
Knowledge-Based Control of Decision-Theoretic Planning

{ Adaptive Planning Model Selection { 1

Jun Miura and Yoshiaki Shirai
Dept. of Computer-Controlled Mechanical Systems, Osaka University

Suita, Osaka 565-0871, Japan
email: jun@mech.eng.osaka-u.ac.jp

URL: http://www-cv.mech.eng.osaka-u.ac.jp/~jun

Abstract.

This paper proposes a new planning architecture for agents

operating in uncertain and dynamic environments. Decision-

theoretic planning has been recognized as a useful tool for

reasoning under uncertainty; it calculates an optimal plan

using a given planning model (state set, action set, proba-

bility distributions over possible state transitions, and utility

function). In a dynamic environment, however, the current

situation may be di�erent from what an agent expects and

the current planning model may not be feasible. It is, there-

fore, important for an agent to continuously examine the sit-

uation and to use an appropriate planning model. For this

purpose, we propose to employ a knowledge-based meta-level

reasoner to on-line select an appropriate planning model for

an object-level decision-theoretic planning, based on the given
knowledge of classi�cation of the situation. This architecture

could also be e�ective in reducing the computational cost of

decision-theoretic planning by limiting the search space ac-
cording to the situation. Two applications of the architec-

ture to a dynamic robot planning and to a decision-making

in highway driving show the generality and the usefulness of
the architecture.

1 Introduction

To design planning algorithms for an agent that operates in

the real world, we need to consider the following two issues:

uncertainty and limitation of computational resources. Vari-

ous activities of an agent such as sensing and motion inher-

ently include uncertainty; an agent's computational power is

de�nitely limited. It is, therefore, important for an agent to

cope with uncertainties without largely increasing the com-

putational cost.

Decision-theoretic planning [2] has been recognized as a

useful tool for reasoning under uncertainty; it is usually de-

�ned by the following:

� state set S.
� action set A.
� probability distribution over the possible state transitions
for executing action a 2 A in state s 2 S. Exogenous

changes are also included here, if any.

1 Proc. of ECAI2000 Workshop on New results in planning,
scheduling, and design, pp. 107-114, Berlin, August 2000.

� utility function to evaluate each state or each state-action

pair.

In this paper, we collectively call them a planning model. Un-

der this model, an agent usually determine an action (or ac-
tion sequence) which maximizes the expected utility.

Many works have adopted decision-theoretic planning to

planning tasks under uncertainty (e.g., [11] [6] [13]). These
works, however, assume that the environment is static.

Decision-theoretic planning is usually costly because it has

to consider multiple outcomes of actions and the planning
cost often increases exponentially to the search depth. This is

a drawback when used in a dynamic environment where the
allocated time for planning is limited. Recently Markov de-

cision processes (MDPs) have been attracting much interests

as a basic representation for planning under uncertainty [7].
Although several approaches (e.g., [4]) have been developed

to e�ciently obtain optimal policies for MDP problems, they

still seem inappropriate for large-sized planning problems un-
der time pressure.

One approach to reducing the computational cost is to

properly control the allocation of computing resources to each
decision-theoretic planning activity. Manyworks have recently

been focusing on the concept of limited rationality [15], in

which the cost of planning is explicitly considered and com-
putational resources for object-level planning is allocated so

that the overall utility including both plan e�ciency and plan-

ning cost is maximized. Some of examples are: exible com-
putation [10], decision-theoretic meta-level control of (object-

level) reasoning [15], and expectation-driven iterative re�ne-

ment (EDIR) using anytime algorithms [3] [14].
These works are mainly interested in optimal allocation of

computing resources within a given planning model. In a dy-

namic environment, however, we have to cope with the change

of situation by switching planning models. Since a planning

using a wrong model may lead to a fatal situation, it is im-

portant to frequently examine if the current model is �t to

the current situation and to switch to an appropriate model,

whenever necessary.

It could be possible to have a very large model which covers
all possible situations. However this approach may not desir-

able due to the following two reasons. First, adopting a large

model is computationally expensive in both model genera-
tion and model utilization because the number of transition

relationships between states grows exponentially to that of

whole problem space only effective part of the space

Figure 1. Examining the whole problem space or examining

only a part of the space.

states. Second, considering all possibility at once could some-

times hide the underlying structure of a planning problem.
An example of such a case will be shown in the next section.

Based on the above discussion, we propose to put a knowledge-
based model selector on top of an ordinary decision-theoretic

object-level planner. Given the knowledge of the structure of

the planning problem, the model selector selects an appro-

priate planning model, thereby directing the e�orts only to a

limited, e�ective (or correct) computation (see Figure 1).

Many layered architectures have been proposed for con-
trolling autonomous robots. Gat [9] proposed a three-level

control architecture. In his architecture, called ATLANTIS,

the controller is responsible for controlling primitive activi-

ties, which are usually reactive sensorimotor processes; the

deliberator controls time-consuming computational activities

such as planning and world model maintenance; the sequencer
coordinates such various activities by initiating and terminat-

ing them according to the current goal and situation. Pell et

al. [8] proposed a similar architecture for autonomous space-
craft. Such works mainly discuss how to integrate deliber-

ative and reactive activities and deal with the level of plan-

ning and executing actions. Since this level corresponds to the
decision-theoretic layer in our case, our approach of putting a

knowledge-based model selector can also be adopted to these

control architectures.
The rest of the paper is organized as follows. Section 2

shows a simple example in which the analysis of the structure

of the planning problem is important. Section 3 describes the
proposed planning architecture. Section 4 describes the appli-

cation of the proposed architecture to a mobile robot planning

problem in a dynamic environment. Section 5 describes the
application to a tactical reasoning in driving used for an in-

telligent driver assistance system. Section 6 summarizes the

paper and discusses future works.

2 Importance of Knowledge of Problem
Structure: A Simple Example

This section shows a simple example in which considering the

problem structure is important. Figure 2 shows a situation

where we are going from city A to city B. We select the route

among the three, R1, R2, and R3. The degrees of congestion of

R1 and R3 are dependent on the current situation, while that

of R2 is constant. We suppose there are two states: s1 is the
state that R1 is more congested than R3; s2 is the contrary

state. We assume the loss table shown in Table 1, where C1

and C2 are losses (it could be the necessary time of travel)

imposed by taking a speci�c combination of the state and the

B city

A city

R1

R2 R3

Figure 2. A route selection problem.

J2J1

s1 s2 s1 s2s1 s2

Q2Q1

P1
1

P1
*

P1
2P2

1 P2
2

P2
*

(a) (b)

Figure 3. Structure of probabilistic inference.

Table 1. A loss table.

route to take

R1 R2 R3

S1 C1 C2 0

S2 0 C2 C1

route.

We here suppose that which state actually occurs depends
on some other factors such as the time of a day. For example,

we can consider the case where s1 is more likely to occur in the

morning (we call this situation J1) and s2 is in the afternoon
(situation J2). Let P

j
i be the probability that state i occurs

in situation Jj and Qj be the probability of situation Jj (see

Figure 3(a)). P j
i can be regarded as the model of situation Jj .

If we do not know this hidden structure of the problem (i.e.,

situation decomposition into J1 and J2), we have to use the

probabilities of the states directly (see Figure 3(b)), which
would probably be estimated from the samples for a whole

day. Let P �

1 and P �

2 be such a probability of each state; P �

i is

given by

P
�

i = Q1P
1

i +Q2P
2

i (i = 1; 2)

As an example, consider the following parameters: C1 = 50,

C2 = 20, P 1

1 = P
2

2 = 0:8, P 2

2 = P
2

1 = 0:2. Using these

values, we summarize in Table 2 the expectation of taking
each route in the three cases: (1) the situation is known to be

Table 2. Expected loss of taking each route. Underlined is the

optimal.

E[R1] E[R2] E[R3]

J1 40 20 10

situation J2 10 20 40

unknown 25 20 25

J1 (i.e., Q1 = 1;Q2 = 0), (2) the situation is known to be J2
(Q1 = 0; Q2 = 1), and (3) the unknown situation where J1
and J2 are equally likely to occur (Q1 = Q2 = 0:5). From the

table, we can see that if we know the current situation, we can

perform planning only for the situation, thereby obtaining a
more e�cient plan.

If we know the probability of each model, we can select an

optimal action, for example, which minimizes the expected
loss. Suematsu and Hayashi [16] propose an algorithm to cal-

culate an optimal policy which maximize the expectation of

the average reward per step given a set of candidate models
and the probabilistic distribution over the set. However such

an approach could be computationally expensive, because ba-

sically all possibilities (models) have to be examined.

What we would like to stress here are that for e�cient (or

tractable) model construction and utilization, we should use

as much knowledge of the problem structures as possible, and
that a planning architecture should be capable of e�ectively

utilizing such knowledge. These are the strong motivation for

us to propose the three-level planning architecture.

3 Three-Level Planning Architecture

Based on the above discussion, we propose a three-level con-
trol architecture shown in Figure 4. Each level is considered

to operate in parallel with the others. The functions of each

level is as follows.

Knowledge-based model selector

This level continuously examines the environment and classi-

�es the current situation into one of known categories. Based

on the selected category, the corresponding planning model

reactive local
controller

decision-theoretic
planning

knowledge-based
model selector

environment
action

direct sensing

planning model

action command

history,
statistical data

state
estimation

Figure 4. Three-level planning architecture.

is selected and given to the next level. As a model selector,

we can use any classi�er; for example, a Bayesian classi�er
[5] can be used to assess the probability of each category and

the reliability of each planning model in the current situation.

Concerning the applications presented in this paper, in Sec-
tion 4, we use a simple frequency-based classi�er; in section

5, on the other hand, we use a hand-coded state-transition

graph-based classi�er.

Base-level decision-thoretic planner

This level performs planning using the given planning model
and the state estimation result to select the best action which

minimizes the expected utility, and sends the selected ac-

tion to the next level. Any decision-theoretic planners can
be adopted as long as they response to the dynamics of the

environment reasonably quickly. An appropriate example is

Real-time Dynamic Programming (RTDP) [1] which on-line
generates a decision tree with a limited depth.

Reactive local controller

This level has a set of actions, each of which is realized as a
local sensory-action feedback loop. The upper-level decision-

theoretic planner selects an action and this level executes it. In

addition, this level occasionally handles emergency situations;
in that case, this level overrides the upper levels.

4 Example Domain 1: Mobile Robot
Planning in Dynamic Environment

This section describes an application of the proposed planning

architecture to a mobile robot planning problem in a dynamic
environment (see Figure 5).

There is a mobile robot and a moving obstacle. The robot

and the obstacle have their own destination and the robot
does not know the obstacle's destination. The task of the

robot is to reach the destination as early as possible without

colliding with the obstacle. The robot has several planning

models; only the knowledge of the destination of the obstacle

is di�erent in these models. The robot uses one of the models

robot

obstacle

destination

Figure 5. Example problem in dynamic environment.

obstacle

canonical trajectory

set of possible
moving directions
at the next time step

Figure 6. Motion uncertainty model of obstacle.

to predict the future movement of the obstacle for decision-

theoretic planning.

4.1 Model of Obstacle Motion

Obstacle motion is modeled by its canonical trajectory to the

destination and motion uncertainty around the trajectory (see

Figure 6). We represent the motion uncertainty by a set of

possible moving directions at the next time step and the uni-

form probabilistic distribution over them. We repeatedly ap-

ply this uncertainty model to predicting the obstacle position

in a near future (a few time steps).

4.2 Decision-Theoretic Robot Motion
Selection

Each planning model is composed of the following:

� a state is represented by the position and the velocity of

the obstacle and those of the robot.
� an action is the motion (i.e., the moving direction and the

speed) of the robot at the next time step.
� a probabilistic distribution is calculated over the possi-
ble next position of the obstacle using the motion model

(canonical trajectory to a destination).
� a utility function to evaluate the expected time of the robot

reaching its destination.

The decision-theoretic planner repeats the cycle of estimat-

ing the current state (measuring the position of the obstacle),

searching for the best next action, and issuing a command

to the controller. The search is performed as follows. First

the robot predicts the possible pairs of the position and the

velocity of the obstacle and their probabilities at the time a

few steps later from the current time by using the motion
uncertainty model. For each pair of predicted obstacle posi-

tion/velocity and robot position, assuming that the obstacle

position will diverge around the canonical trajectory (see Fig-
ure 7), the robot calculates the time to the destination using

our path planner, which generates a minimum-time collision-

free path in the time space (see Figure 8). The robot selects
the best next action which minimizes the expected time to

the destination.

4.3 Selecting Motion Model of Obstacle

The top-level knowledge-based model selector estimates the

motion model of the obstacle (i.e., planning model) from the

history of obstacle motion. At present, we have tested the

following two types of model selectors.

obstacle

canonical trajectory

uncertainty region
at each time step

robot

Figure 7. Uncertainty evolution model of obstacle motion.

x

y

t

robot

obstacle

Figure 8. Path planning in time-space.

4.3.1 Static Model Selector

This is a very simple frequency-based selector which does not
consider much about the dynamics of the environment. LetMi

be models and Pi be their probabilities. Each probability is

calculated from the relative frequency in the latest Nh trials2.

Let ni be the frequency of the ith model in the trials. The

probability Pi is given by

Pi =
ni

Nh

:

Let i� be the index of the most probable model. If Pi� is

above a predetermined threshold, the i�th model is selected;
otherwise, the model selector considers that the obstacle does

not have no canonical trajectory and considers all possible

moving directions of the obstacle derived from all possible
candidates for the canonical trajectory. These two cases are

analogous to the case in Section 2 where the situation is known

to be J1 or J2 and the case where the situation is unknown,
respectively.

2 We assume that, after each trial, the robot can uniquely determine
the motion model of the obstacle during the trial.

4.3.2 Dynamic Model Selector

This is also a simple frequency-based selector, but it inves-

tigates the underlyning dynamics of the environment (i.e.,
moving obstacle). That is, the selector considers the change

of the moving obstacle's destination as a Markov process and
estimates the transition matrixM of the Markov process from

the history of obstacle motion. The element Mi;j of the ma-

trix indicates the probability that the obstacle that took the
ith model at the latest trial takes the jth model at the next

trial, and is estimated by:

Mi;j =
ni;j

Ni

; (1)

where ni;j is the frequency of the jth model taken just after

the ith model and Ni is the frequency of the ith model.

4.4 Simulation Results

Figure 9 shows the problem setting for simulation. The robot

moves upward and the obstacle moves downward. There are

three motion models of the obstacle, which are referred to as
LW (leftward, from the robot's point of view), ST (straight),

and RW (rightward). A canonical trajectory of the obstacle

is calculated for each pair of the current and the goal posi-

tion. The robot classi�es the situation into one of these three

models.

In the simulation, we can consider two kinds of motion
models of the obstacle: one is the model that the robot ex-

pects for the obstacle (expected model); the other is the model

that the obstacle actually takes (actual model). If these two
models coincide, the robot motion is expected to be e�cient;

otherwise, the robot is likely to exhibit an ine�cient behav-

ior. Figure 10 shows two exmaples of trials. In Figure 10(a),
the robot thought the obstacle would move leftward (LW)

and the obstacle actually moved as expected (LW); in the

Figure 10(b), on the other hand, although the robot thought
the obstacle would move rightward (RW), the obstacle actu-

ally moved leftward (LW). The robot motion is much more

e�cient in the �rst case than in the second.
Table 3 shows the result of simulation trials to see how

the relationship between the expected and the actual models

a�ects to the performance of the robot. In the table, each

robot goal

RWLW ST

robot

obstacle

goal for LW goal for ST goal for RW

Figure 9. Problem setting.

robot goal

robot startobstacle goal

obstacle start

(a) expected=LW , actual=LW .

robot goal
obstacle start

robot start

obstacle goal

(a) expected=LW , actual=RW .

Figure 10. Results of two trials.

Table 3. Simulation results.

ACTUAL

NO ST LW RW

E NO 32.55 34.59 33.18 33.31

X (6.57) (2.58) (4.39) (5.05)

P ST 38.21 29.63 31.26 35.34

E (12.14) (1.02) (3.49) (6.82)

C LW 37.01 31.35 29.72 34.39

T (8.49) (1.81) (2.34) (5.71)

E RW 32.97 31.41 32.89 29.71

D (6.16) (1.82) (2.73) (2.62)

row indicates the expected model and each column indicates

the actual model. The NO-row indicates that the robot has

no models of obstacle motion; the NO-column indicates that
the obstacle randomly selects one of the three models (LW ,

ST , RW). For each combination of the two models, we ran

150 trials. In each box, the upper number is the mean of the
time steps the robot took to reach the destination. The lower

number in parentheses is the standard deviation of the time

steps. We can see from the table that the robot motion (and
equivalently the planning result) is e�cient if an appropriate

planning model is selected, and it is not otherwise.

Next we tested the three-level planning architecture through
a large number of concecutive trials. The knowledge-based

50

40

30

20

10

0
0 100 200 300 400

trials

ST RW LW ST RW

LW

ST

RW ST

LWRandom

RW LWST STNO

actual
model

expected
model

Figure 11. obstacle's actual behavior, expected behavior, and elapsed time steps.

trials

with dynamic model selector

with static model selector

evaluation of obtained Markov model

Figure 13. Comparison of planners with dynamic and static model selector.

ST

LW RW

0.1
0.1

0.8

0.1

0.1

0.8

0.1

0.1

0.8

Figure 12. Markov process used.

model selector collects the history of the obstacle movement

and determines the current model based on the probability
estimation method mentioned above.

The �rst test was done with the static model selector (see

Sec. 4.3.1). Figure 11 shows the result. The �gure shows the
time elapsed by the robot to reach the destination (upper

part), the expected model of the obstacle (middle part), and

the actual model of the obstacle (lower part). In the upper

part, the ranges of trials where there was a discrepancy be-

tween the expected and the actual model are shown as shaded

regions. For the NO actual model, the NO is the best ex-

pected model, but in this case, we can say that there is always

a discrepancy; so the range corresponding to such a case is also

lightly shaded. In such shaded regions, the robot motion is not

e�cient due to generating a plan based on an inappropriate

planning model.

The second test was done with the dynamic model selec-
tor (see Sec. 4.3.2). In this case, we used the Markov process

shown in Figure 12 as the underlyning dynamics to generate

the problem sequence. In addition, the expectedmotion model

is selected so that the predicted expectation of the cost is min-

imized using the predicted probability of each model and also
using Table 3 as the expected cost for each combination of

the actual and the predicted model. Figure 13 shows the re-

sult. In the �gure, the performance of the planning system
with the static model selector and that with the dynamic

model selector as well as the change of the evaluation of the

estimated Markov model3in the dynamic model selector are

shown. The result shows the dynamic model selector outper-

forms the static one because the dynamic model selector uti-

lizes the knowledge about the problem structure that the ob-
stacle changes the motion model according to some Markov

process.

5 Example Domain 2: Intelligent Driver
Assistance

This section briey describes an application of the three-level
planning architecture to the intelligent navigator that can give

the driver timely advice on safe and e�cient driving. For the

details of the intelligent navigator, refer to [12].
Usually tasks in driving can be divided into two levels [17]:

the tactical level determines maneuvers such as lane changing

and overtaking to meet the objective of driving (e.g., a tar-

get arrival time) under the constraints imposed by the actual

tra�c condition; the operational level translates the selected

maneuver into actual operations of steering, accelerating, adn
braking.

In real tra�c, sensory data based on which the intelligent
navigator generates advice is uncertain (e.g., measurement

error or occlusion). In addition, the situation is dynamic, i.e.,

the situation evolves as time elapses. Therefore, the tactical
level advice generation should be based on the prediction of

the future tra�c condition with consideration of uncertainty.

We adopt a decision-theoretic planning for the tactical level.
Then, in order to adaptively select a planning model for

the tactical level and to activate the tactical level only when

it is necessary, we introduce a meta-level planning (called the
meta-tactical level). The resultant control architecture is com-

posed of three levels: meta-tactical level, tactical level, and

operational level; they exactly correspond to the three levels
shown in Figure 4.

5.1 Tactical Level Decision-Thoretic
Planning

Figure 14 shows a scenario where a decision-theoretic plan-

ning is employed to determine a maneuver. Our vehicle (painted
rectangle) is on the left lane 4, and is approaching the exit to

take. Since the speed in the current lane is becoming a lit-

tle bit slow, the driver starts thinking of overtaking vehicles
ahead. The overtaking maneuver is generally faster, but there

may be risks of lane changing itself and of missing the exit

due to occluded vehicles ahead. Such a trade-o� is formalized
in a planning model corrsponding to each situation.

In this application, each planning model is composed of the

following:

3 The model is evaluated by the sum of absolute di�erences of the
corresponding elements of the obtained transition matrix and the
true matrix.

4 Note that the slower lane is the left one in Japan.

Figure 14. An overtaking scenario.

Exit: Near

Lane change
for exitingstate

state

tactical level
reasoning

state transition
(selected maneuver) change

lane
Overtaking with approaching exit
 (on some traffic situations)

event to check

Exit: Near

Speed: Slower

move
forward

move
forward

change
lane

Exit: Medium
Lane: Right

Exit: Medium
Lane: Left

Exit: Near
Lane: Left

Figure 15. A part of state-transition graph for the

meta-tactical level.

� a state is represented by the position and the velocity of
our vehicle and those of other vehicles.

� an action is a maneuver. In the above scenario, there are

two actions: change lane for overtaking and go straight.
� a probability distribution is calculated over the possible

future placements of vehicles including occluded ones.
� a utility function which is a function of the expected time of

our vehicle reaching the exit and the loss of each maneuver.

We also have constructed planning models for other traf-

�c situations such as: overtaking near the target exit without
congestion; congestion around an entrance or an exit which

our vehicle does not take. All such models are manually con-

strcuted.

5.2 Meta-Tactical Level as
Knowledge-Based Model Selector

This level continusouly watches important events on tra�c.

Examples of possible events are: the average speed of the cur-

rent lane slows down; the exit is approaching. It also period-
ically updates the estimation of the arrival time. Since it is

ine�cient to always check all events, only selected events are

monitored which are considered to be important in the cur-
rent state. To realize such an adaptive focus of attention, we

construct a state transition graph. Figure 15 shows a part of

the transition graph. For example, at state [Exit: Medium,

Lane: Left] (which means that the distance to the exit is

medium and the vehicle is on the left lane), possible events

are: (1) the speed becomes slower (Speed: Slower); (2) the
exit becomes near (Exit: Near). For each event, the corre-

sponding planning model for the tactical level is assigned.

This strcuture enables the meta-tactical level to adaptively

select appropriate planning models.

5.3 Implementation and Experiments

The advice generation subsystem with the three-level archi-

tecture is connected to a road scene visual recognition subsys-
tem, which detects and localizes lanes and other vehicles, to

constitute the intelligent navigator. We constructed a proto-

type system and conducted experiments on an actual highway.
In one case, for example, our vehicle with the intelligent nav-

igator traveled about 12km, and during the travel, the intel-

ligent navigator generated advice 5 times, all on appropriate
timings.

6 Conclusions and Discussion

This paper has discussed the importance of analyzing the

problem structure and of the model selection mechanism for
an agent making a plan in uncertain and dynamic environ-

ments. A three-level planning architecture has been proposed

which has a model selection layer on top of an decision-theoretic
middle layer. We applied the architecture to two planning

problems. In a mobile robot planning in a dynamic environ-

ment, the model selector is implemented as a frequency-based
model estimator, which can select an appropriate planning

model adaptively. Model selection by the dynamic model se-

lector is done based on the expected loss due to model discrep-

ancy. In the intelligent navigator example, the model selector

is implemented as a state-transition graph, which selects plan-

ning models according to both the history of maneuvers and
the current tra�c condition. These two application examples

show the generality and the usefulness of the proposed archi-

tecture.
This paper has focused only on the use of the knowledge-

based meta-level control for planning model selection. An-

other important role of the meta-level control is to limit the
search space adaptively according to the time pressure. The

following two approaches are possible: limiting the set of ac-

tion candidates and limiting the length of lookahead. These
kinds of meta-level control could be realized by a method

which explicitly considers the tradeo� between the amount

of search and the plan quality. However, formulating such
a tradeo� could sometimes be di�cult in complex planning

problems in the real world. Therefore, our approach of em-

ploying knowledge-based control seems to have an advantage
in a practical use.

In this paper, we have manually constructed the meta-level

model selector by examining the problem structure. A future

work is to automate the construction of the model selector to

some extent, by using various machine learning techniques.

Acknowledgment

This work is supported in part by Grant-in-Aid for Scienti�c

Research from Ministry of Education, Science, Sports, and

Culture, Japanese Government by the Kurata Foundation,

Tokyo, Japan.

REFERENCES

[1] A.G. Barto, S.J. Bradtke, and S.P. Singh, `Learning to act us-

ing real-time dynamic programming', Arti�cial Intelligence,

72(1-2), 81{138, (1995).

[2] J. Blythe, `Decision-theoretic planning', AI Magazine, 20(2),

37{54, (1999).

[3] M. Boddy and T. Dean, `Solving time-dependent planning

problems', in Proceedings of IJCAI-89, pp. 979{984, (1989).

[4] C. Boutilier, R. Dearden, and M. Goldszmidt, `Exploiting

structure in policy construction', in Proceedings of the Four-

teenth Int. Joint Conf. on Arti�cial Intelligence, pp. 1104{

1111, (1995).

[5] W.L. Buntine, `Operations for learning with graphical mod-

els', J. of Arti�cial Intelligence Research, 2, 159{225, (1994).

[6] A. Cameron and H. Durrant-Whyte, `A bayesian approach to

optimal sensor placement', Int. J. of Robotics Res., 9, 70{88,

(1990).

[7] T. Dean, L.P. Kaelbling, J. Kirman, and A. Nicholson, `Plan-

ning with deadlines in stochastic domain', in Proceedings of

AAAI-93, pp. 574{579, (1993).

[8] B. Pell et al., `An autonomous spacecraft agent prototype', in

Proceedings of Agents-97, (1997).

[9] E. Gat, `Integrating planning and reacting in a heterogeneous

asynchronous architecture for controlling real-world mobile

robots', in Proceedings of AAAI-92, pp. 809{815, (1992).

[10] E.J. Horvitz, Computation and Action Under Bounded Re-

sources, Ph.D. dissertation, Stanford University, 1990.

[11] S.A. Hutchinson and A.C. Kak, `Planning sensing strategies

in a robot work cell with multi-sensor capabilities', IEEE

Trans. on Robotics and Automat., 5(6), 765{783, (1989).

[12] M. Itoh, J. Miura, and Y. Shirai, `Towards intelligent naviga-

tor that can provide timely advice on safe and e�cient driv-

ing', in Proceedings of the 1999 IEEE/IEEJ/JSAI Int. Conf.

on Intelligent Transportation Systems, pp. 981{986, Tokyo,

Japan, (October 1999).

[13] J. Miura and Y. Shirai, `Vision and motion planning for a

mobile robot under uncertainty', Int. J. of Robotics Research,

16(6), 806{825, (1997).

[14] J. Miura and Y. Shirai, `Vision-motion planning for a mobile

robot considering vision uncertainty and planning cost', in

Proceedings of the 15th Int. Joint Conf. on Arti�cial Intelli-

gence, pp. 1194{1200, Nagoya, Japan, (August 1997).

[15] S. Russell and E. Wefald, Do The Right Thing, The MIT

Press, 1991.

[16] N. Suematsu and A. Hayashi, `Consideration of model un-

certainty in decision theoretic planning', Trans. Information

Processing Soc. of Japan, 40(7), (1999). (in Japanese).

[17] R. Sukthankar, S. Baluja, J. Hancock, D. Pomerleau, and

C. Thorpe, `Adaptive intelligent vehicle modules for tacti-

cal driving', in 1996 AAAI Workshop on Intelligent Adaptive

Agents, pp. 13{22, (1996).

