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Abstract. This paper describes an integrated viewpoint planner for in-
door semantic mapping. Mapping of an unknown environment can be
viewed as an integration of various activities: exploration, (2D or 3D)
geometrical mapping, and object detection and localization. An efficient
mapping entails selecting good viewpoints. Since a good viewpoint for
one activity and that for another could be shared or conflicting, it is de-
sirable to deal with all such activities at once, in an integrated manner.
We use a frontier-based exploration, an area coverage approach for ge-
ometrical mapping, and object recognition model-based verification for
generative respective viewpoints, and get the best next viewpoint by
solving a travelling salesman problem. We carry out experiments using a
realistic 3D robotic simulator to show the effectiveness of the proposed
integrated viewpoint planning method.
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1 Introduction

Mapping is one of the fundamental functions of mobile robots. A map is used
for various purposes such as localizing a robot and finding a specific object. The
process of mapping in an unknown environment can be divided into two aspects.
One is where to get new infomration and the other is how to integrate all pieces
of information into a consistent representation. The second one is related to so-
called SLAM (simultaneous localization and mapping) methods and numerous
approaches have been proposed [1] and matured in a certain range of mapping
problems. The first one is related to viewpoint planning and is still a hot research
area [2–4]. This paper focuses the first aspect in semantic map generation.

Viewpoint planning methods differ in objectives, that is, what information
will be obtained from the observations at selected viewpoints. For example, pure
exploration tries to increase the area of known space [2], while in object search,
a robot selects a viewpoint to increase the probability of a detected object be-
ing a target object [5]. Multiple, sometimes conflicting, objectives can also be
considered in an integrated manner [3].

Proceedings of 15th Int. Conf. on Intelligent Autonomous Systems, 
Baden-Baden, Germany, June 2018



Our previous viewpoint planner for geometric mapping [6] considers explo-
ration and geometric data acquisition in an integrated manner. This paper ex-
tends the planner for semantic mapping, by additionally considering viewpoints
for object verification. We show that an integrated viewpoint planning is better
than non-integrated sequential planning by experiments in a realistic simulator.

The rest of the paper is organized as follows. Section 2 describes related work.
Section 3 describes the target task and the overview of the proposed method.
Section 4 briefly explains our previous planner. Section 5 describes object recog-
nition and viewpoint genereation for object verification. Section 6 shows experi-
mental results to compare the sequential and the integrated approaches. Section
7 summarizes the paper and discusses future work.

2 Related Work

2.1 Exploration

Exploration of an unknown environment has been an important ability of mobile
robots. In usual mapping algorithms, a whole environment is divided into three
categories: free, occupied, and unknown. Yamauchi [2] proposed to use frontiers,
which are boundaries between free and unknown spaces, for viewpoint genera-
tion in exploration. Several criteria are possible in choosing one among frontiers
such as closest to the robot [2] and maximizing the information gain [3]. The
idea of frontier is very useful in viewpoint planning for exploration and has
been expanded to, for example, multi-robot exploration [7] and/or multi-criteria
exploration [8].

2.2 Coverage

When making an entire map of an environment, a robot needs to plan a set
of viewpoints so that the whole environment is collectively observed. This is
sometimes called as coverage planning and methods for Art Gallery Problem
(AGP) [9] can be adopted. In robotics context, sensor coverage problems have
been discussed (e.g., [10–12]). Ardiyanto and Miura [13] proposed a generalized
coverage solver that can take into account of the cost of each viewpoint imposed
by the environment and/or problem settings.

2.3 Object search

Ye and Tsotsos [5] proposed a framework for solving a visual object search prob-
lem. Using the probabilistic distribution of the target position and the probabilis-
tic detection functions, the object search problem is formulated as a statistical
optimization problem. Saidi et al. [14] proposed a similar approach to a 3D ob-
ject search using a humanoid robot. Aydemir et al. [15] used domain knowledge
on spatial relations between objects to guide a object search behavior. Masuzawa
and Miura [4] treat an object verification problem as a viewpoint planning, which
optimizes viewpoint sequences using a distance- and orientation-dependent ob-
ject recognition model.



2.4 Integrated viewpoint planning

Multiple objectives are sometimes considered in exploration and/or mapping.
Makarenko et al. [3] consider three utilities, information gain, navigability, and
localizability, and choose a viewpoint which maximizes the total utility. Ma-
suzawa and Miura [4] proposed a two-level hierarchical planner, in which the
high-level part deals with determining the order of visits to viewpoint candi-
dates, while the low-level part determines an actual viewpoint sequence to verify
object candidates. They also introduced a loss function representing a deadline
and showed that the robot’s behavior changes for different loss functions. Diar
and Miura [6] proposed a viewpoint planner which considers viewpoints for ex-
ploration and those of coverage in an integrated manner. However, they did not
consider viewpoints for object verification.

3 Target Task and Overview of Integrated Viewpoint
Planning

The task of the robot is to make a semantic map. A map describes not only
3D geometric information but also object types and locations. We use a realistic
robot simulator V-REP [16] for experiments. Fig. 1 shows a simulated world
and a mapping result. A simulated robot is equipped with an omnidirectional

Simulated world Mapping result

Free space

Object type and location

Fig. 1. Semantic mapping task.

(a) (b) (c) (d)

Fig. 2. Four environments used for experiments. From left to right, Environment A, B,
C, and D. The size of Environment A, B, and D is 20m×20m while that of Environment
B is 20m × 20m.
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Fig. 3. Process of the integrated planning.

laser range finder (LRF) for free space recognition and an RGB-D camera for
3D measurement, object candidate detection, and object verification.

We consider the following three aspects in viewpoint planning for semantic
mapping of unknown environments:

– exploration planning chooses viewpoints, measurements by the LRF from
which can provide a large expansion of free spaces. Such free space informa-
tion is necessary for the following two aspects of planning.

– coverage planning chooses viewpoints, observations by the camera from which
can provide 3D space shape of the entire environment and object candidate
information.

– object verification planning chooses viewpoints, observations by the camera
from which can provide a more reliable information on the identity of object
candidates.

Since the coverage planning is performed in already-explored regions and the
object verification planning is performed for object candidates found in the cov-
erage planning, one natural way to solve these planning problems is to perform
them sequentially. That is, the robot first explores the whole environment and
makes a 2D free space map. Then it observes the environment at planned view-
points and makes a 3D description of the environment and enumerates detected
object candidates. Finally it moves near to each object candidate and verify it.
This sequential manner is obviously inefficient and an integrated approach is
necessary.

Therefore we take an approach that the robot first generates viewpoints for
these three planning aspects and chooses the best next viewpoint from a set
of all generated viewpoints. The second step is done by solving a travelling
salesman problem (TSP) and choosing the very first viewpoint. Fig. 3 illustrates
the process of planning.

4 Integration of Exploration and Mapping Viewpoint
Planning

This section explains an integrated exploration and coverage planning by Sasongko
and Miura [6]. The planning is composed of viewpoint generation for exploration,
that for coverage, and integrated viewpoint selection.
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Fig. 4. Example informative regions
shown in green color.
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Fig. 5. Optimal set of coverage view-
points.

4.1 Viewpoint generation for exploration

We use a 2D occupancy grid map [17] to represent the free space of the environ-
ment. As a new LRF scan is input, a SLAM module updates the free space map.
We adopt the frontier-based method [2]. A frontier point is a point which is in the
free space region and adjacent to an unknown region. All of the frontier points
are partitioned into clusters with a distance threshold thd. We then calculate the
centroid of each cluster of frontier points whose number of points is larger than
a threshold thn and determine the frontier point closest to the centroid as an
exploration viewpoint. Finally we determine the exploration viewpoint Ve using
the closest-frontier strategy [2]. We set the resolution of the grid map to 0.05m
and use the thresholds thd = 0.25m and thn = 13.

4.2 Viewpoint generation for coverage

Informative region In usual environments, objects are, for example, on tables
and shelves and not on the floor. We would therefore like to limit the target re-
gions for coverage to such informative regions. We currently use a simple heuris-
tic by Okada and Miura [18]; that is, assuming that outline of 2D free spaces
corresponds to such tables and shelves, the informative regions are defined as
the ones which are within a certain distance to the free space boundaries. We
currently set the distance to 1m. Fig. 4 shows 2D maps and the corresponding
informative regions for environments A and B shown in Fig. 2.

Coverage viewpoint generation We need to generate a set of viewpoints
which covers all currently-known informative regions. The measurable range of
the RGB-D camera and the incident angle limitation1 are considered in coverage
calculation. We adopt a visibility-based viewpoint planning [19]. This method

1 The line-of-sight of the camera and the surface normal of an observed area should
be within a certain angle. Currently, we use 80◦ as the threshold.



exploits a topological property of the free space, where coverage viewpoints can
be put. A skeletonization technique is applied to the free space followed by a
detection of junctions, which are then used as a set of viewpoint candidates
V ′
c can. Since the skeletonization method is not always complete in a complex

environment, we add a certain number of auxiliary viewpoint candidates Vc aux

to the set to get an updated set Vc can, and then obtain an optimized set Vc by
solving the Set Coverage Problem [13]. Fig. 5 shows examples of an optimized
set of coverage viewpoints.

4.3 Integrated planning

The free space region expands as the robot moves and gets more data from
the LRF. The robot calculates viewpoints and selects one of them at a certain
timing, since it is not computationally efficient to update the set of viewpoints
continuously and a frequent change of target viewpoint may make the robot
move on a longer path. Therefore the robot generates a new set of the coverage
viewpoints (Vc) for the currently-known informative regions, if the increment of
the free space region is larger than a threshold thf or if the entire environment
has been already explored. Note that the exploration viewpoint (Ve) is updated
every time as the robot gets data from the LRF. The value of thf is determined
experimentally as explained in Sec. 6.1.

We consider the union of Ve and Vc:

V = Ve ∪ Vc

and choose the one from the set V . For this purpose, we solve the Travelling
Salesman Problem (TSP) using 2-opt method [20], and the first viewpoint in the
tour is used as the target viewpoint. The robot moves towards that viewpoint,
and when the robot reaches there or the coverage viewpoint set is updated as
mentioned above, a new TSP is solved.

5 Object Verification and Viewpoint Generation

5.1 Object candidate detection and verification

The robot searches the informative regions for objects. We use YOLOv2 [21]
enhanced by COCO dataset [22] for object detection and verification. There
are 80 classes for object candidates. YOLOv2 provides the confidence and a
bounding frame of each detected object. We use the centroid of the frame as the
detected position of the object. Fig. 6 shows an example object detection result.

We divide the detection results to high-confidence and low-confidence, using
a threshold tho = 0.5. Low-confidence objects must be verified by observing them
again. In the case of Fig. 6, for example, the laptop and the vase are verified.



Fig. 6. YOLOv2 detection result. The confidence values of potted plant, vase, and
laptop are 0.68, 0.35, and 0.27, respectively.

Table 1. Maximum verification distances for four objects.

No Object Name Object Picture Max. Verification Dist.

1 Laptop 4m

2 Chair 4m

3 Potted plant 4m

4 Vase 3m

5.2 Verification viewpoint generation

In general, a closer observation increases the probability of correctly identifying
an object, and such an idea should be considered in viewpoint generation for
verification. Masuzawa and Miura [23] used a probabilistic observation model,
which estimates the probability of successful verification from a set of observation
parameters, for generating an observation plan. The model is for SIFT-based
specific object recognition and was made for each object by actually observing
the object from various viewpoints.

We take a similar empirical approach but use a much simpler model. That is,
we assume that verification results depend only on the distance to each target
object, and determine the maximum distance for which verification always suc-
ceeds. Table 1 summarizes the maximum verification distances for four objects
used in this paper. The verification region of an object is thus defined as a circle
centered at the object and with the radius of the maximum verification distance.

The object verification viewpoint (Vv) for an object is the point in the cor-
responding verification region and closest to the robot. If there are more than
one object verification regions and they are overlapping, the object verification
viewpoint is generated in the intersection region. Fig. 7 shows the verification
viewpoint for an example scene shown in Fig. 6. Two among three objects are
low-confidence ones. The intersection of the laptop and the vase verification re-
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Fig. 7. Verification viewpoint for two objects. The white region is the intersection of
two verification regions; light blue points are low-confidence objects and red point is
the robot position. Yellow point is the chosen verification viewpoint.

gion is examined to choose the nearest position in it to the robot as the the
verification viewpoint (shown in yellow).

5.3 Integrated planning

We consider the object verification viewpoint (Vv) in addition to the exploration
and the coverage viewpoints (Ve and Vc, respectively). The method of viewpoint
planning is similar to the one described before (see Sec. 4.3), that is, we consider
the union of three types of viewpoints, Ve, Vc, and Vv:

V = Ve ∪ Vc ∪ Vv

and choose the one from the set V by solving the TSP (see Fig. 3).
The timing of updating viewpoints is slightly changed. In addition to the

above-mentioned two conditions, we also consider if there is at least one newly
detected low-confidence object.

6 Experimental Results

6.1 Determining the threshold for the increment of free space area

The proposed integrated planning method generates a new set of the coverage
viewpoints (Vc) for the currently-known informative regions if the increment of
the free space area is larger than a threshold thf or the entire environment has
been explored. If the threshold is too low, the robot updates Vc too often, thereby
making the robot change the target subgoal frequently. If the threshold is too
high, on the other hand, the robot rarely updates Vc, thereby making the robot
ignore useful information of newly explored regions and newly detected objects.
In either case, the robot behavior could be inefficient.

Using the integrated exploration and coverage planning explained in Sec. 4.3,
we compared three values for thf : 50m

2, 100m2, and 150m2 in terms of the total



Table 2. Effect of thf values on the total performance.

thf Environment A Environment B
Time (min) Distance (m) Time (min) Distance (m)

50m2 11 72 9 79

100m2 7 56 3.5 25

150m2 9 64 5 34

time and the travelled distance for environments A and B. Table 2 summarizes
the results, showing a tendency that too low and too high thf values are not
desirable. From the results, we decided to use thf = 100m2.

6.2 Mapping results and comparison among strategies

We show the results of the following two strategies:

– Sequential strategy (STseq) which performs a geometric mapping (i.e., ex-
ploration and coverage) and a semantic one (i.e., object verification and
localization) sequentially.

– Integrated strategy (STint) which perform both the geometric and the se-
mantic mapping in an integrated manner. This is the proposed strategy.

Figs. 8 and 9 show the mapping process of the sequential and the integrated
strategy for Environment A and D shown in Fig. 2. In the sequential strategy,
the robot first explores the environment to make a geometric map, followed by
another round of navigation for verifying low-confidence objects found in the
way of geometric mapping. As a result, there are redundant movements in many
places in the environments.

Table 3 summarizes the quantitative data for the strategies. The table also
includes the results of geometric mapping (not including object detection and
verification) by two strategies for comparison; one strategy is sequential explo-
ration and coverage (ST g

seq) and the other is the integrated exploration and
coverage (ST g

int). Comparison results for strategies STseq and STint show the ef-
fectiveness of integrated viewpoint planning. Note that strategy STint performs
extra object recognition tasks compared to those for geometric mapping, but
requires a shorter traveling distance than their sequential version (ST g

seq).

7 Conclusions and Future Work

This paper has presented an integrated viewpoint planning for semantic mapping
of unknown environments, which includes exploration, coverage for 3D mapping,
and object detection and localization. Since generating the optimal sequence of
viewpoints is hard without any prior information of the environment, we repeat-
edly generate a locally-optimal viewpoints candidates based on the information



Mapping process by Sequential Strategy (STseq)

Mapping process by Integrated Strategy (STint)

Fig. 8. Mapping process of the sequential and the integrated strategy for Environment
A. Red lines indicate the robot path; blue points indicate visited viewpoints; yellow
points indicate viewpoint candidates and those with green circles indicate the current
target viewpoint.

Table 3. Quantitative comparison of four strategies.

Environment A Environment B Environment C Environment D
Strategy Time Distance Time Distance Time Distance Time Distance

(min) (m) (min) (m) (min) (m) (min) (m)

STseq 32 113.8 22 70.7 16 80.9 26 146.6

STint 13 64.2 10 45.1 9 50.9 20 105.5

ST g
seq 14 77.4 8 47.3 13 88.4 15 121.8

ST g
int 7 56.0 3.5 25.0 7 50.5 9.5 98.4

of newly explored regions and newly detected object candidates. We experimen-
tally determine a good interval for viewpoint updates. We tested the proposed
algorithm in a realistic robotic simulation environment to show the efficiency of
our integrated planning strategy.

Implementing the method on a real robot for evaluating in real situations
is future work. To do this, the object recognition part needs to be enhanced
largely, especially in the observation models. The current model considers only
the distance to an object but a more variety of factors such as orientation and
lighting conditions should also be taken into account.



Mapping process by Sequential Strategy (STseq)

Mapping process by Integrated Strategy (STint)

Fig. 9. Mapping process of the sequential and the integrated strategy for Environment
D. Red lines indicate the robot path; blue points indicate visited viewpoints; yellow
points indicate viewpoint candidates and those with green circles indicate the current
target viewpoint.
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15. A. Aydemir, K. Sjöö, J. Folkesson, A. Pronobis, and P. Jensfelt. Search in the Real
World: Active Visual Object Search Based on Spatial Relations. In Proceedings of
2011 IEEE Int. Conf. on Robotics and Automation, pp. 2818–2824, 2011.

16. E. Rohemr, S.P. Singh, and M. Freese. V-REP: A Versatile and Scalable Robot
Simulation Framework. In Proceedings of 2013 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 1321–1326, 2013.

17. A. Elfes. Sonar-Based Real-World Mapping and Navigation. Int. J. of Robotics
and Automat., Vol. 3, No. 3, pp. 249–265, 1987.

18. Y. Okada and J. Miura. Exploration and Observation Planning for 3D Indoor
Mapping. In Proceedings of 2015 IEEE/SICE Int. Symp. on System Integration,
pp. 599–604, 2015.

19. I. Ardiyanto and J. Miura. Visibility-based Viewpoint Planning for Guard Robot
using Skeletonization and Geodesic Motion Model. In Proceedings of the 2013
IEEE Int. Conf. on Robotics and Automation, pp. 652–658, 2013.

20. O. Mersmann, B. Bischl, J. Bossek, H. Trautmann, M. Wagner, and F. Neumann.
Local Search and the Traveling Salesman Problem: A Feature-Based Characteri-
zation of Problem Hardness. In Learning and Intelligent Optimization, Vol. LNCS
7219, pp. 115–129. 2012.

21. J. Redmon and A. Farhadi. YOLO9000: Better, Faster, Stronger.
arXiv:1612.08242, 2016.

22. S. Belongie L. Bourdev R. Girshick J. Hays P. Perona D. Ramanan C. L. Zitnick
T.-Y. Lin, M. Maire and P. Dollar. Microsoft COCO: Common Objects in Context.
arXiv:1405.0312, 2014.

23. H. Masuzawa and J. Miura. Observation Planning for Efficient Environment Infor-
mation Summarization. In Proceedings of 2009 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 5794–5780, 2009.


