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Abstract— Line drawing maps are frequently used by people
to exchange location information. Mobile robots in the future
are expected to be able to communicate with people and thus
to localize themselves using such maps. We therefore develop a
method of outdoor localization using a stereo camera and a line
drawing building map. Omnidirectional range data obtained by
a stereo camera and a pan-tilt unit are projected onto a robot-
centered 2D grid map, which is to be matched with an input line
drawing map. Since various objects such as trees often obstruct
buildings in usual outdoor scenes, we apply a view-based object
classifier in order to extract only stereo data from buildings. To
cope with uncertainties in stereo data and building extraction, we
adopt Monte Carlo localization. Experimental results show that
our simple approach works reasonably well in an actual outdoor
environment.

Index Terms— Outdoor navigation, Line-drawing map, Stereo,
Particle filter.

I. INTRODUCTION

Localization is one of the fundamental functions of mobile
robots. People often use a line drawing map and can navigate
themselves where they have never been. Although only a part
of objects such as buildings are written in the map, people
can determine their position with respect to such objects by
matching their knowledge of the map with observations of the
environment. Since mobile robots in the future are expected to
communicate with people as in the way people do, localization
using a line drawing map will be an important capability. As
a first step towards this goal, this paper proposes an outdoor
localization method using line drawing building maps and
stereo.

In recent times, vision is often used for SLAM and local-
ization problems [13, 5, 4, 6], in which visual features are
used as landmarks. Several view-based approaches have also
been proposed [1, 11]. These works are basically learning-
based, that is, the localization is performed using a learned
map. This means that the data of the environment should be
collected before localization.

Yun and Miura [15] proposed a localization method using
a line drawing building map with uncertainty. Their method
relies on line segment features constituting building bound-
aries, the directions of which are estimated using vanishing
points, and stereo range features corresponding to building
walls. Since many false matches exist between the features
and a map, they adopt a multi-hypothesis approach, which is
relatively complicated and costly. Leung, Clark, and Huissoon
[8] proposed a localization method based on the matching be-
tween such line segments and the line features extracted from

aerial images in conjunction with particle filter. Kümmerle et
al. [7] developed a graph SLAM method based on a similar
idea and an accurate 3D range sensor. Parsley and Julier [12]
proposed a general framework of exploiting the use of various
prior information with uncertainty in SLAM.

In usual outdoor scenes, buildings are sometimes good
landmarks but often obstructed by various objects such as
trees and bushes. Conventional SLAM method using 2D range
finders (e.g., [3, 2]) are therefore most probably difficult to
apply. The above methods using prior information employ
several heuristics to extract information from the input data
(from a 3D laser scanner, for example) and maps (or aerial
images) to be matched.

In this paper, we develop a localization method using a
stereo camera and a line drawing building map. We extract
stereo range data from building by a view-based object clas-
sifier. The extracted data are matched with a part of the map,
which is actually a set of visible building walls, in the Monte
Carlo localization framework. We use omnidirectional stereo
data acquired by a stereo camera on a pan-tilt head to obtain
a wide field of view. We will show our simple method works
reasonably well in actual outdoor localization problems in
spite of the low quality of stereo range data.

The rest of the paper is organized as follows. Sec. II
describes our robot and acquisition of stereo data. Sec. III
describes a mapping of stereo data to a local map with view-
based building data extraction. Sec. IV explains the input line
drawing map and hidden lines removal for matching. Sec. V
describes the procedure for Monte Carlo localization. Sec. VI
shows experimental results validating our approach. Sec. VII
discusses the current performance and possible extensions of
the proposed method, and Sec. VIII summarizes the paper.

II. STEREO DATA ACQUISITION

A wider field of view is usually more effective for localiza-
tion, especially in outdoor environments where the features
are more scarce and distance to objects are larger. So we
configure a measurement unit which has a stereo camera
(Point Gray Research Bumblebee XB3, 66 [deg.] horizontal
field of view) mounted on a pan-tilt head (TRAC Labs Biclops
PT) and acquire omnidirectional stereo data. We take pairs
of stereo images at six panning positions while the robot is
stopping. The tilt angle is set to 20 [deg.] looking up. The
measurement unit is put on a mobile robot which is based
on an electric wheelchair (PatraFour from Kanto Auto Works



(a) measurement unit. (b) Our mobile robot.

Fig. 1. The measurement unit and the robot.

Fig. 2. An example set of six input images.

Co.). Fig. 1 shows the measurement unit and the mobile robot.
Fig. 2 shows an example set of six images, collectively cover
360 [deg.], taken at a position.

Fig. 3 is a mapping of omnidirectional stereo data onto a
floor in a relatively small room; stereo measurements are fairly
accurate in small distances. For distant objects, however, range
measurements will have large errors as shown later.

III. LOCAL MAPPING OF BUILDING DATA

A set of stereo data obtained at a robot position is trans-
formed into a local grid map. An SVM (support vector
machine)-based building classifier is used for extracting only
stereo data from buildings.

A. Extracting building data using SVM-based classifier

We use the SVM-based classifier proposed by Miura and
Yamamoto [11], which has been shown to be effective in view-
based localization under various weather and seasons.
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Fig. 3. An example indoor mapping using the measurement unit.

Fig. 4. Examples of training images.

Fig. 5. Building extraction results for the images shown in Fig. 2.

We divide an input image to 16x16 windows and classify
each region using several image features. For the building
classifier, we use the normalized color (r, g, b), an edge
density, the peak value of the voting in Hough transform,
and the variance of edge directions [11]. This classifier is for
extracting building boundaries and windows where strong edge
segments exist.

We used 57 training images taken in various seasons and
weather conditions. The windows in the images are manually
labeled for training. Some of the training images are shown
in Fig. 4. We use the SVM with RBF kernel (K(x1, x2) =
exp(−γ||x1 − x2||2), γ = 50) for this classifier.

Fig. 5 shows the building extraction results for the images
shown in Fig. 2. Although some regions other than buildings
are extracted, the overall result is reasonable because complete
classification is not a necessary condition for Monte Carlo
localization.

B. Making a local map

The map given to the robot is a 2D line drawing map. The
obtained stereo data are therefore converted into a 2D local
grid map for matching. The local map is robot-centered and the
size of each cell is 0.1 [m]×0.1 [m]. Each of stereo data points,
which is originally represented in the camera coordinates, is
transformed into the robot local coordinates and then voted
on the grid map. Each cell accumulates the votes. Finally, a
Gaussian smoothing is applied to the local map to consider
the discretization of the grid map.

Stereo measurements have larger uncertainty for distant
objects, and many models for this uncertainty have been
proposed (e.g., [10]). In this mapping, however, we do not
explicitly consider the positional error of each measured point.
The reason is as follows. We model buildings by their 2D
boundaries and each boundary is matched with the map
in localization as described later. The distribution of actual
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(a) Local map without building extraction.
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(b) Local map with building extraction.

(c) Local map without building extraction. (d) Local map with building extraction.

Fig. 6. Effect of building extraction on the local map.

measured points for a boundary is naturally larger for a more
distant building and their contribution to localization will be
smaller without any adjustments.

C. Mapping results

Fig. 6(a) is the 3D data points obtained from the images
shown in Fig. 2. These data are projected and smoothed on a
2D plane to produce the local grid map shown in Fig. 6(c).
The data from large trees in front of the building on the right
(see the second and the third image in Fig. 2) exist in the map.

Fig. 6(b) and (d), on the other hand, indicate the 3D data
points and the local grid map, respectively, after applying the
building data extraction. These figures show that many of the
data from large trees mentioned above are deleted correctly,
although the 2D position of data points are not very accurate.

IV. LINE DRAWING MAP AND HIDDEN LINES REMOVAL

A. Map representation

The input line drawing map is composed of lines, each
of which is represented by a pair of 2D endpoints in the
world coordinates. We developed a line drawing map editor
for making, modifying, and saving the map data. The shapes
of the buildings are manually measured from the floor and
campus plans. The scale of the plans is 1:2500 and the error
in the map is estimated to reach a few meters.

B. Hidden lines removal

The degree of matching between the input local map and
the line drawing map is used for calculating the likelihood
of a particle in Monte Carlo localization, as described later.
Although the input map includes all building boundaries, only
a part of them is visible from a given position. It is therefore
necessary to remove occluded boundaries from the position in

(a) Line drawing map.

(b) Hidden line removal example 1.

(c) Hidden line removal example 2.

Fig. 7. Examples of hidden lines removal. Circular markers in (b)
and (c) indicate robot positions.

order to increase the reliability of matching. Since the input
map has only 2D information, we consider only 2D visibility
and thus perform a hidden lines removal.

Once a robot position is set on the world coordinates,
the visible part of each line segment can be calculated by
analyzing the relationship between the robot position (i.e.,
viewpoint), that line segment, and other potentially occluding
segments. Note that since we use omnidirectional stereo data,
the orientation of the robot does not matter in this hidden lines
removal. Fig. 7 shows examples of hidden lines removal for
two different robot positions.

V. LOCALIZATION

A. Monte Carlo localization

Monte Carlo localization (MCL) [14] is a powerful tool
for localizing the robot under uncertain prior knowledge and
sensor data, and has been successfully applied to various
localization problems.

The state vector is represented by a 2D robot pose in the
world coordinates, that is:

x = (xw, yw, θw) . (1)

The algorithm of MCL is as follows:

1) Initialization. Particles are distributed around the start-
ing position.

2) Repeat the following for each pair of movement and
measurement:



a) Prediction step. Each particle is moved by the
odometry reading with a probabilistic error sam-
pling according to the odometry error estimate.
The odometry error is estimated according to the
motion model described below (see Sec. V-B).

b) Correction step. The likelihood of each particle is
calculated as the degree of matching. We compare
the local grid map with a part of line drawing
map composed of only visible lines to estimate the
likelihood (see Sec. V-C).

c) Resampling step. Resampling is performed by
draw with replacements using the normalized
weights as probabilities for particles.

B. Motion model

We calculate a new pose (xt
w, yt

w, θt
w) from the previous

pose (xt−1
w , yt−1

w , θt−1
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where (nx, ny, nθ) is the process noise. Currently, each ele-
ment of the noise estimate is independent of each other and
constant; the standard deviation of nx, ny , and nθ for the
movement of 1 [m] is set to 0.05 [m], 0.05 [m], and 1.0 [deg.],
respectively.

C. Likelihood calculation

The likelihood of each particle is given by the degree
of matching between the local grid map and the input line
drawing map with hidden lines removal. Using the position
of a particle, lines visible from that point are calculated and
mapped onto the local map using the pose of the particle.
The values in the local map are first summed up where the
mapped lines exist and then divided by the number of pixels
on the lines to calculate the averaged value, which is used as
the degree of matching.

Another approach to calculating the likelihood might be
extracting line features from the local map and to match them
with the line drawing map. We, however, do not take this
approach because a reliable segmentation of measured points
into boundaries and an accurate line fitting seem difficult due
to large stereo measurement errors.

VI. EXPERIMENTAL RESULTS

A. Experimental environment

Fig. 8 shows the experimental site in our campus and two
routes used. The buildings on both sides of the routes are
from two to eight stories high, although that information is not
written in the line drawing map. We moved the robot along the
routes using a Wiimote and took data for off-line localization.
The rough estimate of the initial position is given to the robot,
but the orientation is not.

Fig. 8. Route for the experiments.

B. Localization results

Figs. 9 and 10 show the results at several positions on the
red and the orange route in Fig. 8, respectively. Several factors,
in general, affect the degree of convergence of particles.
One is the distance to the surrounding buildings because
the uncertainty in stereo range data become larger for more
distant objects. Another factor is the existence of objects
obstructing building views. Although our building extraction
works reasonably well, it is not complete and uneliminated
stereo data degrade the localization quality.

In Fig. 9, particles are well converged because the robot
moves near the building on the left (see the red route in
Fig. 8). On the other hand, in Fig. 10, the particles diverge
more at many places because the route is in the middle of the
buildings and is near big trees (see the orange route in Fig.
8). Although the degree of convergence changes from place to
place, the overall localization ability is reasonable considering
the uncertainty in stereo data and building extraction.

We then performed localization using raw stereo data with-
out building extraction (see Fig. 6(c)). Fig. 11 shows the
results. Compared to those in Fig. 10, the localization accuracy
is much worse in places with trees (steps 5, 10, and 20). These
results show the effectiveness of building extraction in tree-
populated areas.

VII. DISCUSSION

A. Localization accuracy

Necessary accuracy in localization depends on the objective
of each mobile robot and its task. If the robot has to reach
a specific goal only by the navigation method like the one
presented in this paper, the accuracy should be, say, around
50 [cm]. This is a hard task with only stereo range data. Such
a high accuracy is not, however, necessarily required when we
view the navigation task hierarchically.

Let us consider the following scenario. The task of the robot
is to reach the entrance of some building. Then, a global-level
navigation takes the robot to the place where it can observe
the entrance, and a local-level navigation guides the robot
movement to there using visual feedback. Similar scenarios
can be applied to navigation in urban areas, where signboards
and logos of shops are used for final, precise localization.

In such a scenario, the navigation presented in this paper
corresponds to the global-level one, and the required accuracy
is not very high; a required accuracy is to assure that the robot



can observe the entrance after the global-level navigation. Our
proposed approach will suffice for this purpose.

Also note that even if a global-level navigation provides
very accurate positioning, it is still necessary to be combined
with some local scene recognition methods such as road and
obstacle detection. We are now planning to combine the local-
ization method presented in this paper with our multisensory
road detection method [9].

B. Map uncertainty

At present, line drawing maps are assumed to be almost
complete except that objects other than buildings are not
written. The current localization method relies on this com-
pleteness. On the other hand, people can navigate themselves
using hand-drawn maps which include many errors, omissions,
and sometimes large deformations. In [16], we defined four
key uncertainties usually included in hand-drawn maps: di-
mension, position, shape, and existence uncertainty. As far as
the amount of uncertainty is small enough, the current method
will probably work thanks to the MCL approach, but will not
for larger uncertainties, especially for existence uncertainties
(i.e., omission of many buildings in the map).

We sometimes use maps with drastic omissions of buildings,
but instead, we usually put additional landmark information
such as prominent buildings. It is therefore necessary to
improve the method to utilize such additional information in
localization.

C. Data acquisition cost and localization accuracy

Taking omnidirectional stereo data is certainly the most
costly part of the current system (about six seconds, at
present), although it provides fairly accurate stereo data thanks
to a well-calibrated stereo camera. Motion stereo for omni-
directional images can be used for obtaining point clouds,
while it may degrade the position data. It is also possible
to adopt various SLAM or visual odometry algorithms to
obtain reliable position data, but it is still important to extract
only information written in the map, as done by a view-based
classifier in this paper.

VIII. SUMMARY

This paper describes an outdoor localization method using
a stereo camera and a line drawing building map. We extract
stereo data from building using an SVM-based classifier to
be matched with visible building boundaries on the map.
The Monte Carlo localization approach provides a reasonably
good localization performance in spite of incomplete building
extraction and low quality stereo range data. Several future
research directions have also been discussed.
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(a) Step 0.

(b) Step 5.

(c) Step 10.

(d) Step 15.

(e) Step 20.

(f) Step 25.

(g) Step 30.

Fig. 9. Localization result for the red route in Fig.
8.

(a) Step 0.

(b) Step 5.

(c) Step 10.

(d) Step 15.

(e) Step 20.

(f) Step 25.

(g) Step 29.

Fig. 10. Localization result for the orange route
in Fig. 8.

(a) Step 0.

(b) Step 5.

(c) Step 10.

(d) Step 15.

(e) Step 20.

(f) Step 25.

(g) Step 29.

Fig. 11. Localization result for the orange route
in Fig. 8 without building extraction.


