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Abstract— Programming by demonstration (PbD) has been
one of the promising approaches to robot programming, where
a robot learns how to operate by observing human demonstra-
tions. While most of existing PbD research dealt with single-
agent tasks, this paper deals with collaborative tasks, in which
a robot and a human collaborate to assemble a structure by
coordinating their operations. The system has three parts:
demonstration observation parts, task modeling parts, and
task execution parts. A scene recognition system is developed
for reliable action recognition in human demonstrations. The
developed PbD system has successfully been applied to a
collaborative assembly tasks with more than twenty assembly
steps.

Index Terms— Programming by demonstration, collaborative
assembly, humanoid.

I. INTRODUCTION

Service robots are expected to support people in various
scenes of their everyday life in factories, in offices, and
at home. People often collaborate to achieve tasks such
as jointly carrying a heavy item and constructing a large
structure together. Such a collaboration capability is one of
the necessary functions of future robots.

One of the keys to a smooth collaboration between a
human and a robot is a common understanding of the task
to perform. For a robot to collaborate effectively, such an
understanding needs to be represented explicitly as a task
model. Kimura et al. [1] used a rule-based representation
in which preconditions, operations, and expected results
of assembly steps are described. Referring to the visual
recognition result of the current state, an appropriate rule is
selected for the robot’s assistive action generation. Lens et al.
[2] used a similar rule-based representation. Hanai et al. [3]
used a state transition-based task model for predicting human
actions. The robot can generate an efficient and collision-free
hand motion based on the prediction.

We have previously developed a robot system that can
assist a human to do an assembly task [4]. We proposed to
use an FSM (finite state machine)-based task model, which
is suitable for representing tasks with multiple feasible action
sequences. Referring to the task model, our robot was able
to perform assistive actions in a timely fashion. In this work,
however, the task model was constructed manually and given
in advance to the robot.

One promising way of teaching knowledge to robots
is programming by demonstration (PbD) or teaching by
showing, in which a human teacher just demonstrates a task

and a robot observes it to make a task model [5]. Previous
works can be divided into task-based [6], [7], [8] and motion-
based [9], [10], [11]. The former assumes an observation
system for extracting symbolic descriptions of the scene and
represents a task model as a sequence of symbolic primitives,
while the latter directly records motion trajectories of human
or robot and/or generates models for robot control. Ogawara
et al. [12] took a hybrid approach that both symbolic and
trajectory-level representation are combined. These works
deal with PbD for single-agent tasks.

Dominey et al. [13] developed a framework of interactive
task model construction and usage for anticipating human
actions in a collaborative assembly task. A speech-controlled
humanoid incrementally learns the sequences of verbal or-
ders from the human and his actions. The learned task is
represented as a simple list of actions. In [14], they extended
the approach to task learning not by explicit verbal orders but
by observing a collaborative task execution by humans. Rozo
et al. [15] developed a PbD system for impedance model
acquisition in collaborative object handling. These works
deal with a simple assembly task or motion-level learning.

The goal of this research is to develop a system which
learns task knowledge from human demonstrations of collab-
orative assembly and reproduces the same task in a human-
robot collaboration scenario. The task we deal with is an
assembly of a small chair model; this task includes more
than twenty assembly steps. Our robot assists a human when
he executes steps which are not easy to do only by himself.
The task knowledge is, therefore, for the robot to recognize
the current situation and to judge if an assistive action is
necessary. Visual scene recognition routines are developed,
which are used both for human demonstration recognition
and for scene recognition by the robot in a human-robot
collaborative assembly.

The rest of the paper is organized as follows. Sec. II
describes an overview of the system. Sec. III explains an
FSM-based representation of collaborative tasks. Sec. IV
describes a setup and functions of a vision-based human
demonstration observation system. Sec. V explains the pro-
cess of generating a task models from a set of observed data
of human demonstrations. Sec. VI shows experimental results
of human-robot collaborative assembly based on acquired
task models. Sec. VII discusses remaining issues and future
work. Sec. VIII summarizes the paper.
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Fig. 1. Configuration of a programming-by-demonstration (PbD) system
for collaborative assembly.
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Fig. 2. The chair assembly task.

II. SYSTEM OVERVIEW

Most programming by demonstration (PbD) systems have
three main parts (see Fig. 1). The observation part (left)
observes human demonstrations and recognizes what actions
are performed in what order. The task modeling part (center)
examines the recognition results and organizes them into task
models. The execution part (right) executes the same task
using the acquired task model. A task model is usually an
abstracted description of the task, which can cope with the
difference of the scene between the demonstration and the
execution phase (e.g., different locations of objects) as well
as the difference in configuration of a human and a robot.

The human demonstration observation system is equipped
with four RGB-D cameras (MS Kinect), two of which
observe the objects in the scene while the others mainly
observe human action. This system generates a sequence of
states and actions in the demonstration, which is then fed to
the task modeling part.

The task modeling part gets a set of demonstration se-
quences and merges them into an FSM (finite state machine)-
based task model, which allows multiple possible assembly
sequences for a task. The task model is for the robot, not for
the human; the task model gives the robot how the assembly
steps proceed and how the human does actions in these step,
thereby enabling the robot to know when and what assistive
actions it should do.

The task execution system realizes collaborative assembly
tasks by a human and a humanoid robot. The robot observes
human actions and automatically determines when and what
to do, with referring to the generated task model.

Fig. 2 shows the assembly task treated in this paper. The
task includes steps for fastening a bolts with a leg or a
stem. We usually use both hands for such a step and another
hand is needed for holding the part to which the leg or the
stem is attached. Since our robot currently has a limitation
on executable operations in the assembly tasks, that is, it
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Fig. 3. Symbolic explanation of state descriptors. (a) The number of
attached legs and positions. (b) The number of attached stems and positions.
(c) The number of attached bolts for fixing the backrest. The numbers on
the top indicates the number of attached corresponding parts. (d) Whether
the robot holds the seat/backrest. (e) Whether the human holds the seat.
(f) Whether the human is attaching a leg. (g) Whether the human is
manipulating the seat/backrest. (h) Whether the robot is estimating the poses
of the legs on the work table.

can perform only pick-and-place and holding operations, the
roles of two persons in demonstration are fixed in advance;
PersonR for the robot role does only holding actions to be
executed by the robot in the execution phase and PersonH
for the human role does the rest.

III. TASK REPRESENTATION

Finite state machine (FSM) is defined by a set of states
and state transitions and suitable for representing flow with
multiple paths. We, as a representation of our task model, use
a type of FSM, whose output values are determined both by
its current state and the detected event. We adopted this type
of FSM in our previous work on realizing a human-robot
collaborative assembly task [4]. This section briefly explains
the representation. In this work, we added a few descriptors
to the previous ones to cover a larger variety of assembled
parts.

A task execution proceeds with state changes caused by
human and/or robot actions. Fig. 3 shows the state descriptors
used in this paper. There are five descriptors for static states,
that is, the states those which are related to parts status:
(a)(b)(c) how many legs/stems/bolts are attached and where,
(d) whether the robot holds the seat/backrest, and (e) whether
the human holds the seat/backrest.

There are also three descriptors for describing dynamic
states, that is, the states those which are for representing
ongoing human actions: (f) whether the human is attaching a
leg/stem/bolt, (g) whether the human is rotating the seat, and
(h) whether the robot is estimating the pose of legs/stems on
the work table. Explicitly representing such dynamic states
is necessary because the states of some assembled parts are
sometimes hard to observe due to occlusion by hands, and
detecting the end of an action may provide a good timing
for calling the routine for recognizing the result of the action
(i.e., a change of a static state).

Fig. 4 shows a part of the obtained task model for chair
assembly, illustrating a sequence of state transitions shown
by the images on the left. A state transition is specified by
the detection of an event with the corresponding hand and
recognition action.
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Fig. 4. A part of the chair assembly task model. Inputs (blue) to the FSM
are detected static or dynamic states. Outputs are the start of hand action
(red) or recognition action (green).
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Fig. 5. Observation system with four Kinects.

IV. OBSERVING HUMAN DEMONSTRATIONS

Observing human demonstrations is composed of (1)
recognition of object and human actions and (2) generation
of state transition descriptions. This section describes our
observation system and these recognition functions.

A. Observation system

Fig. 5 illustrates the observation system, which is com-
posed of four RGB-D cameras (MS Kinect). Two of the
cameras are for observing human actions while the others
for detecting objects and estimating their poses. The figure
also shows images of a collaborative assembly captured by
the four cameras. We use the Shake’n Sense technology [16]
to eliminate interference between cameras.

We use two PCs, each of which handles two cameras.
Time stamp information is added to data from each camera,
which comes from the connected PC. To synchronize the two
PCs, we manually detect the images capturing an event (e.g.,
turning on an LED light) and examine the difference between
time stamps of respective PCs. Geometric calibration is also
done using a standard OpenCV calibration routine using a
checker board.

We have designed image processing routines for recog-
nizing states, which are described by object states and hand
states. The following subsections explain these routines.

B. Object detection and pose estimation

The objects treated in this paper are large flat boards (seats
and backrests), small long blocks (legs and stems), and bolts

(a) largest plane detection (b) line fitting to the boundaries (c) pose estimation

Fig. 6. Pose estimation of a seat.

(a) input image. (b) extraction of point cloud 
      near the tabletop.

(c) four detected legs 
     (colored point clouds).

Fig. 7. Detection of legs attached to the seat.

(see Fig. 2). We prepare routines for detecting respective
objects. The detection is based on a plane extraction and a
size filtering. We also prepare a routine for estimating pose of
a seat or a backrest because their poses are useful for setting
a region of interest (ROI) for detecting attached legs, stems,
and bolts. The models of all objects are given in advance.

Fig. 6 shows the process of detection and pose estimation
of a seat: detection of the largest plane, fitting of boundary
lines, and the estimation of the seat. Fig. 7 shows the process
of detection of four legs attached to the seat: detection of the
seat, extracting point clouds nearby, and plane detection and
matching with the leg model.

C. Human motion detection

Human motion is detected using the skeleton tracking
function of the Kinect Windows SDK. From the skeleton
data, hand position is extracted and used for interpreting
human actions, as explained below. The position data is
converted to the world coordinate system on the workspace
using the calibration data.

D. Generating state transition descriptions

1) Event sequence-based action recognition: The task of
observation system is to generate state transition descriptions
from RGB-D and skeleton data. Dynamic states and state
transitions are associated with the corresponding human
actions. Since it is sometimes difficult to continuously track
hands and objects and/or recognize actions due to frequent
occlusions, we develop a specialized routine for each dy-
namic state or each state transition; each routine verifies
a predefined sequence of human action events and object
detection events. We here present two examples of such
routines. Routines for other actions are prepared in a similar
way.

Action “PersonH picks up a leg” is detected by verifying
events in the following three steps (see Fig. 8):

1) The hand of PersonH approaches a leg position on the
work table and then moves away from it.
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Fig. 8. Pick up a leg on the work table.
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Fig. 9. Detection of legs attached to the seat.

2) Detect the number and the pose of legs on the work
table.

3) If the number of legs is smaller than the one before the
hand movement, PersonH is considered to have picked
up a leg. Otherwise, no action was performed.

Action “PersonH attaches a leg to the seat” is detected
by verifying events in the following three steps under the
condition that PersonH picks up a leg (see Fig. 9):

1) The hand of PersonH (with a leg) approaches the seat
and then moves away from it.

2) Detect the number and the pose of legs attached to the
seat.

3) If the number of legs is larger than the one before
the hand movement, PersonH is considered to have
attached a leg to the seat. Otherwise, no action was
performed.

2) State transition descriptions: Event detection is per-
formed every five frames. Based on a detected event, the
observation system chooses appropriate detection routines
and watches possible subsequent events. Once an action is
detected, it is recorded on the list, and the final complete list
is output for further processing.

V. TASK MODEL GENERATION FROM OBSERVED DATA

A. Merging multiple sequences into one task model

Observed action sequences may be different from each
other in the order of executed actions. When attaching two
stems to the seat at different positions, for example, the order
of attaching the two legs is not important; either leg can
be attached first. Since we do not tell the demonstrators
an exact sequence of assembly steps, different sequences
may be observed in multiple demonstrations. It is there-
fore necessary to merge all observed sequences into one
task model. Dufay and Latombe [17] deals with such a
merging problem by an inductive learning approach. They
generated a graph-based task model which uses sensor-level
decisions. We here deal with a merging of symbolic level
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Fig. 10. Merging sequences using LCS. Red nodes are the ones included
in the extracted LCS.

action sequences. Nicolescu and Matarić [18] proposed a
general framework of combining several natural methods
in task learning: demonstration, generation, feedback from
teacher, and practice. In the generalization step, they propose
to use longest common subsequence (LCS) [19]. An LCS
is the longest sequence of symbols which appear in the
same order in multiple input sequences. This is useful for
extracting common symbols which might be merged for a
compact representation. Abbas and MacDonald [20] show an
algorithm to generate a consistent task graph by combining
all demonstrated sequences at once.

We also use LCS for merging observed demonstrations.
We, however, additionally examine the generated graph and
exclude sequences which have not been observed, since such
a sequence might not be feasible.

B. LCS-based merging and modification
Fig. 10 shows an example of sequence merging using LCS.

From two input sequences (a) and (b), the LCS: A → B →
F is extracted. The symbols in the LCS in both sequences are
merged and the final graph (c) is generated, which includes
the two input sequences.

A merged task model often covers sequences which have
not been actually observed. Such a generalization might be
useful; the model can be applied to unknown, new cases.
At the same time, however, it might include an unfeasible
sequence. Let us consider the example shown in Fig. 11.
From two input sequences (a), a merged model is generated
(b). Although both input sequences include actions C and E
only once, the merged model allows executing either action
twice. If both C and E are necessary for this assembly (e.g.,
attaching legs to two different positions), the merged model
includes feasible action sequences.

To solve this problem, we take an approach that only
observed sequences are included in a merged model. Un-
observed sequences are excluded as follows:

1) Find a consecutive action subsequence, to which and
from which multiple paths exist (e.g., action D in Fig.
11(c)).

2) Collect actions connected to the subsequence (e.g., ac-
tions C and E before and after action D in Fig. 11(c))
and check if all possible paths have been observed.

3) If yes, do nothing for this subsequence. If no, make
the same subsequence so that the number of the
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Fig. 11. Excluding unobserved sequences from the merged model.

subsequences is equal to that of incoming paths (e.g.,
green-colored action D in Fig. 11(d)).

4) Examine the output side of the subsequence and ex-
clude unobserved paths (Fig. 11(e)).

C. Adding a loop for coping with recognition/manipulation
failures in execution phase

Task models are generated from human demonstrations.
Since humans usually do not fail in scene recognition and
object manipulation, the generated models initially do not
include so-called error recovery routines. The robot is, how-
ever, not as versatile as humans at this moment and some
recovery routines are necessary for reliable robot execution.
We therefore add feedback loops to retry recognition and
motion planning operations which are known, from our
experiences, to sometimes fail; we add retry loops at part
pose recognition and grasp point calculation.

VI. HUMAN-ROBOT COLLABORATIVE ASSEMBLY USING
ACQUIRED TASK MODELS

We use a HIRO humanoid robot by Kawada Co. for
human-robot collaborative assembly. The robot uses one
Kinect for recognizing objects and human hand actions.
The visual recognition routines are similar to those used in
observing human demonstration but some modifications were
made considering a different configuration of the robot’s
vision system (i.e., one Kinect at the head position).

We conducted PbD experiments for the chair task. For
each task, two persons demonstrated collaborative assembly
twice, and the system learned a merged task model. The
obtained task models are then tested using the human-robot
collaborative assembly system. We here show only the results
for the chair task due to a space limitation.

Fig. 12 shows the merged task model learned from the ob-
servation of two demonstrations. Nodes indicate object state
and hand states, while edges indicate transitions triggered by
detected events and associated hand or recognition actions.

Using the task model, we conducted the human-robot
collaborative assembly of chair twice. Table I summarizes the
two experiments. The assembly paths for these experiments
are different at many places in the task model with multiple
options exist. The robot with the acquired task model can
cope with such different human choices thanks to the FSM-
based task representation. The times for completing the task

are different for the two experiments. This is due to a larger
number of trials in scene recognition in the first experiment;
the robot tries to recognize the scene several times until one
of the expected situations is detected, especially in the loops
added to cope with recognition failure (see Sec. V-C).

VII. DISCUSSION

The current system is a first step towards more versatile
PbD system for collaborative assembly. Many research chal-
lenges remain to be tackled.

In the current setting, the roles of robot and human in col-
laborative assembly are fixed beforehand and, therefore, the
human demonstrations are performed considering those roles.
This is due to the limitation of robot’s manipulation capabil-
ity. The acquired task model itself can, however, basically be
applied to the situation when the current human and the robot
roles are exchanged. Moreover, more flexible breakdown of
actions would be possible. Implementing various skills on
the robot to cope with such flexible collaboration is one of
future work. Application to robot-robot collaboration would
also be interesting.

Our current system and most of existing ones take a so-
called batch approach. That is, the demonstration/observation
phase, the task modeling phase, and the execution phase
are sequential, as shown in Fig. 1. Usual human-to-human
teaching scenarios are, however, more interactive. During the
demonstration of a teacher, a learner may have a question on
some demonstration steps or ask the teacher to show some
steps more clearly. Even in the execution phase, the learner
may ask questions to make the model be more precise. Such
an interaction will enhance the PbD approach more effective.

Currently we assume a complete set of recognition rou-
tines for generating a symbolic description of the scene and a
set of state descriptors are given in advance. This is actually
a strong limitation when extending the system to include
a more variety of tasks. While improving the recognition
ability is certainly necessary, other approaches would also be
interesting such as unsupervised learning for action labeling
[21].

VIII. SUMMARY

This paper has described a Programming by Demonstra-
tion (PbD) system for collaborative assembly. We developed
a PbD system which observes human-human collaborative
assembly demonstrations, generates task models using an
FSM-based representation, and controls the robot to support
human-robot collaborative assembly. The system has been
successfully applied to assembly tasks with more than twenty
action steps. Current limitations and future work are also
discussed.
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Fig. 12. The chair task model learned from two demonstrations.

TABLE I
SUMMARY OF HUMAN-ROBOT COLLABORATIVE ASSEMBLY EXPERIMENTS.

Exp. id Order of attaching legs Order of attaching stems Order of attaching bolts execution time (sec.)
1 lower right→upper right→upper left→lower left right→left right→left 820
2 upper right→lower right→lower left→upper left left→right left→right 642
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