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Abstract—In transferring knowledge from human to robot
using Programming by Demonstration (PbD), choosing features
which can represent the instructor demonstrations is an essen-
tial part of robot learning. With a relevant set of features, the
robot can not only have a better performance but also decrease
the learning cost. In this work, the feature selection method
is proposed to help the robot determine which subset of the
features is relevant to represent a task in PbD framework. We
implement an experimental PbD system for a simple task as
proofing our concept as well as showing the preliminary results.

Index Terms— Human-Robot Interaction, Programming by
Demonstration, Feature Selection

[. INTRODUCTION

Transferring knowledge is defined as an activity that an
instructor shares or disseminates knowledge to a learner.
In robotic field, human-robot knowledge transfer is one of
the areas that attracts attention of mamy researchers. There
are two parts in the human-robot knowledge transfer. The
first part is the human-to-robot part in which a robot learns
knowledge from a human through human instruction and the
other part is the robot-to-human part where a robot teaches
the task to a human [1]. To transfer knowledge from an
instructor to a learner, Programing by Demonstration (PbD)
is one of the approaches that enables the instructor can able
to share the knowledge to the leaner by demosntration a
senquence of examples [2].

The task in our work is defined as follows. The world is
characterized by its state and a robotic task is specified its
desired state (goal state). From a sequence of demonstrations,
the robot repeatedly observes the current state and selects an
action based on its observation, to transfer the current state
to the next one, and eventually reaches the final state (i.e.
achieving the task). Based on this definition, if each state
is well defined by a set of selected features, the robot can
properly understand the task and easily select an appropriate
action. However, the number of possible features is usually
large due to a complex nature of the real world, and therefore
selecting an appropriate set of features is difficult from a
limited amount of demonstrations. As a result, the selected
set if features might include irrelevant ones which not only
do not represent the state of the task but also lead to poor
performance in transferring knowledge. Therefore, in this
paper, a feature selection approach is proposed to help the
robot evaluate and select a relevant subset of features which
can represent the task.

Feature selection in robotics has been applied to several
problems. Deuk et al. [3] used a feature selection to solve
a mobile robot navigation problem. Loscalzo et al. [4]
developed a feature selection method for a genetic policy
search. Kim et at. [S] applied a feature selection to a rescue
robot to classify smoke and fire. Bullard et al. [6] enabled
the robot to interact with a human requiring the features in-
formation. However, these works assume that demonstrations
or examples are provided completely while demonstrations
in PbD are limited and depend on a instructor. If a instructor
can provide a good demonstration subset, a robot can have
a good performance with a small set of demonstrations. In
contrast, with a bad demonstration subset, the robot needs
more demonstration to understand the task or has a low
performance in executing the task. Feature selection is thus
one of the promising approaches to cope with a limited
amount of demonstrations by generating a relevant feature
subset.

In this work, we propose a feature selection method to
generate a promising subset of features incrementally after
each demonstration. The advantage of our approach is that
we do not need to wait for a complete set of demonstrations.
The proposed method generates a promising subset after each
demonstration then the robot will use it with the current
demonstrations set to create a model of the task and execute
it under the instructor observation. The main contribution of
the paper is to propose a feature selection framework that can
generate an appropriate set of feature subset from a limited
demonstrations set.

The rest of the paper is organized as follows. Section
2 presents the learning mechanism in which the feature
selection method is proposed to help the robot refine the
relevant subset of features. Section 3 shows the experimental
results and Section 4 presents concluding remarks and future
work.

II. FEATURE SELECTION FOR TASK MODELING
A. Problem Statement

The problem is to determine a promising subset of features
which is used for describing the task. To define the state, the
robot is given a set of demonstrations with the binary label,
L, and the list of all candidate features, F', among which the
robot extracts promising ones based on the demonstration.
The goal of feature selection is to define which subset of



TABLE I: The list of features

in Simulation

Object Features Values
background color red, green
bounding color red, green
Blocks qut§ide shape cub?c, cyl?nder
inside shape cubic, cylinder
size 1,2
redundant features [f1-f10] 0,1
background color red, green
bounding color red, green
outside shape rectangle, ellipse
Place . .
inside shape rectangle, ellipse
size 1,2
redundant features [f1-f10] 0,1

the features, F’, represents the set of demonstrations and
then is used to classify the demonstration to create the task
model. In this research, we choose a simple task which has
only one action to teach the robot. In other words, a task is
represented by the target state to achieve. We assume that
the robot already has a planning and execution system that
can transfer one state to another.

B. Problem Domain

In this work, we give the robot a pick-and-place task. The
instructor demonstrates a task by putting an object to an
appropriate place under specific rules. For example, the color
of the object must be the same with that of the place. The
robot can observe three types of attributes (color, shape and
size) of objects and places. The label of demonstration is
a binary label; zero means a false state and one means a
true state. There are 30 features (shown in Table I) that can
be observed by the robot. Redundant features are added to
increase the complexity and the noise of the learning task.
The goal of feature selection is to determine which subset
of features is relevant to the demonstration subset.

C. Learning from Demonstration Process

The Learning from Demonstration is conducted by the
following steps:

1) Demonstration by instructor: the instructor demon-
strates the task by picking an object then putting it
into an appropriate location. The definition of the task
is given to the instructor before teaching. For example,
the blue object must be put into the red place as shown
in Fig. la.

2) Observation and feature selection by the robot: the
robot observes the demonstration, then extracts all
information from demonstration (i.e, the features and
their values). Then, the feature selection algorithm is
applied to calculate which subset of features is relevant
to the task and the robot chooses the highest relevant
subset of feature as a model.

3) Task execution by the robot: using the model in step
2, the environment of the task is refreshed then the
robot executes the task under the supervision of the
instructor as shown in Fig. 1b.

(b) Robot’s
execution

(a) Instructor’s
demonstration

(c) Instructor’s judgment

Fig. 1: Programing by Demonstation Framework [1]

4) Judgment: after observing the robot’s execution, the
instructor judges if the action of the robot is correct as
shown in Fig. 1c. If the robot fails to execute the task
correctly, the new demonstration will be presented, go
to step 1. If the robot succeeds in the task, the learning
process will finish.

D. Learning Framework

1) Feature Selection Approaches: There are the following
three main methods in feature selection: filter method, wrap-
per method and embedded method. Filter methods use variety
technique as a ranking criteria for feature selection. The
ranking criteria is used to score features and a threshold is
pre-defined to remove features below the threshold. Wrapper
methods use the classifier performance as the objective
function to evaluate feature subsets. The feature subsets
are generated by employing a search algorithms. Embed-
ded methods try to decrease the computation cost of re-
classifying different feature subsets which is done in wrapper
methods by incorporating feature selection as a part of the
training process. LASSO regession is one of the approaches
of this method. Bullard [6] had shown that filter methods
are more efficient in generating promising feature subset in
terms of the computation cost and accuracy. Filter methods
score features under specific criteria and the top highest
score features are chosen as a promising feature subset.
However, with a limited demonstrations, there are a variety
of feature subset that can represent current demonstrations.
As a result, the feature selection might fail to get a promising
feature subset. For this reason, we use a wrapper method: our
proposed framework tries to add as many features as possible
to a promising feature subset which can represent the current
demonstrations using a mutual information criteria, and then
to remove irrelevant features from the promising subset by
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Fig. 2: Learning Framework using Programming by
Demonstration

a redundancy analysis before generating the final model of
the task.

2) The Proposed Learning Framework: Figure 2 shows
the learning process. After demonstrating the first demon-
stration, the Sequential Forward Selection (SFS) algorithm
[7] generates a promising subset of features, then the model
(i.e. classification) is created based on the subset and the
current demonstration set. In our work, the ID3 Decision
Tree algorithm [10] is used as the classifier. After the model
creation step, the training accuracy is calculated to determine
if the current promising features subset can represent the
current demonstration set. If the training accuracy is equal
to 100 percent, the Sequential Backward Selection (SBS)
algoritm [7] is applied to remove irrelevant features to create
the task model and the robot wait for the next demonstration.

In the second demonstration, after observing the instruc-
tor’s demonstration, the robot will calculate the testing ac-
curacy of the model in the last demonstration with the new
demonstration. If the testing accuracy high enough (in this
case, it equal to 100 percent, the SBS is applied to remove
irrelevant features . If not, the SFS will add more features
into the previous promising features subset and create a new
model of the task. The learning process will finish when both
the testing accuracy and the training accuracy are equal to
100 percent.

a) Sequential Forward Selection: To add the features to
a promising features subset, Mutual Information (MI) I(X,Y)
(as described in Eq. (1)) is used to measure the amount
by which the class Y uncertainty is reduced after having
observation from variable X.

p(x,y)
I(X7Y) = p(xvy)'10g27 (1)
x;(ygy p(x)-p(y)
The main goal of feature selection is to select a smallest num-
ber of features that carry as much information as possible.
So the feature selection problem can be formed as follows:
given the features list X = {x;:i € A={l,...,n}}, the goal

is to find the subset Xg = {x;: j € S C A} which maximizes
the mutual information /(S,Y). However, computing the
MI between the class and all candidate features subset is
impossible, so the Conditional Mutual Information (CMI)
[8] (Eqg. (2)) is applied to decrease the computation cost for
ranking the features.

p(xiv)’|XS)
I(xi,Y|Xs) = X 1, Y|Xs)logy —— ==
(%, Y|Xs) XZSP( S)Xizexygp(x y[Xs)log, p(x[Xs)-p(y|Xs)
(2

where X; is a feature in list of features that can be observed
by a robot, Y is a label list of demonstrations and Xy is a
promising features subset.

Using the CMI, the reducing uncertainty between class Y
and feature X; under an observation of subset Xy is calculated.
If the CMI is equal to zero, there is no information under the
observation by adding the feature X;, that means X; does not
provide any information to predict ¥ while other features
in subset S are known. By this way, the CMI can find a
promising subset without testing all of candidate features
subsets.

To directly calculate the CMI, the complex joint probabil-
ity of subset X5 must be computed. This computation is very
expensive when the number of feature in subset Xy increase.
To solve this problem, Wang et al. [9] proposed The Con-
ditional Mutual Information Maximin Algorithm (CMIM)
to deal with problem. In the CMIM algorithms, instead of
calculating the joint probability of X§, the conditional mutual
information between every features in the features list and the
label for each feature in a promising subset Xs is computed.
Then, the next feature that can be added to a promising subset
must satisfy:

Xew = max(min(I(X;,Y|X;)) 3)

The algorithms of SFS is shown in algorithm 1. If there
is no feature in a promising features subset S, the MI is
calculated between each features in features list and the label
of demonstration to add the first feature into S. Otherwise,
the conditional mutual information is calculated and the next
feature which is added into S is chosen based on Eq. (3).

b) Creating Task Model: After finishing Forward Fea-
ture Selection, the promising feature subset and the current
demonstration set is used for training and creating the
task model. After training process, the training accuracy is
calculated to determine if the current features subset can
present the latest demonstration set. If it is not, more features
will be added into the current subset by SFS.

c) Sequential Backward Selection: 1f the task model
passed the testing accuracy criterion, the SBS module is
executed to remove irrelevant features in the subset. The
main reason to have this module is that the demonstration
is limited while the number of features in the scene is very
large, and that lead to the irrelevant features might join into
the promising features subset. To remove irrelevant features,
Symmetrical Uncertainty (SU) [11] which is defined in Eq.
(4) is used to estimate the redundancy value of each feature



Algorithm 1 The Sequential Forward Selection algorithm

Algorithm 2 The Sequential Backward Selection algorithm

Input: Demonstration
QOutput: Promising Feature Subset S
extract featureslist and data from demonstration
listMI = NULL
if S == NULL then
for feature in features list do
| listMI.append(calculate MI(feature,label))
end
S.append(feature which have highest score)
else
features which are in S are removed from featurelist

for x feature in features list do
tempMI = NULL
for s feature in S do
tempM]I.append(the conditional MI( xfeature ,
sfeature ))
end
listM1.append(min(tempMTI))
end
S.append(argmax(listMI))

end
return S

in the current subset. The symmetrical uncertainty is defined
as:
1G(Xi|Y)

SU(X;,Y) = ZM’

“)
where H(X;) and H(Y) are the entropy of features in the
feature list and label data respectively. IG(X;|Y) that is given
by Eq. (4) is called information gain [12], defined as:

IG(X|Y) = H(X)—H(X|Y). 5)

To analyse the redundancy of a feature, C-correlation and
F-correlation [7] are defined. C-correlation is the correlation
between any feature X; and the label Y, denoted by SU; . F-
correlation is the correlation between any pair of features X;
and X; (i # j), denoted by SU; ;. If SU;, > SU;y, and SU; ; >
SU;y, X; forms an approximate Markov blanket for X;. In
this case, a relevant feature is called predominant feature
if it does not have any approximate Markov blanket in the
current set.

The SBS algorithm is shown in algorithm 2. In the first
step, the SU value between each feature in a promising
feature subset and label is calculated, then all of the features
are ordered in a descending order according to their SU
values. In the next step, F-correlation among each feature
pair is calculated and predominant features are identified
using approximate Markov blanket definition. After getting
the list of irrelevant features, each feature in the list will
be removed if it does not change the training accuracy.
The training accuracy is used in this step because the
demonstration is limited and the final model is required to
have 100 percent in training accuracy. The final task model
is the model that has the highest training accuracy and the
lowest number of features in the promising feature subset.

Input: Demonstration, Promising Features Subset S
Output: Removing Feature Subset Sr
for feature; in S do
| calculate SUi,y for feature;
end
sort S in descending SUi,y value
for feature; in S do
for feature; (i <> j)in S do
calculate SU1i, j for feature; and feature;
if SUi, j > SUi,y then
Sr.append(feature;)
S.remove(feature;)
end

end

end
return Sr

III. EXPERIMENT RESULTS

In our experiment, the task that the robot needs to learn is
the matching task, for example, the background color of the
object must be the same with that of the place. The rule of
matching depends on the instructor. The goal of the robot is
to find the features subset which can represent the rule of the
task and execute it correctly. To test the proposed method, a
simple simulator is created to let the instructor demonstrate
the task as shown in Fig. 3

In this simulator, the places that the block must be put
are on the right side while the blocks are on the left side.
To analyze easily the subset of features, we use only two
type of color (red and green) and two type of shape (cubic
and cylinder) in this experiment. The instructor uses a mouse

(a) Instructor’s demonstration under robot’s
observation

(b) Executing the task after observation

Fig. 3: The simulator for Task Learning
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or a joystick to move a block to an appropriate location in
demonstrating the task under specific rules (Fig. 3a). After
moving all the blocks to its location, the instructor uses the
finish button to inform the robot that the demonstration has
finished. The blocks in each demonstration are randomly
created and the instructor may not be able to provide enough
instances in one demonstration. In each demonstration, five
blocks are created to be put in the corresponding place.
Moreover, when a block is put in an appropriate place,
one positive data and three negative data are created. The
positive data is the matching between this block and its
place while negative data are the matching between this
block and the other places. In this task, there are totally
16 instances which are necessary to represent the goal state.
After each demonstration, the robot will show the promising
features subset to the instructor and execute a task under an
instructor’s observation (Fig. 3b). The learning process will
finish when the promising feature subset is the same with
the instructor rule or the demonstration set is enough.

Figure 4 shows the relationship between the accuracy
of the model and the number of features in the model.
In this experiment, we used eight features. All of possible
combination of features as subsets are generated and their
accuracies are calculated. The number of true features is
four. From the chart, if the number of features is not sufficient
(Ny < 4), the accuracy of the model cannot reach 100 percent
accuracy, that is, the model cannot represent a task correctly.
In contrast, if the number of features in features subset
is large, that is redundant features are in a feature subset,
that could lead to overfitting problem. So that, choosing the
number of features to represent a task is essential part in
feature selection.

In the next experiment, to test the efficiency of the
proposed framework, 5 different tasks, for which the true
number of features is 4 features, are demonstrated. Fig 5
shows the testing accuracy of each model. Each task have
11 demonstrations. At the end of the demonstration, every

() Np=7

Fig. 4: The accuracy of model with each feature subset
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Fig. 5: The 5 tasks models accuracy

task can reach 100 percent in the testing accuracy. However,
there are 2 tasks that have a promising features subset
which is different from the true one. The reason for this
situation is that demonstrations is limited and it is depends
on an instructor. So the greedy search approach might fail
in scoring features in the features list. Moreover, 5 tasks
include complementary features (for example the color of
the object must be the same with the color of the place),
while the CMIM algorithms cannot solve this problem [13].
This problem must be considered to improve the criteria in
the sequential forward selection.

To analyze the effect of the demonstration set to the
learning performance, we implement two types of demonstra-
tions for the matching task. One is a random demonstration
generation in which the instructor just performs random
demonstrations that are generated by the simulator. The
other is a deliberate or careful demonstration where the
instructor carefully chooses demonstrations. Table II shows



TABLE II: Experiment Results

Learning Type

and Number of True

Features Set

The Promising
Feature Set

Demonstrations
Random Object background color | Object background color
generation Object outside shape Object inside shape

Place f2
Place inside shape

Place background color
Place outside shape

demonstration
(24 demonstrations)

Object background color
Object outside shape
Place background color
Place outside shape

Object background color
Object outside shape
Place background color
Place outside shape

Deliberate
demonstration
(4 demonstrations)

some results of learning a matching task. In the random
demonstration generation, the robot failed in choosing the
true feature set because the robot use the greedy search based
on the Mutual Information and the conditional Mutual Infor-
mation to choose the relevance features. So with a limited
number of demonstrations, there are a variety of results that
match with the current demonstration set. In this case, the
instructor stops the learning process after 24 demonstrations
because the demonstration set is completed. In the deliberate
or careful demonstration learning, the instructor deliberately
chooses the demonstrations which can represent the task
easily without duplication. In this case, the robot can reach
the true features set after 4 demonstrations and execute the
task correctly.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, a feature selection method to help the robot
achieve the task is proposed. By adding demonstration and
using a feature selection during the learning process, the
robot can choose the relevant features and execute the task
correctly. However, the promising feature subset depends on
the demonstration set, that is, if the robot has a good set of
demonstrations, the robot can get the correct feature subset
easily. Otherwise, the robot might take a long time in learning
to refine the features subset.

Using only feature selection method is not enough to
refine the features subset which represent the task. As future
work, the human-robot interaction must be considered to
improve the accuracy of the system. For example, the robot
may ask the instructor about the features information or
acquire the demonstration from the instructor during the
learning process. Finally, the complementary features must
be considered in future.
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