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Abstract— This paper describes a method of robustly modeling
road boundaries on-line for autonomous navigation. Since sen-
sory evidence for road boundaries might change from place to
place, we cannot depend on a single cue but have to use multiple
sensory features. It is also necessary to cope with various road
shapes and road type changes. These requirements are naturally
met in the proposed particle filter-based method, which makes use
of multiple features with the corresponding likelihood functions
and keeps multiple road hypotheses as particles. The proposed
method has been successfully applied to various road scenes.

Index Terms— Outdoor navigation, Mobile robot, Road bound-
ary modeling, Particle filter.

I. INTRODUCTION

Autonomous outdoor navigation has been one of the active
research areas in robotics, from Navlab [22] to Grand Chal-
lenge [21]. For a fully autonomous navigation, the robot has
to have many functions such as route planning, localization,
road detection and following, and obstacle avoidance. This
paper focuses on the road (or traversable region) detection.

GPS systems, combined with an accurate map, can provide
reliable location information for outdoor navigation (e.g.,
[15, 19]). But for safe navigation, local information on road
boundary, such as curbs and lanes, should be extracted and
utilized on-line.

Vision has been widely used for road boundary detection.
Some methods detect road and lane boundaries directly [2, 5],
while others first detect road regions using, for example, color
information to determine the road boundaries [4, 18].

Range sensing is also popular in road boundary detection
[3, 10, 23]. If we use a 2D scanner, however, specific geometric
features such as guardrails and clear curbs should exist. Using
multiple range sensors makes it possible to detect traversable
regions by themselves [21]. Stereo vision can also be used
for extracting road region as a planar region [14]. Using only
geometric information, however, might not be enough in some
roads like a small trail among low grasses.

One issue in road boundary detection is how to cope
with the variety of road scenes. Effective sensory information
for road boundary detection varies from place to place and
multiple sensory features thus need to be utilized. Fusion of
range and image data has been investigated, but mainly for
obstacle detection [11, 12]. Some works use range information
for refining the image-based road detection process [2, 8, 21].

Another issue is occasional sensing failures or missing ef-
fective features (e.g., a discontinuity of curbs). Road boundary
detection only from the latest observation might be vulnerable
and, therefore, model-based filtering approaches are effective.
Dickmanns and Mysliwetz [5] developed a Kalman filter-
based method which estimates the 3D road parameters and
the vehicle ego-motion. Apostoloff and Zelinsky [1] proposed
a particle filter-based lane detector using vision with a simple
road model. Kim [9] proposed a robust lane detection and
tracking method based on explicit lane marking detection and
particle filtering. The filtering-based approach is also effective
for reducing the sensing cost because only a part of sensor
data (e.g., some image regions) need to be processed in many
cases. Sehestedt et al. [17] applied a particle filter for detecting
lane marking in each image not for tracking them.

We have been developing a particle filter-based road bound-
ary detection method [13], similarly to [1]. To cope with
various road scenes, the method uses multiple sensory features
obtained by cameras and a laser range finder. Evidence from
multiple features is naturally integrated via specially-designed
likelihood functions. The method dealt with only unbranched
roads. In this paper, we extend the method so that it uses more
flexible road models with branches. Various road models are
adaptively utilized in the particle filter-based framework.

The rest of the paper is organized as follows. Sec. II de-
scribes an overview of the proposed method. Sec. III explains
the state vector and the road models for unbranched and
branching roads. Sec. IV briefly explains the image and the
range data processing for the importance weight calculation.
Sec. V describes the state transition step in the particle
filter which includes robot motion prediction and road model
update. Sec. VI shows experimental results in various road
scenes. Sec. VII concludes the paper and discusses future
work.

II. OVERVIEW OF THE METHOD

The proposed method adopts a particle filter [20] for in-
tegrating multiple sensory information and for managing the
road shape and type changes. Fig. 1 shows an overview of the
proposed method. The right-hand side of the figure indicates
the iteration of particle filter-based estimation. The left-hand
side indicates the sensor data processing.

Each particle keeps both the road parameters and the robot
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Fig. 1. Overview of the proposed method.

position with respect to the current origin, which is actually
the previous robot pose. There are four steps in the iteration:

(1) State transition step generates a new particle set. There are
mainly two operations in this step. One is the transition due to
the motion of the robot, which is predicted from the odometry
and image data. The other is road shape and type change which
occurs as a new part of the road becomes visible.

(2) Observation prediction step predicts the next observation
from the robot position and the road parameters.

(3) Weight calculation step first determines the likelihood
functions from the extracted range and image features and
then calculates the importance weight of each particle.

(4) Selective resampling step performs resampling only when
needed. If the so-called effective number of particles is less
than the half of the number of particles, resampling is per-
formed [6].

III. ROAD MODEL AND STATE VECTOR

This section explains our new road models and state vector
representations. In the field of road shape design, straight lines,
circular curves, and transition spirals such as clothoids [16]
are usually used. Our previous work [13] also used a straight
line and a set of circular curves with fixed curvatures. Since a
greater variety of road shapes may exist in local environments,
we use piecewise-linear road models to represent a local region
visible from the robot. The models are continuously updated
as the robot moves (see Sec. V-B).

A state vector includes both the robot position and the
road parameters, with respect to the previous robot local
coordinates, for their simultaneous estimation [13]. The robot
position is equivalent to the ego-motion from the previous
position, which is represented by 2D translation and the
rotation.

A. Model for unbranched roads

Fig. 2 shows the model for unbranched roads. The model
consists of a set of road segments, each of which is either of
circular or linear type. The ith segment S i is represented by:
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Fig. 2. A piecewise-linear road model (unbranched road model).

boundary for range data

boundaries for image data

Fig. 3. Gaps between road boundaries for range and image data.
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i ) are the left and the right boundary

point position, hi is the segment length, and νi = 1/ri is the
curvature. The set of segments for each particle has a single
width parameter w, which is also estimated on-line. A gap
g between detected boundary positions by the image and the
range sensor is also estimated (see Fig. 3).

This piecewise-linear model can represent arbitrary road
shapes by using as many number of segments as necessary,
but this may increase the computational cost and decrease
the robustness to sensor uncertainties. So we currently fix the
number of segments to six and h to 1.0 [m].

When the robot moves on an unbranched road, we use the
following state vector:

X =
[
Δx, Δy, Δθ, gl, gr, S1, S2, · · · , S6

]T
. (2)

B. Model for branching roads

The model for a branching road additionally includes the
shape parameters of the branching part. Fig. 4 shows the model
for the road with the right branch, consisting of the three parts:
front, branching, and rear. The front and the rear part have the
same representation as the unbranched road model.

The branching part S b has two more parameters than
ordinary segments: wb for the width of the branch and the
radius r of the branching point. S b is represented by:

Sb = [xl, yl, xr , yr, wb, r]T . (3)

When the robot moves on a branching road, we use the
following state vector:

X =
[
Δx, Δy, Δθ, gl, gr, Sf

1 , Sf
2 , · · · , Sb, Sr

1 , Sr
2 , · · ·

]T

, (4)
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Fig. 4. A branching road model.

where Sf
i and Sr

i are the segments for the front and the rear
part; the number of these segments varies according to the
width wb of the branch. The models for left T-branch and
crossing are defined similarly.

IV. IMAGE AND RANGE DATA PROCESSING FOR

IMPORTANCE WEIGHT CALCULATION

The importance weights of particles are calculated using
the image and the range data. We do not explicitly extract
road boundaries but use likelihood functions for model-based
weight calculation. This section briefly explains the image and
the range data processing as well as the weight calculation.

A. Range data processing

A SICK laser range finder (LRF) is set at the height of
0.45 [m] looking downward by 5 [deg]. If there is a height gap
at the road boundary (e.g., at a curb position), the sequence
of 3D points forms an L-shape. The nearer the local angle at
each point of the sequence is to 90 degrees, the more likely
the point is on the boundary. The likelihood is defined as a
function of the horizontal position (x). Fig. 5(b) shows an
example 3D point sequence and the corresponding likelihood
function obtained in the scene shown in Fig. 5(a). The right
boundary is apparent for LRF thanks to the bank on the right
side, while the left one is not visible for LRF.

Fig. 6 illustrates the likelihood calculation for a particle. The
road model is mapped on to the road plane and the product of
the two likelihood values at the intersection positions is used.

For branching roads, we also evaluate the “flatness” of the
road surface at the entrance of the branch (i.e., the intersection
between the laser scanning plane and the line connecting two
yellow points in Fig. 4). The likelihood of flatness becomes
higher when the local angle is nearer to 180 degrees. Fig. 7
shows an example likelihood function for flatness.

B. Image data processing

We use a LadyBug2 (Pointgrey Research Inc.) omnidirec-
tional camera system. Two CCD cameras among five are
currently used to cover the field of view of about 144 [deg].

We use two visual cues: road boundary edges and road
surface color. We use the intensity and the color gradient image
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for the first and the second cues, respectively. Fig. 5(c) is
the intensity gradient image for the input image (Fig. 5(a)).
To calculate the color gradient image, a road color model is
estimated on-line from the latest five images. Fig. 5(d) is the
road likelihood image and Fig. 5(e) is the color gradient image;
the blue colors and the red colors indicate the likelihood of
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Fig. 6. Likelihood calculation for a particle and the laser data.
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Fig. 8. Flow vectors for motion estimation.
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Fig. 9. Motion estimation results.

being on the right and the left boundary point, respectively.
The likelihood of a particle for an image feature is cal-

culated as the averaged likelihood values on the boundaries
which are to be obtained by mapping the road boundaries of
the particle onto the image (see [13] for more details).

C. Importance weight calculation

Six likelihood values are calculated for every combination
of the three features (laser, edge, and color) and the two sides
(left and right). The importance weight of a particle is given by
the product of all likelihood values. In some cases, however,
the likelihood values for a feature on one side become very
small for any particles due to, for example, a discontinuity
of curb or strong cast shadows. In such a case, the weights
for all particles become very small and, as a result, many
promising particles might be deleted. To avoid this, if the
maximum likelihood for a feature on one side is less than a
threshold (currently, 0.3), the combination of the feature and
the side is considered not to be effective and is not used.

V. STATE TRANSITION

The state transition step transforms a set of particles to
another set by robot motion prediction and road model update.
The former is carried out by a robot motion estimation and
a probabilistic sampling. The latter is a key of the proposed
method, which adaptively generates new particles to cope with
road type changes. Since the robot position and road parame-
ters are represented in the previous robot local coordinates, a
coordinate transformation is also performed in this step.

A. Robot motion prediction from image data and odometry

Robot motion is visually estimated using the eight-point
algorithm [7] and odometry. Harris corners are first extracted
as feature points in the two images (from the two cameras)
and their correspondences are determined between consecutive
images. The features are mapped onto a virtual image plane
facing right forward and then the eight-point algorithm with
RANSAC is applied to the mapped points to calculate the fun-
damental matrix (F matrix). Fig. 8(a)-(b) show the extracted
flow vectors in the left and the right image. Fig. 8(c) shows the
mapped flow vectors; red ones are inliers used for F matrix
calculation and blue ones are outliers.

From F matrix we can recover the robot motion up to
scale, which is given by the odometry. When the estimated

motion is largely different from the odometry, we use the
odometry value. Fig. 9 shows an example of motion estimation
by image and odometry. Image data usually give better results;
through the experiments we have done, about 4 % of the
image-based motion estimate were rejected as unreliable. A
proposal distribution is defined from the estimated ego-motion
and empirically-determined uncertainty estimates.

B. Road model update

As the robot moves, a new part of the road becomes visible.
Since the shape of the new part is unknown, we make a
set of hypotheses for it. In the particle filter framework, this
hypotheses generation (called road model update) is realized
by generating particles with various road models. The road
model update takes place when the robot is judged to enter a
new road segment. The previous segment where the robot was
is deleted and a new one is attached as shown in Fig. 10.

1) Update for unbranched road: In the case of unbranched
road, one usual road segment is attached. For each parti-
cle which should be updated, the curvature of the attached
segment is chosen by sampling. A normal distribution of
mean 1 [1/m] and standard deviation 0.04 [1/m] is used as
a proposal distribution.

2) Update for branching road: The branching parts of a
road gradually become visible as the robot moves, similarly
to the case of unbranched roads. It is therefore possible
to always make hypotheses of branching roads when new
road segments are attached. Since the number of branching
parts is much smaller than ordinary road segments, however,
such a hypothesis generation will be inefficient. We thus
add branching road models only when they are likely to be
approaching.

For this purpose, we examine the trends of the likelihood
values for the intensity gradient, the color gradient, and the
flatness of the road along the direction of the road; we calculate
their averaged values for all particles and describe them as
functions of the distance from the robot along the road (see
Fig. 15(c), for example). If the first two values are below a
threshold (currently, 0.2) and if the last value is above another
threshold (currently, 0.4) on a sufficiently large part (more than
1 [m] long) in the trends, then particles are generated which
have branching part starting at the front end of that part. If such
a part exists on the left (right) boundary, left (right) T-branch
models are generated. If such parts exist on both boundaries,
two types of T-branch and crossing models are all generated.
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Fig. 13. Estimation results using unbranched road models for other scenes.

The process of generating branching road models is as
follows. We first sample an existing unbranched model and
replace the part beyond the branch starting point by an
appropriate branching part model (see Fig. 11). The branching
part is generated using the following proposal distributions: a
normal distribution with the estimated starting point of the part
being the mean and 3.0 [m] being the standard deviation for the
starting position of the branching part, a uniform distribution
between 1 ∼ 5 [m] for the radius r, and a uniform distribution
between 3 ∼ 7 [m] for the width of the branch wb.

3) Number of particles: We usually keep 500 particles
when all models are unbranched roads. When branching road
models are included in the particle set, we increase the number
to 750. When generating branching road models, we add 50
particles for each model.

VI. EXPERIMENTAL RESULTS

A. Results for unbranched road models

1) Estimation results: Let us consider Fig. 5. There is a
parking space on the left and no curb exists there. There is a
bank on the right. Range data is thus effective only for the right
road boundary. Concerning image data, the edge information
is more effective on the left, while the color information is
more effective on the right.

Fig. 12 shows the estimation result. Fig. 12(a) indicates road
boundaries obtained from the particle set superimposed on the
input image. To see which feature is effective, we assign the
three primary colors, red, green, and blue, to color, edge, and
range information, respectively. A purple line, for example,
indicates that color and range information support the line.
In Fig. 12(a), green is dominant on the left boundary because
edge information is effective, while red or purple are dominant
on the right because range and color information are effective.

Fig. 12(b) shows a kind of certainty distribution of road
regions in the robot local coordinates, obtained by voting
road regions coming from the current set of particles. Brighter
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pixels indicate higher certainties. The green semicircle and the
red line in the figure indicate the robot pose and the center
position (i.e., skeleton) of the road, respectively. The red line
could be a guide for controlling the robot motion. Fig. 13
shows other estimation results for three different roads.

2) Necessary number of particles: The number of particles
affects the estimation performance. By using a better proposal
distribution, it is expected to be able to reduce the number
of particles. Fig. 14 illustrates the relationships between the
number of particles and the success rate for the three methods:
proposal only by odometry, proposal by image data and
odometry, and proposal by image data and odometry with
selective resampling [6], for course 3 in Fig. 13(c). We ran
each method 20 times for each number of particles and
calculated the success rate. A run is considered successful if
the estimation is judged to be correct until the end by human
visual inspection. The figure shows that both the image-based
proposal distribution and the selective resampling are effective.

B. Results for branching road models

Fig. 15 shows a sequence of the estimated branching road
models. Graphs in the figure show the likelihood trends for the
three features and the parts with a possibility of branching.

At step 33 ((a)∼(d)), a branching part candidate appears on
the left, although no branches actually exist. A small possibil-
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Fig. 15. A sequence of the estimated branching road models.
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ity of branch also arises on the right, but it is still too small to
be considered. Only left T-branch models are generated at this
moment. At step 35 ((e)∼(h)), all branching models (crossing
and two T-branches) are generated and evaluated. The right T-
branch models, which are correct, are more highly evaluated as
shown in Fig. 15(f). At step 43, the robot is at the position of
the branch and almost only the right T-branch models remain.
After the robot passed the branch at step 51, only unbranched
models exist. There is a strong edge segment on the left, which
makes the left side be with no branches (see Fig. 5(a)).

Fig. 16 shows the change of the number of particles for
each type. From around step 30, the number of particles
increases because branching road models are added. The
number sometimes exceeds 750 when the resampling is not
performed due to the selective resampling strategy, but it does

estimated boundaries estimated road region

Fig. 18. An incorrect estimate case.

not diverge. Around step 40, only particles for branching roads
exists, because the right T-branch is correctly recognized.

Fig. 17 shows the results for branching model estimation
for course 2 in Fig. 13(b). The estimation results are mostly
acceptable but wrong models also survive. This is mainly
due to poorly extracted features. Fig. 18 shows a failure case
for a right T-branch. A strong backlight prevented a reliable
detection of image features and therefore only range data
features were used. Since the LRF detects only one point on
each boundary, many right-curved unbranched road survived
in this case. This then resulted in examining inappropriate
regions (i.e., regions where the actual road boundary does not
exist) on the road for left boundaries thereby increasing the
weights for false left T-branches. Similar cases may happen
when the radius at the entry point of a branch is much larger
than expected.
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Fig. 17. Estimation results using branching road models for course 2.

C. On-line navigation

The proposed method was implemented on a mobile robot
for an autonomous navigation with on-line road boundary
modeling. The cycle time is about 0.6 [s], among which the
particle filtering part takes less than 0.1 [s]. For navigating the
robot in unbranched roads, a line is fitted to the skeleton of the
road region (see Fig. 12(b)) and a turning radius is selected
to follow the line. When entering a branching part, the robot
stops at the center of that part, rotates by dead reckoning to
face a branch to proceed, and restarts to follow the branch as
a new unbranched road.

VII. CONCLUSIONS AND FUTURE WORK

This paper has described a method of robustly modeling
road boundaries on-line. Multiple sensory features and flexible
road models are effectively integrated in the particle filter
framework. The method has been successfully applied to
various actual road scenes. The method provides a general
approach to road boundary modeling; it is basically applicable
to any roads and sensors if we have appropriate road models
and likelihood functions. A future work is to extend the road
models and their update strategies to cope with a greater
variety of road scenes including open spaces and slopes. It is
also worth considering to extract and integrate other sensory
features such as stereo for improving the reliability of road
boundary modeling.
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