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Abstract

This paper deals with analysis of broadcast soccer video. Estimation of ball move-
ments is necessary to recognize interesting scenes such as goal scenes. It is, how-
ever, sometimes difficult to detect a ball using a simple color-based or shape-based
method when the ball overlaps with multiple players and lines. We therefore de-
veloped a method of estimating a ball route during such overlaps by considering
spatio-temporal relationships among players, lines, and the ball. The method can
deal with difficult cases such as one in which a ball disappears at a player and
reappears from another player. Experimental results demonstrate the effectiveness
of the method.
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1 Introduction

Summarizing broadcast soccer videos (and other sports videos) is increasingly
demanded to produce digests of interesting scenes in a game (e.g. goal scenes)
so that viewers can quickly survey the game. We are now developing a system
for retrieving interesting and informative scenes based on scene understanding.
It is necessary to know the movements of players and the ball to understand
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various scenes in soccer games. This paper specifically examines ball detection
and tracking.

Several ball detection methods exist, which use, for example, SVM [1] or a
generalized Hough transform [2]. Most previous methods are, however, appli-
cable only when a ball is sufficiently large and is not moving quickly in the
image. In our case, a ball is usually small and sometimes moves fast. More-
over, it often overlaps with players and lines. Ball tracking in such a case is a
challenging computer vision problem.

Several ball-tracking methods deal with occlusions or overlaps by applying
statistical filters such as a Kalman filter [3] and a particle filter [4] or using
ball-trajectory models [5,6]; these methods can handle only short-term occlu-
sions or overlaps using motion continuity. In actual scenes, however, players
and lines often mutually overlap; consequently, a ball which has been over-
lapped with (or occluded by) a player might appear from another player’s
region after a certain period of time. Because the ball motions before and af-
ter an overlap (or occlusion) period might not be continuous in such cases, it
is necessary to examine possible routes of the ball (i.e., a sequence of objects
which overlap with (or occlude) the ball) based on spatio-temporal relation-
ships among players, lines, and the ball.

This paper describes a method of estimating the ball route when it overlaps
with players and lines in a broadcast soccer video. We use images taken from
the center camera, which has the widest scope of any camera on the field.
We detect shots from that camera automatically and estimate the camera
parameters during those shots. Using the estimated parameters, all image data
are transformed into a fixed image- coordinate system, where all analyses are
performed.

The remainder of the paper is organized as follows. Section 2 briefly describes
shot detection and the parameter estimation. Section 3 briefly explains how
to track players and how to track a ball when the ball does not overlap with
players and lines for a long period. Section 4 presents a detailed description
of the ball route estimation during overlaps. Section 5 summarizes important
points of the paper and presents a discussion of future work.

2 Camera Parameter Estimation

The camera position is estimated once in advance by manually matching the
lines and the frame of the goal in the image with those of a model of the field.
The other three parameters (pan, tilt, and zoom) are estimated at every frame
because they usually change from frame to frame. Our estimation method



comprises the following three processes.

e Detection of a shot from the center camera.
e Estimation of initial camera parameters at the first frame of the shot.
e Estimation of camera parameters in subsequent frames [7].

This section briefly explains the first two parts. Refer to [8] for more details.

2.1 Detecting Shots from the Center Camera

We use a color histogram of 48 bins (16 bins for each color (R, G, B)) for shot
change detection; for each pixel of an image, the value of each color component
is added to the corresponding bin. The current frame is considered to be the
first frame of a new shot if the sum of the differences between the corresponding
bins in the current and the previous frame exceeds a threshold. Using the size
of the ground-colored (green) region, the size of the players, and the number
of horizontal lines used, this first frame is analyzed to determine if the shot is
taken by the center camera.

2.2 Estimating Camera Parameters in a Shot

The initial values of the three camera parameters can be estimated from two
pairs of intersections of lines in the image and those in the field model. We
first generate a set of such pairs using the possible ranges of the gradients
of the model lines in the image and then select the one which maximizes the
degree of matching between the projected model lines and the line regions in
the image.

Once the initial parameters are determined, the parameters are estimated con-
tinuously in subsequent frames using a local search-based method [7]. Figure
1 depicts a result of the camera parameter estimation. Figure 1(a) presents
the result of projecting model lines onto the ground using the estimated pa-
rameters. In Fig. 1(b), the bright area corresponds to the field of view of the
camera; red and blue points represent the players’ positions.

Using the estimated parameters, all images in a shot are transformed into
the coordinate system of the first one of the shot. We perform the following
analyses in that coordinate system.



(a) projected lines.

(b) Field of view and player positions.

Fig. 1. Camera parameter estimation.

3 Player and Ball Tracking

3.1 Detecting and Tracking Players

We use a color-based player tracking method [7]. The colors of the uniform in
the HSV space are registered in advance for each team. This color information
and the sizes of regions are used for extracting player regions. We use a simple
linear motion model for tracking. When two players overlap, we determine
which one is occluded using their colors and vertical positions in the image.
A snapshot of player tracking is presented in Fig. 1.



3.2 Detecting and Tracking a Ball

We use images of 480 x 240 pixels. The ball diameter in the image is 3-9
pixels, depending mainly on the zoom value of the camera. Because the ball is
small and sometimes moves fast, it is difficult to detect reliably from a single
image. We therefore extract ball candidate regions every frame and see if they
form a continuous movement. A ball candidate region is a white region inside
the ground whose size and aspect ratio are within some predetermined ranges.
For each ball candidate region in a frame, we search its neighbor in the next
frame for candidate regions. The presence of the ball is hypothesized if we find
candidate regions in three consecutive frames.

For this hypothesis, we track it using a simple linear prediction where the
predicted position x(t) at frame ¢ is calculated using an averaged speed during
the previous three frames as follows:

x(t)=x(t—1)+ (x(t—1)—x(t—3)) /2. (1)

We continue tracking while repeating the prediction if no candidates are found
around the predicted position. We consider that the ball has disappeared (oc-
cluded or overlapped) if we do not find ball candidates for five consecutive
frames.

Figure 2 depicts a result of ball tracking with a short overlap. The yellow
boxes indicate a tracked ball; green ones indicate predicted positions when a
ball candidate is not extracted; blue ones indicate other ball candidates.

We use the resolution because it resembles that of usual videos. Although the
use of high-resolution videos might simplify detection of the ball when it is
not occluded, handling occlusions and overlapping of the ball is still necessary.

4 Ball Route Estimation during Overlaps

The simple ball detector fails to detect a ball when it overlaps with players (or
referees), lines, or stands (see Fig. 3). As described above, a difficult situation
is that a ball overlaps continuously with several players and lines. Figure 4
presents such a situation: (a) a ball is detected near two red players (R1 and
R2); (b) the ball overlaps with a line (L13) and tracking is suspended; (c¢)—(d)
a red player (R1) keeps the ball; (e) he kicks the ball; (f) the ball is detected
again behind the white player (W1).

We examine the frames between the disappearance and the re-appearance of



(e) 69th frame (f) 70th frame

Fig. 2. Result of ball tracking.

a ball to estimate the ball route in the following steps.

(1) Enumerate possible transitions of the ball between objects (players, lines,
or the stands) that overlap with the ball.

(2) Generate ball route candidates considering spatio-temporal relationships
between the objects and the ball.

(3) Generate a rough ball trajectory for each ball route candidate, if possible,
by considering constraints on ball movements.

(4) Evaluate the trajectories based on the detection of ball-like regions; select
the best trajectory and, therefore, the best ball route.

The following subsections explain these steps in detail.



(a) player (b) line

(c) the stands

Fig. 3. Exemplary cases in which a simple ball detection fails.

4.1  Enumerate Ball Transitions

We construct a graph called a transition graph, which enumerates possible
transitions of a ball between objects. Nodes of the graph include objects that
might overlap with the ball: players, lines, and the stands. A ball candidate,
which is an isolated ball candidate, is also represented as a node. Links consist
of possible transitions between the nodes. Lines on the ground are divided
into straight lines and curved ones; the stands are divided into four regions.
Figure 5 shows the nodes of lines and the stands. We consider the following
transitions:

(1) player «— player, ball candidate, line.
(2) ball candidate «— line.
(3) line or the stands «— line or the stands.

The transitions, including players and ball candidates, are temporary and ef-
fective only while two nodes are sufficiently close. In Fig. 4, the circle drawn
around each player shows the range within which the ball can move in the next
frame. The ball might make a transition to one of them if another player’s cen-
troid or a line exist in this circle. Transitions between lines and the stands are
fized; transitions between adjacent nodes in Fig. 5 are possible.
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(e) 87th frame (f) 93rd frame
Fig. 4. A scene in which a ball has not been detected for a long period.

Figure 6 shows some transitions generated from Fig. 4. Labels of nodes, W*,
R*, L* and BC* respectively indicate white players, red players, lines, and
ball candidates. For example, because a white player (W1) exists near a red
player (R1) during frames 90-93 (see Fig. 4(f)), transition R1—W1 for that
period is generated; also, because R1 is near a line (L5) during frames 35-93
(see Figs. 4(c)— 4(e)), transition R1—L5 is generated.

4.2 Generate Ball Route Candidates

We generate ball route candidates by searching the transition graph for possi-
ble routes connecting the node where a ball disappears and the node where the



Fig. 5. Division of lines and the stands.
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Fig. 6. Part of transitions between nodes from the sequence shown in Fig. 4.
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ball reappears. In this candidate generation process, we consider the temporal
consistency of transitions. That is, the earliest frame of the transition that
gets into a node is expected to be earlier than the latest time of the transition
that gets out of the node. We also use the following rules to avoid generation
of unrealistic transitions.

(1) One player node can appear only once in a route. Thereby, the system
avoids ball movements for which the ball moves back and forth between
the same players.

(2) The maximum number of successive line nodes is two. In addition, the
shapes of the two successive lines are expected to match a possible ball
movement physically. In Fig. 4(b), for example, the transition R1—-L13—L18—W2
is possible because lines .13 and LL18 can be approximated using a parabola
in the image and the ball movement can sometimes be parabolic.

(3) The maximum number of successive stand nodes is two. Because the



Route 1
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Fig. 7. Some generated ball route candidates from Fig. 6.

stand regions are divided into four subregions, as shown in Fig. 5, it is
possible that the ball passes two adjacent stand regions in the image.

Figure 7 depicts some generated ball route candidates from Fig. 6.

4.8  Generate and Fvaluate Rough Ball Trajectories

It is difficult to ensure that the ball is reliably detected when it is overlapping
with one of the other elements described above. Nevertheless, we would like
some evidence to be used to rank ball route candidates. We therefore search
for ball-like regions around each route candidate and assume that the more
such regions exist, the more probable the route candidate is. We also consider
another condition in which the ball-like regions are expected to satisfy the
constraints on ball movement by seeing if a feasible ball trajectory can be
generated using the extracted ball-like regions. Detailed steps for ranking are
explained in the following subsections.

4.8.1 Eztraction of Ball-Like Regions
We search the region determined by each ball route candidate for ball-like re-
gions using a separability filter [9]. A separability filter responds to concentric

circular patterns as in Fig. 8. Such a filter is often used for detecting eyes in
face recognition. It outputs a separability value n defined as:

—n' : otherwise

10
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region 2

Fig. 8. Separability filter.
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where n; and ns are the quantities of pixels in region 1 and region 2, respec-
tively; also, N = n; + ng; I; is the brightness of pixel i; I, I5, and I,, are the
averaged brightness of region 1, region 2, and the whole region, respectively.
We adaptively change the filter size depending on the estimated zoom value
and resolution of the camera.

The regions that have higher response to the separability filter than some
threshold are extracted. Because regions of players’ white shirts and white
socks might output high responses, we remove shirt regions using the result of
player tracking. We also remove the socks regions by examining their shape; if
the ratio of the longer principal axis to the shorter one of a region is larger than
some threshold, the region is considered a socks region. Figure 9(a) depicts
the filter output after the removal of shirts and shorts regions. Figure 9(b)
shows ball-like regions inside a part of the search region. Because several white
regions other than the ball region might remain as shown in Fig. 9(b), we use
motion continuity to filter out such regions, as described below.

4.8.2  Generation of Rough Ball Trajectories

We first generate sequences of ball-like regions (called segments). We perform
a simple clustering of the regions; if two regions are within a certain distance
in space and time, they are put into a cluster. Clusters with fewer than three
regions are deleted. We then fit a line to each cluster to generate a segment.
Figure 10 presents a result of clustering and segment generation for Route 3
in Fig. 7. Triangles are extracted for ball-like regions and their colors indicate
cluster IDs; lines indicate generated segments. The sum of the outputs of the
separability filter for the regions in a segment is called the score of the segment;
it is used for ranking the ball route candidates.

Using the segments, we generate a set of rough ball trajectories during the
overlapping period. We first enumerate all possible combinations of segments
such that no more than one segment exists at a time. We then attempt to
generate a trajectory for each combination. A trajectory comprises segments
and additional straight lines for connecting the segments, and is expected to

11
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Fig. 9. Extraction of ball-like regions.

Table 1
Scores of routes in Fig. 7.
ball route candidate || score | sum of filter outputs | trajectory length
Route 1 0.00 0 75
Route 2 22.24 3403 153
Route 3 4.00 1204 301
Route 4 4.12 1832 445

satisfy the following two conditions:

(1) A trajectory is expected to pass all nodes of the ball route candidate

under consideration and include at least one segment.

(2) The added lines are expected to satisfy the constraint of the maximum

ball speed.

Figure 11 shows two rough ball trajectories generated from the sequence shown
in Fig. 4 for Routes 2 and 3 in Fig. 7. Each trajectory is generated so that

12
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Fig. 10. Clustering of ball-like regions and segment generation.

it passes the nodes (players, lines, and ball candidates) in the corresponding
routes. Red bold lines and green ones respectively represent the segments (i.e.,
sequences of extracted ball-like regions) and the added lines. Players and lines
in space-time are also shown. The generated segments are different for the two
cases because the corresponding route candidates are different; the different
areas in the image are thus searched for ball-like regions. Figure 12 illustrates
how the ball moves in the mosaicked image for Routes 2 and 3.

4.8.8  Selection of Most Probable Ball Route

The score of a feasible trajectory is the sum of the scores of its segments
normalized by the total length of the trajectory. For each ball route candidate,
we select the trajectory among its possible feasible trajectories which has the
highest score; this score is the score of the ball route candidate. We finally
select the ball route with the highest score. Table 1 summarizes the scores
of the four routes in Fig. 7; Route 2 (L13—L5—R1—-BC1—W1) is finally
selected.

4.4 Results for Other Sequences

Figure 13 shows another sequence for which the proposed method can estimate
the ball route correctly. Blue arrows indicate the nodes which are estimated
to have the ball at each frame. The estimated route includes three red players
and one white player.

We also tested the method for a longer soccer video of about nine and a half

13
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Fig. 11. Examples of generated trajectories.

minutes. The number of frames in the video is 17,279. Our shot extraction
method correctly detected shots from the center camera; the total number of
frames of the shots is 8,469 (49%).

As described in Sec. 3.2, if we do not find ball candidates for five consecutive
frames using a simple detection method, we consider that the ball has dis-
appeared. We manually selected five shots, which include at least one longer
(i.e., more than one second) sequence of disappearance for testing. In all, the

14



(a) Ball movement for Fig. 11(a).

(b) Ball movement for Fig. 11(b).

Fig. 12. Ball movements projected onto the mosaicked image.

Table 2
Breakdowns of success and failure cases.
# of frames # of nodes # of segments
<10/10—--30|31—-——-60|60>| <4 |4——-10|10>|<4 |4——-10|10 >
success 11 10 6 1 16 10 2 22 4 2
failure 0 3 1 2 2 2 2 4 1 1

frames of the selected shots are 2,289; 34 such sequences are included in the
shots. We examined the outputs of the proposed method for these sequences
and found that the estimated ball route is correct for 28 sequences. Break-
downs of the success and the failure cases in terms of the number of frames,

of nodes in the transition graph, and of generated segments are presented in
Table 2.

As the table shows, the method tends to fail in longer sequences; however,
in terms of the quantities of nodes and segments, which are roughly related
to the complexity of situation, there is no such strong tendency. We further
analyzed the failure cases and found that these are mostly attributable to the
failure in detecting ball-like regions, especially when a ball goes off the field
into the stands immediately after a player kicks or heads it and comes back
after a long period. Detection of ball-like regions must be improved to cope
with such cases.




o

PHILPE X

843rd frame 863rd frame

Fig. 13. Six still images from another sequence, showing the estimated ball route.
Arrows indicate the node (i.e., player, in this case) estimated to have the ball at
each frame.

5 Conclusions and Discussion

This paper has presented a method of estimating a ball route in a soccer
broadcast video when a ball continuously overlaps with players and lines. We
first generate a transition graph representing possible transitions of the ball
between overlapping objects, based on their spatio-temporal relationships. We
then enumerate ball route candidates from the graph and select the best one by
searching for evidence for ball existence near each route candidate. Using this
two-stage approach, we can greatly reduce the region that must be examined
in the image. The method exhibits good performance for a set of difficult
scenes. The proposed approach is potentially applicable to other broadcast
sports videos such as American football and ice hockey, where a ball or a puck
moves rapidly with frequent overlaps with (or occlusions by) players and other
objects.

The current method estimates a ball route in a two-dimensional image coor-
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dinate system; when a ball passes a player, for example, the method does not
tell whether or not the player actually touches the ball. To make such a judg-
ment, we require additional inference related to the actual three-dimensional
trajectory of the ball and the positions of the players on the ground. This in-
ference is left as a subject for future work. Another element of future work is
to apply the method, with necessary improvements, to shots other than those
from the center camera. This additional feature is necessary for developing a
scene retrieval and summarization system.
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