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Abstract

This paper describes a method of parallel scheduling of
planning and action to realize an efficient and reactive
robotic system in dynamic environments. The method
uses a partial planning result, which comes from an iter-
ative refinement planning, to determine feasible actions
to be executed in parallel with the planning process. The
method is applied to a multiple-camera multiple-person
tracking problem. Simulation results show the effective-
ness of the method.

1 Introduction

Intelligent systems are usually designed as a set of mul-
tiple functional units, each of which is responsible for a
part of necessary tasks. An example is the conventional
sense-plan-act model, in which a system is composed of
the sensing, the planning, and the execution part. Usu-
ally each part is activated sequentially in this order be-
ing given the result of its preceding part. If resource and
time constraints are not severe, such a sequential activa-
tion may be sufficient. Otherwise, we need some strategy
to increase the efficiency and the reactivity of the system.

Physical agents like robots often have multiple pro-
cessors which can run in parallel with each other. For ex-
ample, a vision-guided mobile robot may have three pro-
cessors for environment recognition, path planning, and
motion control. The first step to increase the efficiency
of such a multi-processor system is to distribute the func-
tional units over processors and to make them run in par-
allel. This paper thus focuses on how to coordinate such
multiple units under a central control scheme.

Real-time search [8] or interleaving [11] are suitable
bases for a simple parallelization of planning and action;
i.e., executing the current step while planning the next
step (or subsequent steps). Goodwin [5] also dealt with a
similar parallelization but he explicitly compared two op-
tions, pure planning and planning with execution of the
current best action. This simple parallelization, however,
may have two drawbacks when the planning cost is high
owing to, for example, the necessity of considering many
contingencies. One drawback is that once the execution
of a planned step has been completed, the execution part
has to idle about waiting for the next planning result. The
other drawback is that since the cycle of execution is de-
termined by the planning time, the reactivity to environ-

ment changes may not be enough in a highly dynamic
environment.

Many layered architectures have been proposed for
controlling autonomous agents (e.g., [2]). These works
mainly discuss how to integrate deliberative and reactive
activities in dynamic and uncertain environments. The
parallelization realized by them is, however, similar to
those of the above; i.e., executing the current step while
planning the next step.

To seek more effective parallel execution, let us con-
sider a simple example. Suppose you are driving to the
east part of a town from its center and your colleague is
still searching for the path to the destination on the map.
In this case, you can start moving east immediately after
you find that the destination is on the east of the town,
because this motion impose little extra cost on you; you
will go east anyway. What this example suggests is that if
enough information is obtained to determine an appropri-
ate action from now to some future time point, the action
can start before the completion of the effort of seeking
more information.

Such a parallelization is one of the keys to solve the
problem of reactivity vs. efficiency. Increasing the re-
activity by simplifying the reasoning may result in an
inefficient behavior due to local reasoning; on the other
hand, increasing the efficiency by adopting a more elab-
orated reasoning may decrease the reactivity. By execut-
ing multiple activities in parallel, an agent (or a system
composed of multiple agents) may be able to behave ef-
ficiently without losing much reactivity. The aim of this
paper is to propose a parallel scheduling method to real-
ize such a behavior. We use a multiple-camera multiple-
person tracking problem as an example problem in dy-
namic environments.

We have proposed a method of parallelizing planning
and action for a mobile robot [10]. The method uses a
criterion to determine a set feasible actions which can
be executed in parallel with the current planning process.
We have also shown that the method improved the overall
performance. However, the planning problem treated was
the one in a static environment. In addition, we have not
examined how selection of the criterion affected the per-
formance. We therefore apply the method to a planning
in a dynamic environment, the coordination of multiple
cameras for tracking multiple persons.

Plan execution management has recently been an im-
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Figure 1: Difference between hard and soft dependencies.

portant research theme (e.g., [1][12]). The main issue
in these works is how to manage the planning process
adaptively to situation changes. This paper is, in contrast,
focused on realizing efficiency and reactivity simultane-
ously for a pair of specific planning and action processes.

2 Classification of Dependencies

2.1 Producer/Consumer view of activities

We view a pair of activities with a dependency relation
as a producer and a consumer. The producer generates a
product and the consumer uses it. For example, a sensing
activity generates an environment map and a planning ac-
tivity uses the map for path generation; the generated path
is then used by a motion control activity. This paper deals
with the case where a planning process is the producer
and a reactive action-selection process is the consumer.

2.2 Hard and soft dependencies

If a producer is a one-shot type activity that outputs a
final product after a certain period of processing, a con-
sumer gets no information until the final product is gen-
erated. We call this relation between the producer and the
consumer a hard dependency. If two activities are hard-
dependent, they cannot basically be parallelized1 , as in
the case of ordering constraints in scheduling [16].

If the producer can output some intermediate results,
such as a set of product candidates, in the middle of pro-
cessing, and if the consumer can utilize such results to
determine its action, the consumer does not have to wait
for the completion of the producer’s processing. We call
this relation a soft dependency. Soft dependency is a key
concept of the proposed parallel scheduling method. Fig.
1 compares a hard and a soft dependency.

3 Parallel Scheduling for Soft Dependency

3.1 Illustrative example

This paper deals with the following multiple-camera
multiple-person (MCMP) tracking problem (see Fig. 2):

MCMP problem2 : There are M persons arbitrarily
walking in a room. Each person may sometimes go out of
the room through one of doors and come back later. There
are N cameras fixed on the ceiling of the room. Each

1 The ith execution of the consumer and the i+1th execution of the
producer are, of course, parallelized as in the case of parallelization
using real-time search or interleaving explained above.

2 Note that this is not a multi-agent planning problem, in which dis-
tributed coordination of multiple cameras is an issue (e.g., [9]). We are
interested in a central control of multi-processor systems.

Figure 2: A multiple-camera multiple-person tracking prob-
lem.
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Figure 3: Possible movements of camera 1.

camera can change the viewing direction within a pre-
determined range. A single planning process assigns cur-
rently tracked persons to cameras, and each camera tracks
the assigned persons independently of the other cameras.
The goal of the whole system is to track as many persons
as possible during a certain period of time. Each camera
is assumed to be able to recognize any person as long as
the person is inside the field of view of the camera.

Fig. 3 shows an example case where a camera can
start moving before the completion of assignment deter-
mination, using a soft dependency relation. In the figure,
camera 1 can track seven persons, three of which camera
2 can also track. Only camera 1 can track the other four
persons. In this situation, the planning process will de-
termine the assignment of the three shared persons. Al-
though camera 1 cannot know the exact assignment at
this time, it knows that the number of assigned persons
will range from four to seven. If only the left four persons
are assigned, movement A seems best; if all seven are as-
signed, movement B seems best. So a good movement
will be between them (e.g., movement C). The meaning
of “good” here is that camera 1 will have little loss for
any possible assignments; camera 1 will shift the focus of
attention upward anyway. If we can select such a move-
ment and execute it in parallel with the current planning
process, the reactivity in tracking is expected to be kept
high without losing much efficiency.

3.2 Iterative refinement processing

To realize a soft dependency, the producer should be
able to output intermediate results repeatedly. This en-
tails an iterative processing scheme which gradually re-
duces the set of candidates for the final product. There
are a variety of iterative refinement processing, such as
planning as refinement search [7], sensor fusion for re-



ducing uncertainty [3] or ambiguity [6], and many coarse-
to-fine processing methods. Anytime algorithms [4] are
also suitable for iterative refinement. However, the itera-
tive processing required here does not have to necessarily
be anytime; a producer only have to give its consumer
some useful information for limiting the set of possible
consumer’s actions.

An iterative processing terminates when the final
product is generated. Considering the limitation of
computational resources, especially in dynamic environ-
ments, some additional termination conditions may be
necessary such as:

• A predetermined time for one planning cycle has
elapsed. This condition is to keep the minimum
level of reactivity.

• Further processing has turned out to be almost use-
less, for example, by referring to the estimate of fu-
ture improvement [13].

3.3 Consistency criterion

A consumer uses intermediate results from its pro-
ducer to determine the next action. For this purpose, we
introduce the notion of consistent action. An action of a
consumer is considered to be consistent with the current
process of a producer if the consumer’s action is effective
for any of possible products. For each soft dependency,
we define a consistency criterion which checks if an ac-
tion is consistent. The consumer selects and execute an
action among consistent ones. Usually a consistency cri-
terion is problem-specific and should be defined problem
to problem.

What consistency criterion to use will affects the per-
formance of the whole system. A loose consistency cri-
terion, which allows many actions of the consumer to be
consistent, enables a consumer to start early but may de-
grade the overall performance owing to selection of not-
so-good actions. A tight consistency criterion, on the
other hand, may force the consumer to start late but the
overall performance may be good owing to well-screened
actions. This tradeoff will be examined experimentally
later.

3.4 Summary of planning and parallel schedul-
ing

The pseudo code in Fig. 4 summarizes the planning
and scheduling algorithms of the producer and the con-
sumer in soft dependency relations. The algorithms for
one cycle (i.e., generation of one product) are shown.
Once the producer sends a product to the consumer, it
may wait for the completion of the execution of the con-
sumer.

4 Implementation and Experimental Eval-
uation

This section describes an implementation and the ex-
perimental evaluation of the proposed method using the
multiple-camera multiple-person (MCMP) problem.

Producer(){
candidates = generate initial candidates();
while (true){

send info to consumer(candidates);
candidates = refine(candidates);
if (termination condition(candidates)) break;

}
product = select best product(candidates);
send info to consumer(product);

}
Consumer(){

while (true){
candidates = receive info from producer();
if (candidates == final action) {

execute action(final action); break; }
candidate actions = select consistent actions(candidates);
best action = select best action(candidate actions);
execute action(best action);

}}

Figure 4: C-like code of parallel planning and scheduling algo-
rithms for producer and consumer in soft dependency relations.

4.1 Detailed problem settings

We made a simulator for the MCMP problem, as
shown in Fig. 5. In addition to the general problem de-
scription mentioned above, we use the following detailed
settings. The room is a 40[m] × 40[m] square and 16
cameras are placed in a 4x4 array on the ceiling of 10[m]
high, as shown in Fig. 5. The field of view of each camera
is a circle of 5[m] radius. Each camera can move the fo-
cus of attention (the center of the field of view) within the
circle of 5[m] radius centered at the home position right
below the camera. The maximum speed of the focus of
attention is 0.5[m/s].

In each simulation, we generate 50 walking persons,
who come into the room from one of the four doors at the
initial time. The initial, maximum, and minimum veloc-
ities are 1.0[m/s], 3.0[m/s], and 0.1[m/s], respectively.
At each time step, each person changes its velocity and
moving direction randomly according to some predeter-
mined distributions of acceleration and change of moving
direction. If a person comes in a predetermined distance
from a door, the person will go out with a certain proba-
bility and come back later from the same door.

camera position
on the ceiling

walking person

current field of view

door

Figure 5: MCMP simulator.
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4.2 Planner activity and controller activity

In this planning problem, the producer is the planning
process (called planner), which determines the assign-
ment of tracked persons to the cameras, and the con-
sumers are the camera controllers (called controllers)
(see Fig. 6). Planner iteratively refines assignment candi-
dates and sends the latest set of candidates to controllers
upon request of controllers. All controllers operate in the
same cycle time (set to 1[s]); every second, each con-
troller determines and executes an action (a movement of
the corresponding camera) according to the candidate set.
The time chart of planner and one controller would look
like the one shown in Fig. 7.

4.3 Iterative refinement formulation

The person-to-camera assignment problem is formu-
lated as follows. For persons pi (i = 1 . . . P ) and cam-
eras cj (j = 1 . . . C), let A be an assignment defined as:

A : pi → cj (j = 0 . . . C),

where c0 means that a person is not being tracked and is
not considered in the current assignment calculation. The
objective of planner is to determine the best assignment.

4.3.1 Initial assignment

Before starting planning, the position of tracked per-
sons in a future (currently, 1[s] ahead) is predicted using a
linear extrapolation from the current position and veloc-
ity estimate. Using the predicted positions, planner first
generates the initial assignment, in which, to each cam-
era, all trackable persons are assigned; a trackable person
is the person whom the camera can track in the next con-
trol cycle considering the predicted position and the con-
straints on the field of view and the motion of the camera.
Starting from this initial assignment, planner iteratively
searches for better assignments.

4.3.2 Evaluation of assignment

Assignments are evaluated by considering the follow-
ing two factors. One is the number of tracked persons.
The other is how widely the focuses of attention of the
cameras are distributed in the room. The second factor is
considered because it is not a good situation where many
cameras are focused on a specific area of the room. We
measure the degree of distribution, dod, by the variance
of the distance from each camera to its nearest neighbor.
dod is defined by:

dod = E
[
(mindisti − mindist)2

]
,

mindisti = min
j �=i

dist(pi, pj)

where E[·] is the expectation, pi is the focus of attention
of the ith camera to be determined for this assignment 3 ,
dist(·, ·) is the distance between two positions, mindist
is the mean of the minimum distances. The smaller dod
indicates the better (i.e., wider) distribution. At the initial
state, each camera is at the home position (i.e., looking
right down) and dod is zero.

Let ni, dodi, nj , and dodj be the number of tracked
persons and the distribution measure of assignments Ai

and Aj , respectively. Ai is considered to be better than
Aj if:

1. ni > nj , or

2. ni = nj and dodi < dodj .

4.3.3 Determination of focus of attention

For an assignment, the focus of attention (FOA) of
each camera is determined as follows. The determined
FOA is used both for calculating dod for evaluation and
for generating the final product (the complete assignment
and FOAs).

For a camera which does not have trackable persons,
the FOA is determined to go back to the home position at
the maximum speed.

For a camera which does not share any assigned per-
sons with other cameras, the FOA is determined to be the
center position of the region where the maximum number
of assigned persons will be tracked in the next time step.

For a group of cameras whose member shares at least
one person with one of the other cameras in the group, a
temporal assignment is determined first as follows. We
list the cameras in the descending order of the number of
tracked persons. Then, we fix all assignments to the first
camera in the list, remove the assigned persons from the
rest cameras’ assignments, and remove the first camera
from the list. We repeat this until all cameras are pro-
cessed. In the case of Fig. 8, for example, the following
assignment is determined: persons 1-4 to camera A, 5-
6 to B, and 7 to C. After the assignment is calculated,
the FOA of each camera is determined as in the case of
non-sharing cameras.

3 Calculation of the focuses of attention will be described later.
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Refinement(group of cameras){
shared persons = get shared persons(group of cameras);
for each person in shared persons {

sharing cameras = get sharing cameras(person);
for each camera in sharing cameras {

assign person(person, camera);
for each other camera �= camera {

remove person(person, other camera);
}
generate new candidate();

}}}

Figure 9: C-like code of assignment refinement step.
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Figure 10: Example of refinement.

4.3.4 Refinement step

Assignment candidates are listed in the descending or-
der of the evaluation. At each refinement step, the current
best assignment is selected and refined. A refinement step
consists of selecting a person who is shared by multiple
cameras one by one, and then generating new assignment
candidates for each possible assignment of the person to
the cameras. Fig. 9 shows a pseudo code for a refinement
step. Several new candidates are usually generated from
a candidate.

As an example, let us consider the case where the as-
signment is represented by Fig. 8. The current assign-
ment is the leftmost one in Fig. 10. In this case, the
shared persons are 4 and 6. According to the person to
select and the camera to be assigned, we will have four
new candidates shown on the right in Fig. 10. Dotted
lines in the figure indicate the removed assignments.

When a new candidate is generated, the determination
of FOAs described above is also performed; by using the
evaluation based on the FOAs, the new candidate is in-
serted into an appropriate place in the ordered list of can-
didates. To keep the size of the list within a certain level,
we remove a candidate if its number of trackable persons
is less than that of the best candidate (i.e., the first ele-
ment of the list). This is a kind of greedy strategy.

4.3.5 Termination condition and final product

We currently use the following two termination condi-
tions:

A sufficiently good assignment is obtained: for the cur-
rently best assignment A∗ and the second best one A∗∗,
if the numbers of tracked person are the same for them
and dodA∗ / dodA∗∗ is larger than a threshold (currently,
0.99), the iteration terminates.

The iteration has spent a certain amount of time: if
the number of generated candidates exceeds a threshold
(currently, 60), the iteration terminates.

When the iteration terminates, the assignment (and its
FOAs) is sent to controllers as the final product.

4.4 Consistency criterion and action selection

A consistent action (movement of FOA) of controller
is the one which does not entail much loss for any possi-
ble final assignments from planner, as mentioned before
(see Fig. 3). Therefore, we first calculate the union of as-
signed persons for each camera from all remaining can-
didates. The set of such unions is regarded as an assign-
ment, which is to be analyzed to select consistent actions.

If a camera does not share any assigned person in the
assignment with other cameras, its motion can be de-
termined independently, because the number of assigned
persons never increases as the refinement proceeds. For
such a camera, consistent actions are the set of move-
ments of FOA to the region where all persons assigned to
the camera are trackable, and the one to the center of the
region is selected and executed.

If a camera shares persons with other cameras, the
consistent actions are determined as follows (see Fig.11).
We first calculate two positions. gex is the center of the
convex hull formed by the predicted position of the per-
sons who are exclusively assigned to the camera. gall is
the center of the convex hull formed by all persons. We
use a heuristic that consistent actions lie in the triangle
formed by these two points and the current FOA, c, of
the camera.

To select the best consistent action, we use two param-
eters. α controls the weights to the exclusively assigned
persons and the other persons. We first calculate a divi-
sion point g = α gex + (1 − α) gall, and set the next
FOA on the line connecting c and g. Parameter β con-
trols the speed of FOA movement; the maximum speed is
set to that of the camera multiplied by β. Since a larger β
makes the FOA movement larger, β represents the “loose-
ness” of the consistency criterion. In the simulation, α
is fixed to 0.8. β is changed to examine the effect of
the “looseness” of the consistency criterion to the overall
performance of tracking.

4.5 Experimental Results

We performed simulation for five data set. One data
set is composed of 1000 steps (i.e., 1000[s]) of move-
ments of 50 person. We use as the measure of the overall
performance the averaged ratio of the number of tracked
persons to 50.
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First, we compared our method (called parallel) with
the following three methods. ideal is a planner whose
computational cost is negligible; that is, the maximum
number of assignment candidates can always be exam-
ined within one cycle time. Its performance is used as
a kind of upper bound. reactive is a planner which con-
trols each camera independently without any coordina-
tion among cameras; using this planner, multiple cam-
eras sometimes tracks the same person. Its performance
is used as a kind of lower bound. sequential is a planner
which does not generate intermediate results and, there-
fore, planner and controller are sequentially activated.
We set the cost of examining one candidate to 1/20[s];
the delay when the maximum (60) candidates are exam-
ined is 3[s]. The comparison result in Fig. 12 shows the
effectiveness of the proposed method.

Second, we examined the effect of the “looseness” pa-
rameter β of the consistency criterion to the overall per-
formance. We set β to one of 0.1 (tightest), 0.3, 0.5, 0.7,
and 0.9 (loosest). The comparison result shown in Fig. 13
indicates that too tight or too loose criterion is not appro-
priate. Although β = 0.5 seems best in this experiments,
selection of best parameter in general is an open question.

5 Conclusions and Discussion

This paper has described a novel method of parallel
scheduling of planning and action of a robotic system.
The method is based on the notion of soft dependency
between planning and action, and employs an iterative
refinement planning and consistency criteria to select the
consistent actions. The method is applied to a multiple-

camera multiple-person (MCMP) tracking problem. The
results have shown that both the efficiency and the reac-
tivity are simultaneously realized. The effect of selecting
consistency criteria to the overall performance was also
analyzed. We are now planning to apply the proposed
method to a real multiple camera system [15].

This paper is a step towards a general scheme of cen-
tralized coordination of multiple activities, in which not
only planning and action but also other activities such
as sensing are involved. A future work is to apply the
method to other coordination problems. Comparison
with distributed planning approaches [14] is another fu-
ture work.
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