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Abstract— This paper describes an observation planning for
3D mapping in unknown indoor environments. The task of the
robot is to make a 3D description of informative regions in the
environment. The robot makes a plan of visiting viewpoints for
observing the regions. Since each viewpoint must be reachable,
it is also necessary to obtain a free space map, which is usually
generated by exploratory movements. For an efficient mapping,
we propose a method which integrates exploration and observa-
tion planning. We also show through experiments in a simulated
environment that the proposed method is more efficient than the
one which deals with exploration and observation separately.

Index Terms— 3D mapping, informative region, exploration
planning, observation planning, observation viewpoint genera-
tion.

I. INTRODUCTION

A 3D map of an indoor environment gives us various

useful information such as the shape of the environment

and the location of objects. A 3D map is generated by

integrating 3D data obtained at many locations. Various

SLAM (Simultaneous Localization and Mapping) methods

have been proposed for 3D mapping. Endres et al. proposed a

SLAM method for RGB-D cameras [1]. Labbé and Michaud

[2] developed a system for a large-scale SLAM with visual

loop closure detection. Ataer-Cansizoglu et al. [3] proposed

Pinpoint SLAM which uses both 2D and 3D point features

obtained by an RGB-D camera. Kuramachi et al. [4] proposed

a 3D mapping using a LIDAR and a tri-axial inertial sensor.

Most of 3D SLAM works focus on obtaining precise maps

from a given observation sequence.

For performing 3D mapping in an unknown environments,

a robot has to explore the environment autonomously using,

for example, a frontier-based method [5]. In 3D exploration,

Snarathne and Wang [6] proposed to use surface frontiers.

These methods are effective in incrementally obtaining free

spaces where a robot can move safely.

Obtaining and processing 3D data for mapping and rec-

ognizing objects are usually costly. It is, therefore, desirable

to choose a set of viewpoints and/or by which a robot can

efficiently get necessary 3D data.

One type of observation planning problem is the Watchman

Route Problem (WRP). The WRP is the problem of finding

shortest routes from which every point in a given space is

visible [7]. By travelling in the shortest routes while obtaining

the data of the environment, the movement of the robot is

expected to be efficient. The zookeeper’s problem (e.g., [8])

and the patrol problem (e.g., [9]) are variants of the WRP.

Most works about the WRP mainly focus on the algorithm

determining the shortest routes (e.g., [10]).

Another problem is the Art Gallery Problem (AGP). The

AGP [11] is a problem of covering the entire art gallery room

by determining a set of guards who can survey 360
o about

their fixed position. However, solving the WRP and the AGP

requires an prior information of the environment, such as the

2D map of the environment.

In unknown environments, we need to consider both ex-

ploration and observation. Okada and Miura [12] presented

an observation planning for 3D mapping. The robot explores

first an unknown environment autonomously and constructs

a 2D map. Then a sequence of viewpoints is generated

which guides the robot to get 3D data of informative regions.

In this work, exploration and 3D mapping are separate

processes. Masuzawa and Miura [13] developed a method

which combines exploration with observation planning for

environment information summarization, where exploration

and mapping (i.e., finding and recording important objects)

are hierarchically organized.

In this paper, we develop an efficient method for generating

a 3D map of indoor environment by integrating an explo-

ration and an observation planning. The task of the robot

is to make a 3D description of informative regions. As the

robot explores an unknown environment, it chooses and visits

a set of viewpoints (called observation viewpoints) for 3D

data acquisition. So the purpose of the planning method is

to generate viewpoints for both exploration and observation

which make the robot generate a 3D map efficiently. In

addition, this planning carried out on-line, that is, the plan is

updated as an enough amount of new information is obtained.

We carry out experiments using V-Rep [14], a 3D simula-

tion environment representing real robots and environments.

Fig. 1 shows the robot. We used a Pioneer robot as the

platform, a Kinect for getting RGB-D images to construct

the 3D map, and two 2D LIDARs for exploration and

constructing the 2D map of the environment.

The contribution of the paper is to proposed an integrated



exploration and observation planning method and to validate

it experimentally.

The rest of the paper is organized as follows. Sec. II

descibes a process of generating observation viewpoints.

Sec. III explains the planning method in detail. Sec. IV

shows experimental results of our integrated planner with

comparison with our previous, seperated planner. Sec. V

concludes the paper and dicusses future work.

II. OBSERVATION VIEWPOINT GENERATION

A. 2D Map of the Environment

We test our observation planning strategy in two environ-

ments shown in Figs. 2 (a) and (b). Occupancy grid map

[15] is used to represent the 2D map of the environment.

SLAM and localization routines from MRPT (Mobile Robot

Programming Toolkit) [16] are used for mapping. We classi-

fied the occupancy of 2D map into three regions: free space,

occupied, and unknown region, based on the probability of

each cell. The 2D map is used for exploration and observation

planning. Fig. 3 shows the 2D maps of the both of the

environments.

B. Informative Region

We are interested in observing only a certain region of the

environment which has useful information for further tasks.

Okada and Miura [12] heuristically choose such a region

as an informative region. Some useful and important small

objects, such as books and mobile phones, are usually located

on the desks or the shelves. Since determining the outlines

of the shelves and the desk is sometimes hard, they assumed

that those objects will be in within a certain distance from the

room boundary. Our work adopts their assumption to obtain

an informative region of the environment. Fig. 4 shows the

informative regions based on the 2D map of the environment

A and B.

C. Observation Viewpoint Generation

1) Observation Viewpoint Candidates: We adopted a

visibility-based viewpoint planning [17] for observation

viewpoint generation. The observation viewpoint candidates

are obtained by exploiting a topological property of the

environment. A skeletonization technique is applied to obtain

Fig. 1. The robot for the observation.

(a) (b)

Fig. 2. The environments for the simulation. The size of environment A
(a) is 20 m × 20 m and the size of environment B (b) is 10 m × 20 m.

(a) (b)

Fig. 3. The 2D map of the environment A (a) and environment B (b).
Black region is the free space region, white region is the occupied region,
and purple region is the unknown region.

(a) (b)

Fig. 4. The informative region of the environment A (a) and environment
B (b), are shown in green.

such a topological property. The skeleton map is built by

applying a distance transform and a laplacian filter on the

2D map. The center of the room and the intersection of the

corridors are retrieved as junctions by a template matching on

the skeleton map, and are considered as the observation view-

point candidates (V ′

o can). However, there may be undetected

junctions and false detected junctions because the skeleton of

the map could be a complex shape (see Fig. 5) and number of

the junction templates is limited. If the current set of detected

junctions does not cover the entire informative region, the

skeletonization and template matching process are applied on



(a) (b)

Fig. 5. The skeleton map of the environment A (a) and environment
B (b). The green circles are the detected junctions as the observation
viewpoint candidates (V ′

o can
). However, several false junctions are detected

and several junctions are not detected because of the complex shape of the
skeleton and the limited number of the junction templates.

the uncovered free space iteratively until the coverage area

of the informative region by detected junctions is larger than

a threshold thc. We currently set the threshold thc = 95%.

The method to calculate the coverage is explained below.

2) Coverage by an Observation Viewpoint: We calculate

the coverage area of the informative region by all of the

observation viewpoints considering the limitations of the

sensor coverage. The depth range limitation of the Kinect

is between 0.5 m and 8 m. The robot rotates the Kinect

to seven positions for observing the surrounding region

because the limitation of the field of view (FoV) of the

Kinect (57o horizontally). We also considered the incident

angle limitation which is calculated as the difference between

the normal at an observed point and the viewing direction.

The incident angle limitation is empirically set to 80
o. Fig.

6 shows the coverage region by an observation viewpoint

considering the limitations.

3) Optimal Observation Viewpoint: We adopted General-

ized Hybrid Evolutionary Coverage Solver (GHEC-Solver)

[18] to get the optimal observation viewpoints. A coverage

map is constructed by existing observation viewpoint can-

didates (V ′

o can). In our work, the coverage map considers

the limitation of the sensor coverage as shown in Fig. 7.

(a) (b)

Fig. 6. The coverage region by an observation viewpoint (blue region).

(a) (b)

Fig. 7. The viewpoints’ coverage map of the environment A (a) and
environment B (b) by existing observation viewpoint candidates (V ′

o can
)

(yellow points). The red points are the auxiliary observation viewpoint
candidates (V ′

o aux
).

The brighter region on the coverage map means that region

is covered by the more existing observation viewpoints. A

sampling of the auxiliary observation viewpoint candidates

(V ′

o aux) is done based on the distribution function of the

coverage region. The brighter region has higher probability

to have an auxiliary observation viewpoint candidate. We

currently determine the same number of the auxiliary ob-

servation viewpoint candidates as that of existing ones, and

merge them to obtain a new set (Vo can).

Vo can = V
′

o aux ∪ V
′

o can

An optimization algorithm is applied on the observation

viewpoint candidates (Vo can) by solving the Set Coverage

Problem [19] to obtain current optimal observation view-

points (V ′

o ). Then, a new coverage map is constructed by

current optimal observation viewpoints (V ′

o ). GHEC-Solver

iteratively generates a new set of auxiliary observation view-

point candidates (Vo aux) based on the new coverage map,

and applies the optimization algorithm on the integration of

the auxiliary observation viewpoint candidates (Vo aux) and

current optimal observation viewpoints (V ′

o ) to obtain optimal

observation viewpoints (Vo). A Hausdorff metric [20] is

used to calculate the convergence of the optimal observation

viewpoints (Vo), and ascertain the stopping condition of the

iterative optimization process.

Since we are interested in observing only informative

regions, we consider not the coverage of the entire free space

but that of informative regions. We construct an informative

region coverage map as shown in Fig. 8, instead of the

coverage map in Fig. 7. In addition, we use a greedy

algorithm [20] to solve the Set Coverage Problem for quickly

obtaining the set of observation viewpoints.

III. OBSERVATION PLANNING

A. Exploration Planning

Since the 2D mapping of the unknown environment is

done autonomously by an exploration planning, an explo-

ration viewpoint is needed as the target position. We adopt



(a) (b)

Fig. 8. The informative region coverage map of the environment A (a) and
environment B (b).

(a) (b)

Fig. 9. The yellow points are the optimal observation viewpoints (Vo) of
the environment A (a) and environment B (b).

the frontier-based method [5] to determine the exploration

viewpoint based on the 2D map of the environment.

A frontier point is a point which is in the free space region

and adjacent to the unknown region. All of the frontier points

are partitioned into clusters with a distance threshold thd.

We calculate the centroid of each cluster whose number of

frontier points is larger than a threshold thn, and consider

it as an exploration viewpoint candidate. By calculating the

distance to each exploration viewpoint candidates from the

robot position, we determine the exploration viewpoint (Ve)

using the closest-frontier strategy [5]. We currently set the

threshold thd = 0.25 m and thn = 13.

B. Integration of Observation Planning and Exploration

Planning

Since we are interested in an efficient observation of the

unknown environment, the observation planning is integrated

with the exploration planning. The robot calculates the free

space area while exploring the environment. If the increment

of the free space region area is larger than a threshold thf ,

or the entire environment has been already known, the robot

generates a new set of observation viewpoints (Vo). Since

the robot may have visited several observation viewpoints,

and some informative regions have already been observed,

the observation viewpoint generation only considers the un-

observed informative regions. Fig. 10 shows the observation

(a) (b)

Fig. 10. The observation viewpoints (yellow points) for the current 2D
map of the environment A (a) and the environment B (b). The blue point is
the visited observation viewpoint.

viewpoints for the current 2D map. The robot will travel to

the observation viewpoints for getting RGB-D image of the

surrounding region. The exploration viewpoint (Ve) and the

observation viewpoints (Vo) are merged as a new sequence

of viewpoints (V ).

V = Ve ∪ Vo

The robot target is obtained by solving the viewpoints

(V ) as a Travelling Salesman Problem using 2-opt method.

The TSP [21] is the problem of a salesman to determine a

shortest route which is required to visit each of the n given

cites once and only once. The 2-opt method [22] takes two

pairs of the consecutive viewpoints, and switches them if

the route becomes shorter. A* algorithm [23] is applied to

calculate the distance between the viewpoints. Figs. 11 (a)

and (b) show the route for travelling the viewpoints for two

2D maps. The new route is generated if the new sequence

of the observation viewpoint is generated, or the distance of

the current to previous exploration viewpoint is larger than

a threshold tht. The exploration viewpoint always moves

because the free space region is getting larger when robot

explores the environment. We currently set the threshold thf

= 100 m2 and tht = 5 m.

(a) (b)

Fig. 11. The viewpoint planning for the current 2D map of the environment
A (a) and the environment B (b). The yellow circles are the viewpoints, the
red circle is the robot position, and the green line is the robot route.



C. 3D Map Generation

Since the limitation of the Kinect FoV, the robot takes

7 RBG-D images of the surrounding region at each of

observation viewpoints. The 3D map is genereted based on

those images and robot pose by using PointCloud Library

[24].

IV. EXPERIMENTAL RESULT AND DISCUSSION

We tested our observation planning algorithm in the two

environments (see Fig. 2). We calculated the travelled dis-

tance, the total time, and the number of the observation

viewpoints which are needed to observe the entire informative

region of the environment. We compared two strategies

for doing the 3D mapping. Strategy 1 is based on our

observation planning which integrates the exploration and the

observation viewpoint planning. Strategy 2 is similar with our

previous work [12] which separates the exploration and the

observation viewpoint planning. In Strategy 2, the robot first

explores the entire environment to construct the 2D map. The

observation viewpoints are generated based on the 2D map,

and the robot observes the environment by using them.

Strategy 1 basically generates locally optimal observation

viewpoints for the currently known informative region. Since

the observation viewpoints in Strategy 2 are generated after

the entire 2D map of the environment is constructed, the

number of the observation viewpoints should be globally

optimal. Fig. 12 shows the observation process of Strategy

1, and Fig. 13 shows the observation process of Strategy 2

for both of the environments.

Table I shows the comparison of the number of the obser-

vation viewpoint, the total time, and the travelled distance.

The total time is the time which is needed by the robot

to explore, to construct the 2D map, and to observe the

environment. Although our strategy generates locally optimal

observation viewpoints, the number of visited observation

viewpoints of Strategy 1 is equal to that of Strategy 2. In

addition, our proposed observation planning is more efficient

in terms of the total time and the travelled distance.

The 3D mapping process is done after the exploration

and observation are finished for both of the strategy. Fig. 14

shows the 3D map of the informative region for both of the

environments.

TABLE I

EXPERIMENTAL RESULT

Environment A Environment B
Strategy 1 Strategy 2 Strategy 1 Strategy 2

Number of
the visited
observation
viewpoints

6 6 4 4

Total time 654.1 s 885.91 s 323.98 s 510.39 s

Travelled
distance

44.54 m 78.66 m 32.97 m 60.99 m

(a) (b) (c)

(d) (e) (f) (g) (h)

Fig. 12. The observation process of the environment A (a)-(c) and the
environment B (d)-(h) for Strategy 1. The viewpoint as robot target is
indicated by green circle.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 13. The exploration process (a)-(c) and the observation process of
the environment A (d)-(f) for Strategy 2. The exploration process (g) (h)
and the observation process of the environment B (i)-(k) for Strategy 2. The
viewpoint as robot target is indicated by green circle.

V. CONCLUSION

We have presented an efficient observation planning for

unknown environments by integrating exploration and ob-

servation viewpoint planning. Since generating the optimal

sequence of observation viewpoints is hard without any prior

information of the environment, we repeatedly generate a

locally-optimal viewpoint sequence based on the information

of the explored regions. We compared our method with the



(a)

(b)

Fig. 14. The 3D map of the environment A (a) and the environment B (b).
Since we set a threshold for the coverage of the informative region, some
regions may not be observed.

one which handles exploration and observation separately,

and showed that our planner has the same number of visited

observation viewpoints but with a shorter time and traveled

distance.

The proposed method has succeeded in 3D map generation

but only in simulated environments. One future work is to

evaluate the method using a real robot. Adding an object

recognition capability is also future work. This could require

further integration of a viewpoint planning for object recog-

nition (e.g., [13]) into the current framework.
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