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Abstract— This paper describes a view-based wearable per-
sonal navigation system. We have been developing a view-based
outdoor localization method which has been proven to be robust
to changes of weather and seasons and can be operational
even when sufficient GPS signals is not available. The system
is composed of a fish-eye camera, an accelerometer, and a
mobile PC. The camera is worn in a pendant-like manner
and its wide view is effective in coping with the swinging
motion of the camera during walking. The accelerometer is
used for estimating the walking speed, based on which the
user location can be predicted on-line. A Markov localization
method repeatedly estimates the user location and generates
navigational voice guidance. The system has been tested in our
campus to show its effectiveness.

Index Terms— Personal navigation, View-based navigation,
Inertial motion estimation.

I. INTRODUCTION

Navigating people is one of the promising areas to which
robotic technologies can be applied. GPS-based navigation
systems have been widely used for vehicle navigation [1].
Recent portable devices such as tablets and smartphones
also utilize GPS for localization and navigation of people.
GPS signals are, however, not always available especially
near tall buildings (see Fig. 1 for example data for GPS-
based positioning availability). An accurate digital map with
annotations is also necessary for GPS navigation.

Dead reckoning using inertial sensors can provide a rea-
sonable motion estimation but it suffers from drift problems.
It is, therefore, necessary to compensate it with some ab-
solute location information such as GPS, RFID-tags, and/or
image-based landmarks [2], [3], [4].

Vision is one of the informative sources for locations, and
recent advances in visual learning techniques have led to
development of view-based localization approaches (e.g., [5],
[6]). Some works have shown their robustness to changes
of weather and/or seasons (e.g., [7], [8]). In this paper, we
adopt such a view-based localization method, especially the
one using a two-stage SVM-based reasoning strategy [9], as
a basis of the personal navigator.

Fig. 2 shows an overview of the developed personal
navigator. A fish-eye camera is mounted on a metal plate,
which is hanged by a rope like a pendant. This metal plate
is long enough to touch the body with a large area so that the
swinging motion of the camera is reduced. An accelerometer
is attached to the user body to roughly estimate the user
speed. All sensor data processing is done by a notebook PC.
The user is navigated by voice guidance.

Fig. 1. Availability of GPS positioning. Position data were taken along
the route shown by the orange dashed line and white marks indicate the
locations where the GPS positioning was available. Many black spots exist.
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Fig. 2. Hardware configuration.

The rest of the paper is organized as follows. Sec. II briefly
explains the view-based localization method on which the
developed system is based. Sec. III describes how to choose
the best view from a fish-eye image. Sec. IV a walking
speed estimation using an accelerometer for on-line state
prediction. Sec. V explains how to navigate the user by
voice guidance. Sec. VI shows experimental results. Sec. VII
summarizes the paper and discusses future work.

II. VIEW-BASED LOCALIZATION

A. Overview of the view-based localization method

View-based localization typically works as follows. During
the training phase, an image sequence along a route is ac-
quired. In the subsequent navigation phase, input images are
compared with learned ones to determine locations. The most
difficult part of this approach is finding the most appropriate
internal representation and an appropriate learning algorithm
which is capable of generating this internal representation.

Our view-based localization method takes a two-stage
SVM approach [9]. The object recognition SVMs classify
windows in the image into several object categories such as
the sky and trees. The output of the first-stage is a 0 − 1
state vector describing the existence of each object at each
window. This state vector is then used by the second-stage
localization SVMs for discriminating one location from the
others.
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Fig. 3. Transition model.

Fig. 4. Localization examples [9]. The upper row indicates input images
and the lower row output images (i.e., best matched images in the training
images). The training images were taken on a sunny summer day; the input
images were taken on (from left to right) a rainy summer day, a sunny
summer evening, and a cloudy winter day, respectively.

We select a set of discrete locations on a route and train
one localization SVM for each location; the localization
is, therefore, to determine on which location the robot or
the user is. To increase the reliability of localization, we
adopt the Markov localization approach, by which not a
single location but a probabilistic distribution over possible
locations is estimated.

Markov localization alternately performs prediction and
correction [10]. The prediction step is done by:

B̂el(l) =
∑

l′
P (l|l′)Bel(l′), (1)

where Bel(l) and B̂el(l) are the belief that the user is at lo-
cation l before and after the current observation, respectively.
P (l|l′) is the state transition model which predicts possible
future locations from a current location. Fig. 3 shows an
example model used for vehicle localization [9].

The correction step is done by:

Bel(l) = αP (o|l)B̂el(l), (2)

where P (o|l) is the likelihood of location l given observation
o and calculated based on the similarity of the object
placements between the input and the corresponding model;
α is a normalization constant.

Fig. 4 shows some results of our view-based localization.
We can see that, in spite of view changes, correct images are
retrieved.

B. Selection of locations

Discrete locations for which localization SVMs are trained
can be placed arbitrarily on the route. We basically put
locations at a regular interval but take a more care for the
corners and the goal because specific navigational guidance
should be made for such places.

Start and goal location Other locations

Route for training Selected locations for localization

Entrance to corner

Fig. 5. Selection of locations for localization.

Fig. 5 shows the process of selecting locations. Given an
image sequence taken along a route, we first segment it into
almost straight route segments. This is done by calculating
optical flow and identifying turning motions at corners where
large horizontal optical flow is observed. For each route
segment, we set one location at its end, and others at a
regular interval (currently, about 10 [m]) backwards from the
end location. Circles in Figs. 13 and 14 show examples of
automatically selected locations.

Additional information is attached to each location which
will be used in verbal guidance. For the endpoint of each
segment, we describe whether it is the goal, and the turning
direction (left or right) in the case of corners. For other
locations, we describe the number of steps to the next end,
which provides how near that location is to the end.

C. Issues when applied to people navigation

Our view-based localization was originally for
robot/vehicle navigation. Impotant characteristics of
robots and vehicle are: (1) the viewing direction during
motion is relatively stable; (2) the robot speed can be
controlled; (3) navigation information can directly be
transferred to the robot.

In the case of personal navigator, where the user hangs a
camera, we cannot expect these characteristics; that is:

(1) The viewing direction may vary largely due to the
swinging motion of the hanged camera or change of
the user’s walking direction.

(2) The user may change walking speed or even stop for a
while. A fixed state transition model is not appropriate.

(3) It is not comfortable to look at the screen of a PC or
a tablet.

To handle these issues, we expand the localization method
and develop a system as follows.

• A fish-eye camera is used for getting views in various
directions.

• The user’s speed is estimated using an accelerometer in
order to modify the state transition model on-line.

• Navigational verbal guidance is given to the user at
appropriate timings.

The details of these extensions will be described in the
subsequent sections.

III. VIEW MATCHING ROBUST TO CAMERA HEADING

CHANGES

Our view-based localization compares input and model
images in terms of object placements in the image. This
makes it sensitive to the change of the camera heading; a
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Fig. 6. Regions for extracting multiple images.

TABLE I

NUMBER OF EXTRACTED IMAGES VS. SUCCESS/HIGHEST-SCORE RATE.

# of extract images success rate highest-score rate

1 100.0% 70.5%
4 100.0% 83.3%
9 100.0% 75.2%

16 100.0% 72.5%

small difference between headings in the training and the
localization/navigation phase may cause localization failure.

For a mobile robot localization under horizontal heading
changes, we used panoramic images [11]. In the personal
navigation where the camera heading may change not only
horizontally but also vertically, we use a fish-eye camera and
extract images corresponding to possible headings.

We tested four patterns of image extraction; the num-
bers of extracted images are one, four, nine, and sixteen,
respectively. Fig. 6 shows the region from which images are
extracted for each case.

Table I shows the comparison result of these image
extraction alternatives in terms of localization accuracy. We
used the following two evaluation criteria:

(1) Success rate: the ratio of the number of locations that
are correctly recognized versus the total number of
locations. In our Markov localization, a localization
result is considered correct if the true location has a
non-zero probability.

(2) Highest-score rate: the ratio of the number of locations
that get the highest score (i.e., posterior probability)
versus the total number of locations.

From this result, we choose to extract four images from the
fish-eye input image.

The reason why extracting more images degrades the
performance is conjectured as follows. When buildings exist
only at one side of the view (say, right side), moving the
robot forward makes those building move rightward in the
image, but this effect is similar to the one obtained when
the camera heading moves leftward. Increasing the number
of extracted images has a similar effect to view changes,
and some of the images may match well with the model for
incorrect different locations.

IV. INERTIAL SPEED ESTIMATION AND STATE

PREDICTION

A. Speed estimation using an accelerometer

Speed estimation is useful for predicting the user position.
It could be possible to estimate the user motion by integrating
data from accelerometers, gyrosensors, and magnetometers
[4]. In the case of route guidance, only motion information
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Fig. 7. Change of acceleration
during a constant walk.
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Fig. 8. Power spectrum of Fig. 7
obtained by using FFT.
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Fig. 9. A sequence of estimated speeds for three different walks. Each
interval indicate the one for which a specific walk was ordered.
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Fig. 10. Situation for constructing transition models.

along a route is necessary. So we use a low-cost accelerom-
eter to estimate the user’s speed. It is, however, not reliable
to calculate the speed by integrating accelerometer outputs.
We thus take an indirect approach using a walking frequency
estimation.

Fig. 7 shows the change of the magnitude of acceleration
during a walk of a person. We can see a constant rhythm
coming from the touch of the legs to the ground. From the
data, we can estimate the frequency by detecting the largest
peak position in the power spectrum (see Fig. 8). When the
height of the largest peak is less than a threshold, the person
is considered stopping.

We here suppose an adult male uses the navigation system,
whose stride is about 70 [cm]. The speed is then estimated
by multiplying the stride by the walking frequency. We
compared the estimated and the real speed for six persons
and their difference is about 20 % of the estimated speed in
average. This is used for calculating the state transition model
(see eq. (1)) on-line. Fig. 9 shows a sequence of estimated
speeds, where a subject was asked to walk at three different
speeds: slow, normal, and fast. These three types of walk are
clearly discriminated from the estimated speed.

B. On-line calculation of state transition models

State transition models (i.e., P (l|l ′) in eq. (1)) provide
prior probabilities in the Markov localization framework; a
more accurate model will give a better localization. We used
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Fig. 11. Four feasible cases considered in calculating transition probabilities.

a fixed model in the case of vehicle localization where the
vehicle speed is reasonably constant except at corners (see
Fig. 3). In the case of personal navigation, however, since the
user may change the speed from place to place or sometimes
even stops, we need to construct (or adjust) the transition
model depending on the estimated user speed.

In constructing the transition model, we consider the
following three factors:

• Our view-based localization method gives not a position
estimate of continuous value on the route but a discrete
location.

• The interval between locations includes errors.
• The measured user speed includes errors.
Fig. 10 illustrates how to construct transition models on-

line. Let the user be at location i. Since the exact position
cannot be obtained, the user is considered to be within the
area which is centered at location i and has the width of 2W ,
where W is the half of the interval between locations. The
user position x is then specified by the following inequality
(the origin is supposed to be at location i):

−W ≤ x ≤ W. (3)

Consider the case where the user moves by distance d and
let l be its error. From the measurement system, we know
the range of error in l as:

−L ≤ l ≤ L (4)

Lastly, the interval 2W has error 2e. From the error in
taking the training image sequence, we know the range of
error in e as:

−E ≤ e ≤ E (5)

Supposing no specific error models, we assume the three
variables, x, l, and e, follow uniform distribution with the
above range. This means that the probabilistic distribution
of the errors in the x-e-l 3D space is represented by the
rectangular parallelepiped shown in Fig. 11.

The user’s position y after the movement by distance d is
given by:

y = x + d + l. (6)

If the user is still at location i after the movement, con-
sidering the error e in the location interval, the following
conditions are satisfied:

−W − e < x + d + l < W + e, (7)

or rewritten as

−x − d − W − e < l < −x − d + W + e. (8)

Eq. (8) represents a subspace in the x-e-l space sandwiched
by two planes. The probability that the user is at location i
after the movement is obtained by calculating the volume of
the corner between the subspace and the uniform distribution.

How these two entities intersect with each other depends
on the moving distance d and the ranges of uniform dis-
tribution, W , L, and E. We have examined nine possible
cases and found four of them shown in Fig. 11 are feasible
if we suppose that d is comparable to the interval between
locations (i.e., 2W ), and that the user does not move back-
ward. In the figure, the red, the blue, and the yellow volume
correspond to the transition to location i, location i + 1,
location i + 2, respectively.

V. VOICE NAVIGATION

A. Navigation through several corners

The current system is developed for navigating people
on a route which is composed of almost straight segments
connected by corners (see Fig. 5). As the user proceeds,
the system repeatedly estimates the probabilistic distribution
over the locations.

We do two special treatments in the location estimation
for corners. First, when the probability of an corner location
exceeds a threshold, the user is considered to be at the corner.
Second, when the user is known to be at an corner, the
probabilistic distribution is re-initialized, namely, 1.0 is given
to the location just after the corner.

B. Navigational voice guidance generation

The system generates navigational voice guidance at each
localization step. The localization method outputs a prob-
abilistic distribution of possible locations. So the user is
considered at the location with the highest probability and
this will be used for generating the voice guidance.

Most important navigational guidance is to make the user
turn at a right corner towards the right direction. So the
system gives a notice to the user when he/she is approaching
the next corner, as in the case of usual vehicle navigation
systems. When being near to an corner, we generate guidance
as follows:

• At locations less than or equal to three steps ahead to
the next corner, the system gives a notice: “Next corner
is approaching. Move forward.”
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Fig. 12. Two routes used for navigation experiments.

• At the corner location, the system gives a guidance to
make a turn: “You are at the corner. Make a left (or
right) turn.”

Similar guidance is generated for the goal. For the other
locations, which are on a segment and are not near to the
corner or the goal, just generate a simple guidance: “move
forward along the road.”

The voice messages are generated using SofTalk [12], a
free software that can generate voice message from a given
text.

VI. EXPERIMENTAL RESULTS

We implemented the proposed method on a notebook PC
(Core i5 M520, 2.40GHz, 3GB memory). The time for one
localization cycle, including image capture and conversion,
object recognition, and localization, is about 2.5 [s].

We conducted person navigation experiments in two routes
in our campus (see Fig. 12). Route 1 is a 500 [m] long route
with four corners. Route 2 is a 340 [m] long, closed route
with four corners. Three subjects, who are students of our
university, tested the system for the two routes.

Fig. 13 shows the results of a navigated run of a subject
on route 1. In the upper row of each figure, the left, the
center, and the right area indicate the input image, the
best-matched training image, and the generated navigational
voice guidance, respectively. The lower row indicates the
probabilistic localization result. Circles are chosen locations
and the color of each circle indicate its probability, from
pink to red; white means zero probability. We can see that
in spite of a large view change, view matching and thus the
localization are successfully performed. Fig. 15 shows the
change of the estimated speed for this run. The subject made
occasional stopping during the navigation; such stopping
were correctly recognized by the speed estimation. Fig. 14 is
the result for another route. Table II summarizes the statistics
of localization performance in the experimental runs, which
shows the method is reliable enough.

VII. CONCLUSIONS AND DISCUSSION

This paper has described a view-based personal navigation
system. The system is composed of a wide-angle camera for
view-based localization and an accelerometer for motion esti-
mation. It can navigate people with voice guidance generated
in a timely fashion based on a robust and reliable localization
and on-line motion estimation.

The experimental results shown in this paper are for
the subjects familiar with our campus, but not necessarily
familiar with the routes used. It is necessary to validate the
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Fig. 15. The change of the estimated speed during a navigation.

TABLE II

EVALUATION OF LOCALIZATION PERFORMANCE FOR THE TWO ROUTES.

Subject Route 1 Route 2
s-rate hs-rate s-rate hs-rate

Subject 1 100.0% 95.8% 100.0% 89.3%

Subject 2 100.0% 89.6% 100.0% 85.7%

Subject 3 100.0% 93.8% 100.0% 87.5%

s-rate: success rate hs-rate: highest-score rate

system with users of various ages who are unfamiliar with
the campus.

The system relies on the user’s ability to recognize corners.
It is therefore possible that the user takes a wrong route by
missing the correct corner or turning at a wrong corner close
to the correct one. To cope with such cases, the system should
be able to identify the failure situation and to navigate the
user to the correct route by, for example, suggesting him/her
to go back to the previous corner and take another branch.
We are now developing a method to identify failure situations
based on the likelihood of locations.

Acknowledgment: The authors would like to thank Mr.
Yuki Kaneko and Mr. Haruo Miyawaki for GPS measure-
ment. This work is supported in part by Grant-in-Aid for
Scientific Research (No. 21300075) from JSPS.

REFERENCES

[1] Yilin Zhao. Vehicle Location and Navigation Systems. Artech House
Inc., Boston, 1997.

[2] Q. Ladetto, V. Gabaglio, and B. Merminod. Two Different Approaches
for Augmented GPS Pedestrian Navigation. In Proceedings of Int.
Symp. on Location Based Services for Cellular Users, 2001.

[3] M. Kourogi and T. Kurata. Personal Positioning based on Walking
Locomotion Analysis with Self-Contained Sensors and a Wearable
Camera. In Proceedings of the 2nd Int. Symp. on Mixed and
Augmented Reality, pp. 103–112, 2003.

[4] M. Kourogi, N. Sakata, T. Okuma, and T. Kurata. Indoor/Outdoor
Pedestrian Navigation with an Embedded GPS/RFID/Self-contained
Sensor System. In Proceedings of the 16th Int. Conf. on Artificial
Reality and Teleexistence, pp. 1310–1321, 2006.

[5] W. Zhang and J. Kosecka. Image Based Localization in Urban
Environments. In Proceedings of the 3rd Int. Symp. on 3D Data
Processing, Visualization, adn Transmission, pp. 33–40, 2006.

[6] M. Cummins and P. Newman. FAB-MAP: Probabilistic Localization
and Mapping in the Space of Appearance. Int. J. of Robotics Research,
Vol. 27, No. 6, pp. 647–665, 2008.

[7] D.M. Bradley, R. Patel, N. Vandapel, and S.M. Thayer. Real-Time
Image-Based Topological Localization in Large Outdoor Environ-
ments. In Proceedings of the 2005 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 3062–3069, 2005.

[8] M.J. Milford and G.F. Wyeth. SeqSLAM: Visual Route-Based
Navigation for Sunny Summer Days and Stormy Winter Nights. In
Proceedings 2012 IEEE Int. Conf. on Robotics and Automation, 2012.

123



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r)

Fig. 13. Navigation result for route 1.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)
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