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Abstract— Currently, research and development of lifestyle
support robots in daily life is being actively conducted. Health-
case is one such function robots. In this research, we develop
a fatigue estimation system using a camera that can easily be
mounted on robots. Measurements taken in a real environment
have to be consider noises caused by changes in light and the
subject’s movement. This fatigue estimation system is based
on a robust feature extraction method. As an indicator of
fatigue, LF/HF-ratio was calculated from the power spectrum
of RR interval in the electrocardiogram or the blood volume
pulse (BVP). The BVP can be detected from the fingertip
by using the photoplethysmography (PPG). In this study, we
used a contactless PPG: remote-PPG (rPPG) detected by the
luminance change of the face image. Some studies show facial
expression features extracted from facial video are also useful
for fatigue estimation. dimension reduction of past method
using LLE spoiled the information in the large dimention
of feature. We also developed a fatigue estimation method
with such features using a camera for the healthcare robots.
It used facial landmark points, line-of-sight vector, and size
of the ellipse fitted with eyes and mouth landmark points.
Therefore, proposed method simply use time-varying shape
information of face like size of eyes, or gaze direction. We
verified the performance of proposed features by the fatigue
state classification using Support Vector Machine (SVM).

I. INTRODUCTION

The worldwide declining birthrate and society’s aging have
become increasingly serious problems. Moreover, there are
various problems in each country such as the self inflicted
problem in the USA or the lifestyle diseases in Japan. The
healthcare robot is one of the prevailing solutions to such
problems. Robots can perform both physical and cognitive
tasks. Among them, we focus on fatigue estimation. A
fatigue state is important to get signs of crucial diseases
or accidents. If a healthcare robot can estimate the fatigue
state, it can advise a user to go to a hospital or report
to an administrator in the workplace. It is important that
a healthcare robot can say “Aren’t you tired?” or warn
of signs of danger by fatigue detection. Facial expressions
(FE) may reveal causes of the fatigue [1]. Recent studies
have proposed detecting driver fatigue using a camera [2],
[3], [4], because detection by a contract sensor has a high
accuracy but is unsanitary and troublesome to use. Most
robots have cameras for self-localization, robot mapping,
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Fig. 1: Image of a robot system for fatigue estimation

object recognition and obstacle avoidance. Therefore, we
propose a fatigue estimation method that measures heart rate
variability from expression features measured by a camera.

Heart rate variability, or the time fluctuation of electrocar-
diogram RR variability, is well known as a fatigue estimation
indicator. To measure it without using the cardiogram, the
reflection of light from the skin can be used to calculate the
BVP [5]. There are two ways of contactless measurement
with BVP. One is using the waveform received from the
Doppler radar, and the other is the light reflected from the
skin. Current fatigue estimation studies show availability
of the BVP-based method [6]. However, one should avoid
having a tired user estimate fatigue. Therefore some fatigue
estimation studies focus on the use of facial information
obtained by a camera. Ji et al. used FE features to estimate
fatigue by using an IR LED and a CCD camera [7]. The FE
feature-based fatigue estimation methods must be compact
which can be implemented into personal service robots.
In this research, we use a simple webcam to get facial
information because these robots can not use stereo camera
due to the size. Additionally, the FE feature-based fatigue
estimation method for healthcare robots need to deal with
the various lighting environments and the target movement.
The FE feature-based estimation must avoid failing to detect
or incorrectly detect these changes. In this study, we aim to
develop a robust method overcome these noises.

II. RELATED WORKS
A. Contactless BVP measurement

BVP is a method of analyzing heart rate variability (HRV),
because its peak appears in time with the beat. Generically,
autonomic nervous activity can be able to estimete by HRV,
so that HRV is used as an index of fatigue Photoplethys-
mography (PPG) is a popular method to measure BVP [5],
measuring reflected light and absolution quantity fluctuation
as BVP. However, this method can only use optical sensors



and a light source such as an LED light. In its resting state, R-
R interval acquired from the PPG has a very high correlation
relationship with that optained by electrocardiogram [8].
Verkruysse et al. [9] showed a PPG-based method using an
RGB camera called the remote-PPG (rPPG). Poh et al. [10]
showed a method of extracting BVP from color channels in
video recordings by using independent component analysis.
This method can extract BVP with a high correlational
relationship (0.88) to the one obtained by PPG. Haan et al.
[11] showed a normalized color signal model to eliminate
the noise of changes in the skin’s specular reflection caused
by changes of lighting conditions and head movements. They
could estimate the heart rate by a correlation of 0.99 from
10000 frame video. Using this model, they extracted BVP
by weighted differences of color channels under changes
in the head position with high degree of accuracy. Huang
et al. [12] improved the accuracy of this model using
continuous wavelet transform (CWT) denoising. Mcduff et
al. [6] extended the rPPG-based fatigue estimation method
using a 5-band camera. We chose rPPG from an RGB camera
because it was easy to mount on the robot or was already
mounted.

B. Facial expression features-based fatigue estimation

This fatigue estimation method was used on the driver
incases [7], [13], [14]. It estimates fatigue by watching the
face and recognizing the signs of fatigue such as increased
blinking, head movement, and yawns. Ji et al. [7] showed a
method to predict fatigue by recognizing the gaze direction,
blinking and the head movement. Kawamura et al. [15]
proposed a fatigue estimation method from face images for
30 seconds, analyzing feature values and SVM. A feature
was obtained from the integration of HOG feature values as
the FE and color changes of the cheek region in RGB channel
as the BVP feature. Locally Linear Embedding (LLE) [16]
was used for the dimension reduction of them. This result
showed the effectiveness of the FE image method but it also
that it was insufficient to measure LF/HF, and lighting noise
will negatively effect the estimation. Past studies focus on
the situation under long-term surveillance and can use rich
times. We aimed to develop a robust estimation that could
account for changes in the lighting and head movements by
short-time glancing.

III. METHOD

We propose a fatigue estimation method with a more
robust feature extraction to account for the fluctuation of
the light. We used an image for 60 seconds as the input for
the BVP feature and one for 30 seconds as the input for the
FE feature. These features are used for the fatigue estimation
by the support vector machine (SVM) binary classification.

A. Extract facial expression feature

We used the OpenFace toolkit [17] to extract facial ex-
pression features because this toolkit could run in real time,
and was able to compress extraction time and become robust
to the change of background. OpenFace can extract four
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Fig. 3: Cheek region from OpenFace

types of features: 136 two dimensional landmarks, 6 three
dimensional line-of-sight vectors and 18 Action Units (AUs)
expression levels and AUs intensities. The two dimensional
landmarks were given by secx fpsx 136 dimensional feature
vector (V;) from the eye and mouth areas of all picture
frames. AUs expression levels and 17 AUs intensities were
given by sec X fps x 18 dimensional feature vector (Vp) and
secx fpsx 17 dimensional feature vector (V7), respectively.
We used a ellipse fitting by least squares [18] to reduce the
dimension of landmark points of the eyes and the mouth
shown in Fig. 2. Each 3D feature representing the degrees
of eyes or mouth aperture was determined by the ratios of
each ellipse (b/a).

B. Extract BVP

We extracted BVP from facial image segments by the
rPPG framework with CWT [12], because it is prevent able
to noise from the shading of the entire face and there is
past performance. Fig. 3 shows the cheek regions for this
extraction defined by OpenFace feature points.

The color signal S = {cp,...,cny} was given by the
average pixel value ¢ = {F, g, b} of the two cheek regions.
In the implementation, we performed eight times fourier
interpolation to .S and linear interpolation to the time of the
data. In [12], the color signal model was given by the color
signal S; of the 7th frame:

Ci = Ic,(pc,, + pc, + si), 1)

where I, was the strength of light, pc,. was the stationary
part of the reflection coefficient of the skin, pc, was the zero-
mean time-varying fraction caused by the pulsation of the
BVP and s; is the additive specular reflection contribution.



pc,. could be removed by the normalization of every color
channel. We used a moving average for this normalization:

Ci
w(Cy)
where p(C;) was a moving average centered around frame
index . We set a window size of forty eight frames (1.6s) so
that a window included at least one beat. The color signals
R,, G,, B, were given as elements of the color channels
S,,. Two differences of color signals X and Y were given

X, =3R,, — 2G.,
(3)

Y, = 15R, + G, — 1.5B,,

where coefficients were skin color normalization factors that
were defined in [11] to normalize different colors in the
various lighting conditions. Then, signals X, Y were given
by applying a band-pass filter with a 0.67 ~ 4.0Hz passband
corresponding to 40 ~ 240BPM heart rate. The specular
reflection s; was denoised by

Spop = Xy — oYy,

_ o(Xy) 4)
o(Yy)

C. CWT noise rejection

CWT is one of the time frequency analysis methods and
expresses a signal as a superposition and parallel transport of
various scale wavelets. This method obtained the continuous
wavelet coefficients X, (7, s) that represented the similarity
ratio between the original signal « and wavelets 1) ;. Rach
wavelet was parallel translated by 7 and rescaled by s from
a parent wavelet W at time ¢:

o) = [ Ot
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In this paper, we adopted the Morlet wavelets as the parent
wavelets. On the assumption that the BVP signal was the
dominant wave in the parent wavelets, the maximum total
value s* was given by the sum of the continuous wavelet
coefficients:

17b7',s =

s* = arg maxz X.(7,5). (6)

BVP wave was recovered by the inverse continuous
wavelet transform (ICWT) from the maximum total value:

1 o[> [~ 1
w(t)Cw/o [mng(T,s)¢T,s(t)des. 7)

In this study, CWT noise rejection was performed to each
of the regions generated by divided signals Sy by the time
interval 7" (10s) after the application of the Hanning window.
All regions were connected after decoding.
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Fig. 4: llustrates the steps of MRI pulse spectrum calculation

D. Calculate RRI power spectrum

RRI was given by the difference between the ith peak and
the ¢ — 1th peak

RRI, = tpeaki - tpeak'i,l . (8)

We used the average value purpr; between 1.3 x upry and
0.7 * purprr to remove the peaks not originally existing in
the connecting point. Then, the RRI power spectrum was
calculated by Welch’s method after data were equally spaced
by the cubic spline interpolation.

E. Normalized feature quantity

The heart rate h, and the respiration rate  were obtained
by the calculated RRI power spectrum, and LF, HF and
LF/HF of this spectrum were used. We use two types
of feature vector: 2D Vi, = {h,r} and 5D V., =
{h,rlf,hf,1f/hf}. The all feature vectors except Vp were
normalized by the method in [15]:

Vfirsti _ Vfirsti - /J/firsti7

O first

~ V;econdi - /J/firsti
‘/;econdi = .

)

O first
IV. EXPERIMENT

We conducted a comparison experiment between our es-
timation and HRV detection to verify our proposed method.
The BVP measured by the PPG was chosen for comparision.
11 university students participated in the next three condi-
tions.



Fig. 5: PPG sensor

Fig. 6: Cond. 1 booth

o Condition 1: Participants execute a fatigue task under
the light. A pair of data was measured before and after
the task.

« Condition 2: Participants executed the same fatigue task
in front of the light. A pair of data is measured in the
morning and evening of a day (almost 8- hours interval).
They attended classes or did research between being
measured..

e Condition 3: During condition 2, they moved their
head.

For 60 seconds, 3 x 2 datasets were collected in each
condition. Visual Analog Scale (VAS) [19] was used to verify
the subjective fatigue of participants. In this experiment, face
data was recorded by a webcam (30 fps, 640x480) and the
raw BVP data was detected by a PPG sensor by World
Famous Electronics [20]. This sensor was attached to the
participant’s finger with a touch fastener (Figure 5) and data
were collected through an Arduino Uno R3 with 100 Hz.

A. Condition 1

The purpose of this experimental condition was to collect
shadowed facial data with the fatigue task the same as
the study of Kawamura et al. [15]. We predicted that the
luminance noise at the cheek region would effect the fatigue
estimation performance. 33 data were collected from 11
participants in three days. Fig. 6 shows a view of experiment
site, a meeting room with overhead fluorescent lights.

For this experiment, we chose a 15 minute calculation as
the fatigue task. This task was a set of repeated determination
of the addition-subtraction correctness within a time limit.
The time limit was calculated by adding 0.5 seconds to the
response time to practice questions before this task. Before
and after this task, data was collected for 60 seconds by a
GUI application. The experiment flow is as follows:

1) Enter the name in the start screen

2) Adjusts their sitting position, attach the PPG sensor,

and click a button.

3) Keep stopping for 60 seconds

4) Answer VAS

5) Execute the fatigue task (10 practice question and the

15 minute task)
6) Repeat the process #2 ~ 4

B. Condition 2

For this condition, as in#1 we measured twice in the
day with the same 8-hour interval, but this time the light

(a) Shaking

(b) Look back
Fig. 8: Condition 3

source was in front of the face. 33 data were collected
from 11 participants. We predicted that the accuracy of the
estimation would be higher than the result of condition 1.
The participants sat in a curtained-off booth and an LED
indirect light illuminated the face (Fig. 7). The experiment
flow was as follows:
1) Enter their name and the round of the measurement
(first or second) on the day.
2) Adjust their sitting position, attach the PPG sensor, and
click a button.
3) Stop for 60 secondsto be measured
4) Answer VAS

C. Condition 3

In this condition, we didn’t collect any raw BVP data.
The setting was the same as for condition 2 but participants
shook their head and looked back 1 to 3 times during the
measurement. 24 data from 8 participants and 4 from 2
participants were collected. We predicted head movement
would degrade the accuracy of the fatigue estimation.

V. RESULT
A. Comparison with raw PPG value

We evaluated the accuracy of heart rate h, respiration rate
r and LF/HF. For the PPG waveform, linear interpolation was
performed to obtain 200 H z sampling rate, and Fourier in-
terpolation was performed for the interpolated waveform. To
eliminate noise, we used a threshold of the moving average
of the waveform at the window size 75 multipled by 1.3. The
scaling factor of the moving average was decreased by 0.05
until at least 10 peaks had been detected. Furthermore, we
excluded values outside the range (0.70,.;, 1.30,+;) by using
the RRI standard deviation o,.,;. After the measurement of
the heart rate, the respiration rate and LF/HF, the ranges
(£p + 30 for heart rate, respiration rate, and LF/HF) were
excluded. We used 27 data in total (15 data of dataset
1 and 12 of dataset 2). Table I shows the measurement



TABLE I: Measurement error of heart rate, respiration rate,
and LF/HF by rPPG

Condition 1 Condition 2
HR RR | LF/HF HR RR | LF/HF
Mean Error | 4.28 | 4.34 2.40 5.15 | 5.37 2.46
Correlation | 0.86 | 0.10 | -0.031 0.77 | 0.10 0.01

TABLE II: Fatigue estimation result by linear SVM (60
seconds, one data set)

Dataset | Feature D A P R Fm
1-1 Vi 980 | 0.50 0.0 0.0 0.0
1-1 Vir 2 | 0.65 1.0 | 030 | 0.44
1-1 Viro 5| 0.67 1.0 | 0.33 | 047
2-2 Vi 980 | 0.41 | 0.17 | 0.12 | 0.13
2-2 Vir 2 | 058 0.8 | 0.16 | 0.26
2-2 Viro 51073 1.0 | 0.47 | 0.63
2-1 Vi 980 | 0.53 0.6 | 0.05 | 0.09
2-1 Vir 2 | 0.63 1.0 | 0.27 | 042
2-1 Viro 51073 1.0 | 047 | 0.61
2-3 Vi 980 | 0.59 | 0.20 | 0.03 | 0.06
2-3 Vir 2 1064 | 0.80 | 0.28 | 0.38
2-3 Viro 51 0.69 1.0 | 0.38 | 0.53

The dimention (D). accuracy (A), precision (P), recall (R),
F-measure (Fm), , Connected and compressed equency spectrum of cheek
ereca RGB waves (30 sec) (V;) , and Hat means the standardization

errors of LF/HF by rPPG waveform. Participants reported
the subjective fatigue became stronger in the afternoon than
in the morning. However, PPG and rPPG detected fatigue
increase for just two data of each wave pulse and the
accuracy was about 50% to ~ 58%. This result shows a
simple PPG or rPPG waveform estimation cannot estimate
fatigue adequately.

B. BVP feature fatigue estimation

We evaluated the estimation accuracy for several combi-
nations of BVP features. Feature vectors V. and V},,., were
created from 60- and 30-second facial videos and fatigue esti-
mated by linear SVM referring to [6]. We compared 4 dataset
conditions (SVM training-test): two within-dataset 1-1 and
2-2, between-dataset 2-1 and 2-3. 3-3 was not conducted
because head moving situation affected the tracking landm-
mark. Especially, it affected FE features objectionability and
we used 3 for just verification. The accuracy (A), precision
(P), recall (R), and F-measure (Fm) of positive label were
obtained by 5-fold cross validation The cost parameter C'
of the SVM was optimized by the grid search at each cross
validation. As a baseline score, we used the feature vector by
the previous method [15] In this method, 30 seconds feature
vectors Vt were connected to seven Vt and Vt compressed
to 140 dimensions by LLE with five seconds shifting. Table
II shows the result of this evaluaton.

The comparison of fatigue estimation shows the proposed
features V. and V},,., were better than the baseline feature
Vit in all conditions. V4, and V., received higher scores
than the baseline also in the cross environment dataset.
In conclusion, our proposed method can estimate the BVP
robustly to the lighting noise. Moreover, in this experiment,
Vire 18 better for fatigue estimation than g V..

TABLE III: Fatigue estimation result by RBF kernel SVM

Dataset | Feature D A | P R Fm

1-1 Vi 140 | 0.95 | 0.97 | 0.93 | 0.94
1-1 Viis 120 | 093 | 0.94 | 093 | 0.93
-1 V; 15300 | 095 | 1.0 | 0.90 | 0.94
-1 \7 36000 | 0.88 | 0.82 | 1.0 | 0.89
1-1 Vyaze 5400 | 095 | 1.0 | 0.90 | 0.94
1-1 Vyaze 180 | 0.96 | 1.0 | 0.93 | 0.96
-1 Viize 2700 | 0.80 | 0.90 | 0.70 | 0.78
1-1 Viize 90 | 088 | 1.0 | 077 | 0.84
2-2 Vi 140 | 0.90 | 0.95 | 0.87 | 0.89
2.2 Viis 120 | 0.89 | 091 | 0.88 | 0.89
22 V; 15300 | 0.92 | 0.97 | 0.88 | 0.92
22 \7 36000 | 0.75 | 0.72 | 0.97 | 0.84
22 Vyaze 5400 | 0.94 | 1.0 | 0.88 | 0.93
2-2 Vyaze 180 | 0.96 | 1.0 | 091 | 0.95
22 Viize 2700 | 0.92 | 1.0 | 0.83 | 0.90
2-2 Viize 90 | 094 | 1.0 | 0.89 | 0.94
2-1 Vi 140 | 055 [ 0.60 | 0.09 | 0.15
2-1 Viis 120 | 070 | 1.0 | 041 | 0.58
2-1 V; 15300 | 0.95 | 0.99 | 0.91 | 0.94
2-1 \7 36000 | 0.77 | 0.73 | 0.92 | 0.81
2-1 Vyaze 5400 | 092 | 1.0 | 0.84 | 091
2-1 Vyaze 180 | 0.96 | 1.0 | 0.93 | 0.96
2-1 Viize 2700 | 0.88 | 0.98 | 0.78 | 0.87
2-1 Viize 90 | 091 | 1.0 | 082 | 0.90
2-3 Vi 140 | 0.58 | 0.60 | 0.15 | 0.24
2-3 Viis 120 | 0.52 | 0.40 | 0.04 | 0.07
2-3 Vi 15300 | 0.81 | 0.92 | 0.70 | 0.79
2-3 Vi 36000 | 0.64 | 0.63 | 0.85 | 0.71
23 Vgaze 5400 | 0.82 | 1.0 | 0.63 | 0.76
2-3 Vyaze 190 | 0.86 | 1.0 | 0.72 | 0.83
23 Viize 2700 | 0.78 | 1.0 | 0.55 | 0.69
2-3 Viize 90 | 082 | 1.0 | 0.64 | 0.76

The dimention (D). accuracy (A), precision (P),
recall (R), F-measure (Fm), gaze vector (Vjaze) , degree of opening of
eye and mouth (V;.e) , Connected and compressed equency spectrum of
eye and mouth erea HoG features (25-30sec) (Vi+s) ,
and Hat means the standardization

The paper shows that it is possible to estimate fatigue
simply by simple heart rate when that the target has post ex-
ercise physical fatigue. On the liner SVM fatigue estimation,
our method improved the accuracy of estimation by the BVP
over the previous method.

C. FE features fatigue estimation experiment

We verified FE features Vi, Vi, Viize, Viaze, Vsize, and
Vgaze for the fatigue estimation in the two within-dataset
conditions (1-1, 2-2) and two between-dataset conditions (2-
1, 2-3). Since we think the discrimination boundary of FE
features will be nonlinear, we used an RBF kernel SVM. As
a baseline, the features V; and V., were chosen, which was
used by the previous method, and condition2 were chosen,
which was best controlled (light and no moving) in the three
condition. We used 30 seconds of the facial video first in
the datasets. The cost parameter C' of SVM and the kernel
parameter v of the SVM were optimized by the grid search
in each cross validations. Table III shows the result of this
verification.

In the within-dataset conditions, our method exhibited
a similarly good performance to the baseline. Meanwhile,



in the between-dataset condition, the estimation ability of
the baseline was greatly decreased. Particularly, the recall
and F-measure were lower than 0.5, and the accuracy with
Vi+s become lower than with V;. Our proposed method
can estimate with the recall and F-measure over 0.5 in the
between-dataset condition. In this experiment, the accuracy,
precision and the F-measure of Vgaze were the highest.

This result shows the accuracy rate of the previous method
was degraded in 0.6, while the proposed method can estimate
with over 0.6 accuracy. Especially, using the average of line-
of-sight vectors of per one second, the proposed method
achieved over 0.8 accuracy. Therefore, our method improved
also the accuracy of estimation by FE over the previous
method.

VI. CONCLUSIONS & DISCUSSION

Healthcare will be one of the care jobs fthat service
robots can undertake in a hospital, a care home, or a private
home. Fatigue estimation is considered important because
it could indicate disease. Our proposed method, using the
BVP feature and the FE feature shows the ability of fatigue
estimation. The method is contactless with an RGB camera,
hence it is easy to implement to various existing home robots.
This study will therefore improve the potential of home
robots. In the future, the stereo camera may become reduced
in size and it will improve the recognition accuracy of facial
features using this method.

A motion in the robot (vibration) is serious problem of
this method. When the robot move strongly, the PPG data
will be fluctuant by the distracting facial features. The large
vibration in the robot cause psychological effects of target
person (heart rate elevation etc.). Additionally, the distance
will also effect accuracy or cause psychological effects. We
add suppose the necessity to implement our method in a
robot and should evaluate it on various distances.

To verify the method, the number of the experiments are
small. We will rethink experimental designs to manage the
large number of participants. The method in this paper only
estimated the relative fatigue by using data from one day. If
a one-shot fatigue estimation is required, longitudinal data
collection is needed, and some absolute value of fatigue. To
accomplish this, we would have to create a quantitative index
such as LF/HF using an electrocardiogram. Since long-term
data will include various changes over the terms of that could
cause errors. The development of the next prediction model
should answer these issues. Furthermore, a comparison of
the results with past methodologies will be necessary.

In this paper, a method of fatigue estimation was proposed
that can account for against changes in lighting condition
and head movements. The method uses two features: the
BVP feature consisting of heart rate, breathing rate and heart
rate variability index (LF/HF), and FE features consisting
of face landmark points, the degree of opening/closing,
AUs expression/intensity levels and line-of-sight vectors. The
method accomplished a more accurate fatigue estimation
than the previous method using the frequency spectrum of
luminosity value.
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