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Abstract— This paper describes a human-robot collaboration
in assembly tasks. When a robot works as an assistant to the
user, timely supports from the robot is a key to realizing fluent
collaboration. The robot, therefore, has to be able to recognize
the current state of the assembly task and to choose assistive
actions accordingly. We develop a finite state machine-based
task model and a repertoire of visual routines for the task state
and human action recognition for a collaborative assembly of a
small table. The robot also generate verbal messages for keeping
the user informed of the status of the robot. We successfully
conducted collaboration experiments using our humanoid robot
assistant.

Index Terms— Human-robot collaboration, Task model-
based collaboration, Assembly tasks, Vision-based state esti-
mation.

I. INTRODUCTION

Personal service robots are expected to help people in
various scenes of their everyday life both in office and at
home. People often collaborate to achieve several tasks such
as jointly carrying a heavy item and constructing a large
structure together. Future robots therefore have to have an
ability to collaborate.

Suppose a robot helps a person who is doing a task which
is not easy to complete by himself/herself. It is important
for the robot to give its hands to him/her in a timely
fashion. Such a timely assistance entails the robot’s ability
to understand the intention of the person. There are several
ways of communicating intentions such as speech, gesture,
and action [1] and such intentions need to be interpreted
in the context of the collaborative task which they are
conducting.

Kimura et al. [2] developed a system which analyzes a
human demonstration to generate a set of assembly steps,
each of which is described by preconditions, operations, and
expected results. This knowledge is then used for invoking
assistive robot operations by referring to the visual recogni-
tion result of the current state. Lens et al. [3] uses a similar
rule-based expression of tasks.

Hanai et al. [4] developed a humanoid robot that can
collaborate with human in a pick and place task. The task of a
human and a robot is represented by a simple four-state state
transition model. The robot uses this model for predicting
human actions and generating an efficient, collision-free
robot hand motion with an appropriate timing.

Dominey et al. [5] developed a framework of interactive
task model construction and usage for anticipating human

actions in a collaborative assembly task. A speech-controlled
humanoid incrementally learns the sequences of verbal or-
ders from the user and user’s actions, which are used later
for collaborative robot actions. A simple list is used for
representing the task. They then extended the approach to
task learning not by an explicit speech-based orders but by
observing a collaborative task by human operators [6].

Hoffman and Breazeal [7] proposed a general framework
of cooperation among a human-robot team, which empha-
sizes social aspects of collaboration such as negotiation and
turn taking. They used a goal-oriented, hierarchical represen-
tation of tasks. Foster and Matheson [8] used an AND/OR-
tree for representing tasks in a task model-based robotic
verbal instruction for assembly. Nikolaidis and Shah [9]
proposed to use Shared Mental Models (SMMs), which have
been widely studied in human teamwork and coordination
analysis, for information sharing among robots and humans
in collaborative works. SMMs have a potential to be used for
modeling complex collaborative tasks. Clark [10] considers
the totality of communication including both gestural and
verbal activities, which could be more important in fluent
and effective human-robot interaction.

In this paper, we pursue a human-robot collaborative as-
sembly based on human action recognition; a robot observes
an action of the user to determine the status of the assembly
task and generates an appropriate assistive action. We also
consider the use of verbal messages for transferring the
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robot’s recognition results and intentions to the user for
keeping him/her informed of the status of the robot.

Task representation is one of the important issues here. In
order to cope with a variety of possible action sequences to
achieve a goal, we adopt a finite state machine (FSM) for
describing tasks. Each recognized user action is a trigger to
cause a transition from one state to another, together with
invoking an appropriate robotic observation or manipulation
action. To construct the task model, we analyze human-
human collaborations in an assembly task.

The task we deal with in this paper is the assembly of
a small table. We chose this task because it is not easy to
achieve it by a user alone and inherently requires a human-
robot collaboration. Fig. 1 shows our assistive humanoid,
HIRO (by Kawada Industry Co.) and the task. HIRO has two
6-dof arms with parallel grippers, a 1-dof waist, and a 2-dof
neck mechanism. HIRO is also equipped with a Kinect sensor
for recognizing parts states and human actions. Several
visual recognition routines are developed for realizing this
collaborative assembly.

The rest of the paper is organized as follows. Section
II explains our task model representation and a concrete
example for a small table assembly. Section III describes
visual routines for recognizing the state as well as human
actions. Section IV describes voice generation. Section V
describes the experimental results. Section VI discusses the
limitation of the current system and future work. Section VII
summarizes the paper.

II. TASK MODEL

A task model describes how a task is achieved by a
sequence of user and/or robot actions. A robot refers to it
to generate timely assistive actions to the user. Since the
assembly proceeds with changes of status of assembled parts,
it is natural to describe a task by a set of states which is
recognizable by the robot. We adopt a finite state machine
(FSM) for describing tasks.

This paper does not deal with a learning aspect of task
models. We instead develop a task model manually based on
the observation of human-human collaborative assembly.

A. Observing human collaborations

We observed several sequences of assembly of a normal
table by two persons. Fig. 2 shows one of the sequences.
We asked two students to assemble a table and gave no
specific instructions on how to collaborate, but they smoothly
collaborated, with sometimes switching their roles, to achieve
the task. Typical collaboration patterns observed are as
follows.

• Keep satisfying a necessary condition for continuing
an action. In Fig. 2(c), one (blue student) supports the
tabletop while the other (white student) is attaching a
leg to it. For the white student to continue to attach the
leg, the tabletop should stand still in a certain pose; this
condition is kept satisfied by the blue student.

• Satisfy a precondition for starting an action. In Fig.
2(b), one (blue student) pushes a leg to the other (white
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Fig. 2. An assembly sequence of a normal table by two persons (1st
scenario). (a) They talk about their respective roles. (b) One pushes a leg
to the other. (c) One is attaching a leg while the other holds the tabletop.
(d) Switching the roles. (e) Turn the tabletop together. (f) Attach the other
legs. (g) End of the task.
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Fig. 3. Another assembly sequence of a normal table by two persons (2nd
scenario). (a) They talk about their respective roles. (b) One is attaching a
leg while the other holds the tabletop. (c) Continue the same for the next
leg. (d) Switching the positions while keeping the roles. (e) Attach the other
legs. (e) End of the task.

student) so that the white student can start attaching it
to the tabletop.

• Joint manipulation. In Fig. 2(e), two students manipu-
late the table top in a coordinated way to rotate it.

Fig. 3 shows the sequence by another pair of students. In
this sequence, the table is assembled in the same order as the
previous one, but two students switch their positions while
keeping their roles unchanged (see Fig. 3(d)).

Note that both sequences have a phase where two students
negotiate about respective roles before starting the assembly.
Although such a phase is really important for an effective
and fluent collaboration, we do not deal with it in this paper.

Considering the robot’s ability of object handling, we deal
with the first two of the above collaboration patterns in task
modeling.

B. Finite state machine representation

An FSM is defined by a set of states and state transitions.
To model multiple possible consequences from one state,
we adopt a Mealy machine, which is one type of finite state
machines whose output values are determined both by its
current state and input.

The task proceeds with state changes caused by user and/or
robot actions. We consider two types of states: static and
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Fig. 4. Symbolic explanation of state descriptors. (a) The number of
attached legs and positions. (b) Whether the robot holds the tabletop. (c)
Whether the user holds the tabletop. (d) Whether the user is attaching a leg.
(e) Whether the user is manipulating the tabletop. (f) Whether the robot is
estimating the poses of the legs on the work table.

dynamic. Static states are the ones representing the state of
the assembly, that is, the states of assembled parts and their
relationships.

Dynamic states are the ones representing ongoing user or
robot actions. This type of states is actually not a state of the
assembly in a narrow sense, but is useful for recognizing the
completion of user actions. Since the states of the assembled
parts are sometimes hard to observe while the user is doing
some action due to occlusion, detecting the end of such an
action provides a good timing for calling the routine for
recognizing the result (i.e., change of the static state) of the
action.

C. Properties for describing tasks

State descriptors shown in Fig. 4 are prepared to represent
each state of the task. There are three descriptors, for
describing static states: (a) how many legs are attached to the
tabletop and where, (b) whether the robot holds the tabletop,
and (c) whether the user holds the tabletop. There are also
three descriptors for describing dynamic states: (d) whether
the user is attaching a leg, (e) whether the user is rotating the
tabletop, and (f) whether the robot is estimating the poses of
legs on the work table.

D. Task model for small table assembly

Fig. 5 shows a scenario of human-robot collaborative as-
sembly of the small table, which is achievable by the current
system and can be described using the above descriptors.

The assembly proceeds as follows: (a) the user put a
tabletop on the work table and then the robot holds it; (b) the
user attaches a leg while the robot is holding the tabletop; (c)
after the user attaches two legs at one side of the tabletop,
the robot releases the hand for the subsequent user action;
(d) the user rotates the tabletop so that he can attach the
remaining two legs, and the robot holds it again; (e) when a
leg on the work table are far from the user, the robot pushes
it to him; (f) the assembly finishes when all legs are properly
attached.

Based on this scenario, we developed an FSM representing
the small table assembly task. Fig. 6 shows the first part of
the whole assembly graph. When the system in invoked, it
starts recognizing the user’s rotating action (which is actually
an action of putting the tabletop on the work table). Once
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Fig. 5. Collaboration scenario. The red student takes the role of the robot.
(a) The user put a tabletop and the robot holds it. (b) The user attaches a
leg. (c) The robot releases the hand. (d) The user rotates the tabletop and
the robot holds it again. (e) The robot passes a leg to the user. (f) The end
of assembly.
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Fig. 6. A part of the small table assembly task model.

the action finishes (i.e., hand motion stops), the system starts
to estimate the pose of the tabletop and calculate the grasp
point. If the grasp point is obtained, the robot moves to grasp
it. If not due to, for example, a bad position of the table
top, the system notifies it to the user, and goes back to the
recognition of the rotating action. If the grasp is successful,
the system continues to do further actions. Otherwise, it goes
back to the first state.

The whole task model has 36 states and 53 edges (see
Fig. 7). Each state transition is specified by a pair of an
input and an output. Each output leads to the invocation of a
recognition or manipulation action of the robot, while each
input corresponds to the completion of such an action.

Many of transitions (i.e., edges) are associated with the
system’s recognition of user actions. The details of the
recognition procedures will be described in the next section.
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Fig. 7. The task model used. The complete model is shown inside the
upper-right dashed box. The first half of the model (green part, attaching first
two legs) is described in detail. Blue, green, and red descriptions indicate
triggers (inputs) of state transition, invoked recognition actions, and invoked
manipulation actions, respectively.

(a) High probability regions. (b) Tracked hand regions.

Fig. 8. Color-based hand tracking.

III. STATE RECOGNITION FUNCTIONS

A. Recognizing hands

Tracking hands is important for understanding user actions
in collaborative assembly tasks. It provides information on
whether a user action is going on and where it is.

We use a colored glove for simplifying the hand detection
and tracking. An HSV color histogram is learned as a model
of the hand color in advance and is used for tracking using
the OpenCV [11] implementation of CAMSHIFT algorithm
[12]. Tracked regions larger than some threshold are judged
as hand regions. Fig. 8 shows a hand tracking result.

Fig. 9. Estimate the tabletop pose and calculate grasp points.

B. Recognizing a plane

Plane detection is used for recognizing the work table and
for estimating the pose of the tabletop. The largest plane in
the camera view is first detected from a point cloud using a
PCL plane detection function [13].

In estimating the pose of the tabletop, The 3D points
inside the detected plane is mapped onto the 2D image to
find boundaries using a Hough transform. These detected
boundaries are then backprojected to 3D to determine the
3D boundary lines, which are then used for pose estimation,
combined with the knowledge of the shape and the size of
the tabletop.

Candidates for grasp points are also given in advance. Fea-
sible grasp points are calculated considering the kinematics
of the robot and the hand position. If no feasible grasp point
is obtained, this recognition module reports a failure so that
the user will put the tabletop at another position (see Sec.
II-D). Fig. 9 shows an example of tabletop pose estimation
and grasp point calculation. The estimated tabletop pose is
superimposed in red. Two feasible grasp points are calculated
and the nearer one to the robot is selected (blue one).

C. Recognizing table legs

A general block recognition module is used for recog-
nizing the legs of the table. This module applies an ICP
(Iterative Closest Point) [14]-based pose estimation algorithm
to a 3D point cluster extracted from the scene. This extraction
utilizes the knowledge of the supporting plane, which is
either the work table or the tabletop, depending on the current
state.

The robot counts the number of legs on the work table,
as a part of recognition of the user’s attaching action; if
the number is smaller by one from the previous state, the
robot concludes that the user picked up one for the current
attaching action. The work table is the supporting plane in
this case (see Fig. 10, (a) and (b)).

To verify a leg is certainly attached to the tabletop after the
user’s attaching action, the block recognition module focuses
on the area where the hand was moving in order to detect a
leg there. In this case, the tabletop becomes the supporting
plane (see Fig. 10, (c) and (d)).

IV. GENERATING VERBAL MESSAGES

Partner’s status and intentions are important information
sources for collaboration. Verbal communications are often
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Fig. 10. Estimation of leg pose: (a)(b) legs on the work table. (c)(d) a leg
attached to the tabletop.

used for transferring such information in human-human
collaborations. We observed several instances of verbal com-
munication in the analysis shown above (see Figs. 2 and 3).

It is, therefore, useful for the user to get verbal messages
from the robot describing robot’s status and intentions such
as how it recognizes the scene (state description) and what
it is going to do (action explanation).

State description messages are for describing the current
state thereby telling the user that the assembly process is
going on properly. Example messages are: “Two legs are
attached,” “I am holding the tabletop,” and “You are attaching
a leg.”

Action explanation messages are for notifying the user
what the robot is doing or is going to do, both in robot
motion and scene recognition. Messages for robot motions
are precautions to the user just before the robot moves;
examples are “I’m going to hold the tabletop” and “I will
pass a leg to you.” Messages for scene recognition are for
notifying the user what the robot is trying to recognize and
how the recognition results are. Since recognition is a silent
action and often takes some time, delivering such messages
are useful for the user. It is also effective to ask the user to
do some recovery action when the recognition fails. Example
messages are: “I found legs on your side,” and “I recognize
the end of your attaching action. I will verify the attachment.”

We use OpenHRI [15] as a speech synthesis engine.

V. EXPERIMENTAL RESULTS

We implemented the software modules explained above
and other tools such as FSM management and robot con-
trol. These modules and tools are implemented using RT-
middleware [16], which supports a modularized software
development.

We performed collaborative assembly experiments several
times, with a slightly different order of legs to attach.
The user and the robot succeeded in completing the table
assembly task. Figs. 11 and 12 show two example sequences
of successful assembly.

It took about five and six minutes for completing the
task in the first and the second sequence, respectively. The
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Fig. 11. Snapshots of sequence 1. (a) The user put the tabletop on a work
table, and the robot estimates its pose and determines the grasp point. (b)
The user is attaching a leg while the robot holds the top of the tabletop.
(c) Pose estimation of the attached leg. (d) The user is attaching the second
leg. (e) Th robot released the hand and the user is rotating the tabletop. (f)
The robot selects the grasp point on the side of the tabletop. (g)(h) The user
is attaching the third or the fourth leg. (i) The assembly is completed.

differences between the sequences are the order of attaching
four legs and whether the robot generated an action for
passing a leg to the user. These differences occur due to
different user’s plans or different initial states, and result in
different paths to take in the finite state machine.

VI. DISCUSSION

We have realized human-robot collaborative assembly of a
small table using an FSM-based task model and scene recog-
nition and action planning capabilities. The current system,
however, has several problems/limitations which should be
overcome when applied to more general and complex tasks.

The task model is currently hand-made. We analyzed the
human-human collaborations, designed the work flow, and
constructed the task model by considering the current ability
of the robot. This way of task modeling is time consuming
and is not scalable, and a constructed model can deal with
only a limited portion of possible scenarios, even for a
relatively simple task treated in this paper. The use must be
careful to be within that portion. Programming by demon-
stration approaches (e.g., [17], [18]), which automatically
generates task models by observing human demonstrations,
can be adopted. When applied to robot-human collaborative
tasks, however, more focus should be on what actions and
communications are essential in establishing the collabora-
tion.

The current scene recognition routines have also limita-
tions. They usually take time to get the results, so the user has
to wait for the end of a recognition action of the robot before
taking the next action. The recognition ability itself should
also be improved; recognition of various objects in various



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 12. Snapshots of sequence 2. (a) The user put the tabletop on a work
table, and the robot estimates its pose and determines the grasp point. (b)
The user is attaching a leg while the robot holds the top of the tabletop. (c)
Pose estimation of the attached leg. (d) The user is attaching the second leg.
(e) Th robot released the hand and the user is rotating the tabletop. (f) The
robot selects the grasp point on the side of the tabletop. (g) The robot holds
the tabletop. (h) The robot estimates the pose of legs on the work table,
and picks up one of them. (i) The robot places the leg at a near position
to the user. (j)(k) The user is attaching the third and the fourth leg. (l) The
assembly is completed.

conditions (e.g., viewpoints and illumination conditions)
need to be realized to cope with a wider variety of tasks.

Integration of verbal and action-based communication
should also be investigated. The timing and the contents
of the current verbal messages are determined manually,
without considering the status of the user. More dynamic,
on-line generation of effective verbal messages are desirable.
It is also important for the robot to actively inquire about
knowledge on the task [19] and/or the user’s status, for
incrementally acquiring/refining task models, through verbal
communication.

VII. SUMMARY

Human-robot collaborative assembly is one of the interest-
ing research fields in HRI. In this paper, we have described
our assistive humanoid robot that can support the user in a
collaborative way. The keys to realizing such a collaboration
are an FSM-based task model and an elaborated set of visual
recognition routines for state transition detection. Verbal
messages are additionally used for notifying the user the
status of the robot and the assembly task. We successfully
conducted preliminary experiments on collaborative assem-

bly of a small table. We have also discussed the current
limitation of the system and future research directions.
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