both cases. There are
three players, one (white) from a team and two (light and
dark gray) from the other. There is an ambiguity in the
middle where a white player is behind one of the two gray
players in both cases. By considering the smoothness of the
player movement, the left node is selected in the middle for
case A and the right node for case B. This is a very simple
case; it can probably be handled by the existing methods
which uses the smoothness constraint (or the motion conti-
nuity). The important difference of the proposed method in
the usage of smoothness constraint from the existing ones
is that we adopt the constraint after greatly reducing the
possibility of routes by a constraint satisfaction approach.

After generating combinations of player routes at the node
level, we choose the best combination which maximizes the
smoothness measure of the routes. For each player, the
smoothness of motion is defined as the negation of the sum
of the abosolute values of velocity changes calculated from
the positions at every k (currently, 10) frames. The total of
such smoothness values for all players is used for evaluation.

In broadcast soccer video, the camera parameters change
from frame to frame. So we use the scene position (i.e.,
player position on the ground) for this interpolation and
smoothness calculation.

8. EXPERIMENTAL RESULTS
We used two video sequences from World Cup 2002, Japan

vs. Belgium. One of sequences, which has 181 frames is
shown in Fig. 21

One of the important parts of the proposed method is the
constraint propagation-based reduction of RNP’s. Fig. 19
illustrates a typical case where such a reduction is effective.
We here focus on red-colored players (Belgium). The black-
marked blob at frame 5502 has the initial RNP of (1, 4); the
other eight blobs have the similar initial RNP’s. By using
the knowledge that the total number of field players is ten,
the ambiguities are reduced to (1, 2). This means that the
information from only one frame is not sufficient. By ex-
amining the subsequent frames, however, the black-marked
blob is known to break into two blobs at frame 5598, each
of which has (1, 1), and this leads to a conclusion that the
black-marked blob at frame 5502 has (2, 2) and the others
have (1, 1). Moreover, since we know that the numbers of
players of all blobs at frame 5502 are fixed, the number of

(a) frame 5502.

(b) frame 5598.

Figure 19: An example scene.
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Figure 20: Ambiguity reduction by constraint prop-
agation and sampling-based search.

players of the white-marked blob at frame 5598 is deter-
mined as three, although this number cannot be determined
only from the information at that frame.

The results explained above is a lucky case where the am-
biguities are resolved only by the constraint propagation
step. Actually, the total number of white players in this
sequence is less than ten. In usual cases, each step of the
method gradually reduces the ambiguities. Fig. 20 shows
how the ambiguities are reduced as the constraint propaga-
tion and the sampling-based search are performed. For the
abovbe sequence, the total number of nodes is 2158 with 181
frames. The ratio of the number of nodes with no ambiguity
(i.e., min = max in RNP) after the initialization using unary
constraints, that after the constraint propagation, and that
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Figure 21: Snapshots of tracking four white players in a highly complex scene and their traces.

after the sampling-based search are 8.1%, 66.8%, and 90.7%,
respectively. The computation times for graph generation,
constraint propagation, sample-based search, and route ex-
traction are 133.1 [sec], 0.05 [sec], 3070 [sec], and 125.3 [sec],
respectively.

For the sequence shown in Fig. 21, we have 41 routes
for a player and 116 combinations of routes at MCB level
for Japan team (white) and 82 and 290 for Belgium (red).
From these combinations, the most probable combination of
player routes at node level is extracted for for each team.

The figure shows the tracking results of four white play-
ers, who forms the most complicated connect graph for their
team. The traces of the players are also shown at the right.
The + marks indicate that the player position is determined
for the node with only one player, while the × marks indi-
cate that the player position is determined using interpola-
tion (or extrapolation) for the node with multiple players.
Although they interact complicatedly not only with each
other but also with red players, we confirmed that they are
tracked correctly at node level. The position on the ground



Table 1: Success rates of tracking at node level.
sequence 1 sequence 2

Japan Belgium Japan Belgium

# of players 4 7 6 3

# of frames 181 101

# of correctly
724 1255 604 303tracked node

success rate [%] 100 99.1 99.7 100

frame 8449 frame 8500

frame 8572 frame 8610

Figure 22: Not successfully tracked sequence.

is, however, sometimes deviated from the correct one due to
interpolation or extrapolation.

Table 1 summarizes the success rates of tracking at node
level for four connected graphs in two sequences. For each
combination of sequence and team, we choose the most com-
plicated connected graph for evaluation; the success rates
for the other connected graphs are all 100 %. The result for
Japan in sequence 1 corresponds to the one shown in Fig.
21. The success rates are very high for all four cases.

Fig. 22 shows another sequence for which our method
failed to produce satisfactory results. This sequence is the
one before Belgium team performs a free kick and the move-
ments of most players are very scarce. As a result, for some
players, there are no frames which can be used for deter-
minig routes with interpolation. This is not, however, a se-
rious problem because such a shots does not provide useful
information for analyzing the game.

9. CONCLUSIONS AND DISCUSSION
This paper has described a novel player tracking method

in a heavy occluded scene. The method first generates a
graph of player blobs representing temporal transitions of
players. Each node has the range of the number of play-
ers (RNP) as the attribute and the method gradually re-
duces the range by first performing a constraint propagation
and then conducting a sampling-based search for the high-
likelihood interpretations. After reducing as much ambigu-
ity as possible, the route of each player is extracted based on
the smoothness criterion. The method has been successfully
applied to a very complex scene which the previous works
are hard to cope with. We are now testing the method on
various scenes for verification of its robustness.

The current implementation, especially the sampling-based
search step, is costly. A possible way of reducing the cost is
to use other kinds of knowledge on players’ possible motions

which could give more constraints on the possible numbers
of players of the nodes. The use of other shots including
zoomed-up scene and replays would also be beneficial.

The presented work is a part of our efforts to construct a
versatile soccer video summarization and retrieval system.
Combining the proposed method with other necessary func-
tions such as a graph-based ball tracking [7] and shot catego-
rization is necessary to construct an actual working system.
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