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Abstract

In vision-guided robotic operations, vision is used
for extracting necessary information for achieving the
task. Since visual sensing is usually performed with
limited resources, visual sensing strategies should be
planned so that only necessary information is obtained
e�ciently. This paper describes a method of system-
atically generating visual sensing strategies based on
knowledge of the task to be performed. The gener-
ation of the appropriate visual sensing strategy en-
tails knowing what information to extract, where to
get it, and how to get it. This is facilitated by the
knowledge of the task, which describes what objects
are involved in the operation, and how they are as-
sembled. Our method has been implemented using a
laser range �nder as the sensor. Experimental results
show the feasibility of the method, and point out the
importance of task-oriented evaluation of visual sens-
ing strategies.

1 Introduction

In vision-guided robotic operations, visual sensing

strategies should be planned so that only necessary

information is obtained e�ciently. To determine an

e�cient visual sensing strategy, knowledge of the task

is necessary. Without knowledge of the task, it is of-

ten di�cult to select the appropriate visual features

to be observed. In addition, resources may be wasted

in tracking uninformative features.

From this standpoint, research on task-oriented vi-
sion, active vision, or purposive vision has been ac-

tively investigated [1] [3] [6]. By using knowledge of

the task, the vision system can be designed to be fast

and robust. However, the designing process tends to

be task-speci�c and requires a signi�cant amount of

e�ort. Thus, it is desirable to develop a systematic

method which can generate task-oriented visual sens-

ing strategies automatically, namely a method that

optimizes each visual sensing strategy according to a
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given task.

The generation of task-oriented sensing strategy is

decomposed into the following three subproblems to

be solved successively:

� determine what visual information is necessary

for the current task;

� determine which visual features carry such neces-

sary information; and

� determine how to get necessary information with

the sensors used.

The �rst two subproblems are concerned with focus-

ing the attention to informative visual features; the

last problem is concerned with evaluation of sensing

strategies.

The ability of focusing attention is important to

realize e�cient visual sensing strategies. There have

been several approaches to this problem. Some work

[5] [12] is concerned with exploratory visual sensing

planning under uncertainty of the knowledge of the

scene. in these approaches, visual feature set, from

which the observed features are selected, is given in

advance; it is not automatically derived from the task

description. Some work [4] [9] is concerned with the

usage of the task, including the constraints on the en-

vironment, for concentrating the visual processing to

only necessary portion of image. These approaches

are, however, highly task-speci�c and are based on

the careful a priori examination of the task.

The third subproblem (i.e., how to get necessary

information) is decomposed further into two more spe-

ci�c problems of determining a set of feasible sensing

strategies and subsequently selecting the most appro-

priate one among them. The goal of the former is to

determine sensing condition which satis�es several re-

quirements on imaging such as resolution, �eld of view,

focus and visibility [15]. The ability of solving such a

problem would be necessary for any sensor planners

as a subroutine.

As mentioned above, the second more speci�c prob-

lem is to determine the best sensing strategy which

maximizes some \goodness" function. The minimum

uncertainty criterion (i.e., to select the sensing strat-

egy which minimizes the uncertainty of information



to be obtained) has often been used (e.g., [8]). In

certain types of tasks, however, some part of infor-

mation may need to be more accurate than the rest.

Thus, some appropriate function should be automat-

ically designed for each task which can evaluate how

each sensing strategy contributes to the proper execu-

tion of the current task.

This paper proposes a novel method of systemat-

ically generating visual sensing strategies based on

knowledge of the task. We deal with visual sensing

strategy generation in assembly tasks, in which the

environment is known, that is, the shape, the size, and
the approximate location of every object is known to

the system. In this situation, the role of visual sensors

is to determine the position of the currently assem-

bled object with su�cient accuracy so that the object

can be, with a high degree of certainty, mated with

other objects. In the following sections, we describe

new methods in: (1) determining necessary visual in-

formation, (2) determining visual features to observe,

and (3) evaluating sensing strategies.

2 Determining What Information is

Necessary

This section �rst describes the task analysis based on

face contact relations between objects. Then, using

the result of the analysis, a theory is derived which

determines what visual information is necessary for

each assembly operation.

2.1 Task Analysis Based on Face Contact
State

We analyze a state of the environment in terms of

face contacts between object surfaces [7]. The analy-

sis deals with the case where polyhedral objects per-

form only translational motions. We assume that each

assembly operation involves one manipulated object,

manipulated by a robot for the current operation, and

several stationary environmental objects which have

face contacts with the manipulated object. We also

assume that the goal of each assembly operation is to

establish the required face contact state.

2.2 Representation of Face Contact
States

Let us suppose a surface patch of the manipulated

object have a face contact to a surface patch of an

environmental object. This surface contact pair con-

strains the manipulated object's possible translation

motion by:

N ��T � 0;

where �T denotes possible translational motion vec-

tors of the manipulated object andN denotes the nor-

mal direction of an environmental surface patch.

Possible translation vectors of the object can be

represented by using points on the Gaussian sphere

N constraint plane

Nmanipulated object

environmental object

maintaining
motion directions

Fig. 1: Constraint inequality depicted on the Gaussian

sphere.

N

N

maintaining
motion directions

constraint
motion direction

Fig. 2: A bidirectional constraint.

(see Fig. 1). The constraint from a patch pair de-

�nes several regions in the Gaussian sphere. Assuming

that the normal, N , points to the north pole of the

Gaussian sphere without loss of generality, the north-

ern hemisphere corresponds to possible motion direc-

tions; the southern hemisphere corresponds to prohib-

ited motion directions.

When several surface patches of di�erent orienta-

tions make contact, possible motion directions are

constrained through simultaneous linear inequalities.

These constraints are represented as a combined re-

gion in the Gaussian sphere.

In Fig. 1, motions of the directions correspond-

ing to the boundary of the southern hemisphere (the

equator) maintain the current face contact state. The

degrees of freedom of the maintaining the contact state

(maintaining DOF) is two. Motions of the directions

corresponding to the inside of the detaching hemi-

sphere break the contact state, and is referred to as

the detaching motion. A pure detaching motion is the

detaching motion which does not contain any main-

taining motion component. The pure detaching mo-

tion in Fig. 1 is along the constraint normal N ; its

degrees of freedom (detaching DOF) is one.

Fig. 2 shows the case where two normal vectors

of environmental objects have the opposite directions.

The possible motion directions of the manipulated ob-

ject can be represented as the entire great circle per-

pendicular to the axis connecting the two poles. There

are no detaching motions; the detaching DOF is zero.

One direction along the surface normals is completely

constrained; the degrees of freedom of the constraint

directions (constraining DOF) is one.

We can specify a face contact state by using a triplet

of maintaining, detaching, and constraining DOFs.

Using this triplet, for example, the states of Figs. 1

and 2 are represented as (2; 1; 0) and (2; 0; 1), respec-

tively. Each assembly operation is considered as a

transition from one face contact state to another. By

extracting possible contact states and transitions be-

tween them, we get the transition graph as shown in

Fig. 3.
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Fig. 3: Contact state transitions represented as a direc-

tional graph [7].

2.3 Determining What Visual Informa-
tion is Necessary

An assembly operation always increases constraints

on some degrees of freedom of the manipulated ob-

ject. This increase of constraint is classi�ed into three

cases: from maintaining DOF to detaching DOF, from

detaching DOF to constraining DOF, and from main-

taining DOF to constraining DOF. Fig. 4 shows typ-

ical situations corresponding to the three cases.

Let us examine how the type of the degree of free-

dom for horizontal motion changes in these cases, and

how that change is realized. In case (a), the degree of

freedom changes from maintaining DOF to detaching

DOF. Since the approaching direction of the block is

parallel to the direction of the pure detaching motion

at the �nal state (i.e., the normal vector of the wall),

this operation is realized by moving the block until

the face contact occurs. Thus, this operation can be

performed by compliant motion without visual infor-

mation. In case (b), the degree of freedom changes

from detaching DOF to constraining DOF. Although

the horizontal degree of freedom is constrained at the

�nal state, visual information is also unnecessary be-

cause the desired horizontal position can be kept by

maintaining the contact between the block and the

right wall.

In case (c), the degree of freedom changes from

maintaining DOF to constraining DOF. The horizon-

tal position of the block needs to be adjusted with

visual information before mating so that both the left

and the right face contact are achieved simultaneously.

Since there is no contact before mating, force informa-

(a) (b) (c)

Fig. 4: Three typical cases of increase of constraint on a
degree of freedom. Type and transition of the triplet is as

follows:
(a): maintaining ! detaching ((3; 0; 0)! (2; 1; 0)).

(b): detaching ! constraining ((2; 1; 0)! (2; 0; 1)).
(c): maintaining ! constraining ((3; 0; 0)! (2; 0; 1)).
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Fig. 5: Classi�cation of state transitions. Bold lines indi-
cate the transitions that require visual information. Thin

lines indicate the transitions that do not require visual in-

formation.

tion cannot be used.
1

To summarize, if a degree of freedom becomes con-

straining DOF from maintaining DOF, that degree of

freedom should be observed. By applying this the-

ory to thirteen possible state transitions enumerated

in Fig. 3, four transitions (S!B, S!E, A!E and

B!E) were found to require visual information (see

Fig. 5).

3 Selection of Features to be Observed

In each vision-guided assembly operation, a relevant

set of visual features to be observed needs to be se-

lected so that necessary degrees of freedom of the as-

sembled objects are observed. This selection is per-

formed as follows (see Fig. 6). From the task descrip-

tion, the degrees of freedom to be constrained by the

current assembly operation is obtained. On the other

hand, a set of observable features comes from the face

contact information in the task description. By con-

sulting sensing primitives [10], which describe the re-

lationships between observed features and degrees of

freedom to be measured, a feasible set of features is

selected. Necessary geometric information is retrieved

from a CAD-based world model.
2

1A sophisticated force control-based manipulation strategy

may be employed to perform this kind of assembly operation

without visual feedback [14]. Even in such a case, reducing

errors by visual information would be useful.
2The object recognizer determines each object con�guration

in the real world and generates a CAD-based world model.
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Fig. 6: Selection of features to be observed using task

description and sensing primitives.

The selection problem is formalized as follows. We

take the Gaussian sphere G and use points on the

sphere to represent movable directions under a certain
set of constraints. Let us use the following notation:

� Agoal: A set of points on G which represents de-

sired constraints which need to be achieved after

the next sensing is completed.

� Acurr: A set of points on G under the current set

of constraints. This includes constraints realized

by a motion control during the current assem-

bly operation (e.g., a contact-maintaining opera-

tion in Fig. 4(b)) as well as geometric constraints

achieved so far.

� Ai: A set of points on G which represents con-

straints to be obtained by observing the ith fea-

ture; this information is described in each sensing

primitive.

By observing n di�erent features ffeatureiji =

1; : : : ; ng, the following resultant point set, Aobsd, is

obtained:

Aobsd = Acurr

\ 
n\
i=1

Ai

!
:

In order that this set of features is su�cient for provid-

ing enough constraints, the following condition must

be satis�ed:

Agoal � Aobsd: (1)

This condition says that the constraints to be obtained

after the observation must be stronger than or equal

to the desired constraints.

As an example, let us consider two cases (a) and (b)

of peg-in-hole operation shown in Fig. 7. Suppose we

are localizing the hole by observing the position of its

edges, e1 and e2. Since the degrees of freedom to be

adjusted are limited on a plane perpendicular to the

insertion direction, we use the Gaussian circle instead

of the Gaussian sphere.

First, as shown in Fig. 7, Acurr for case (a) is

represented by the full circle, while that for case (b) is

represented by two points on the x axis. Agoal is the

Gaussian circle with no points for both cases. Then,

as shown in Fig. 8, Ai for each edge, e1 or e2, is

represented by two points corresponding the direction

contact

xy

x

y

Acurr
x

y

e1 e2
e1 e2

(a) (b)

Fig. 7: Two insertion operations and movable directions.

A1 A2x
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y

for for e1 e2

Fig. 8: Constraints obtained by observing edges: A1 for

edge e1 and A2 for edge e2.

of the edge. By applying equation (1) to these data, we

can decide that observing only e1 is su�cient for case

(b), and that observing both e1 and e2 is necessary for

case (a).

Once a set of features to be observed is obtained,

a set of feasible sensor positions is enumerated from

which all of the selected features are observable. Sim-

ilar to the prior works [15], the candidates for sensor

positions are enumerated by considering visibility of

features and the possibility of collision between sen-

sors and other objects, as well as the con�guration

of sensors. The selection of the �nal sensing strategy

from the candidates is described in the next section.

4 Task-Oriented Evaluation of Visual

Sensing Strategies

4.1 Uncertainty-Based Evaluation

We evaluate a sensing strategy based on the accu-

racy of visual information to be obtained by the sens-

ing strategy. We assume that sensor data consist of

position measurements, and that each measurement

has the uncertainty, which can be calculated using the

uncertainty model of the sensor. The problem of esti-

mating the object position is described as follows. Let

a be the parameter vector representing the object po-

sition. Suppose that the parameter vector is estimated

from a set of 3D measurements fxiji = 1; : : : ; Ng, and

that the following equation f
i
, which represents con-

straints on measurements (shape of the measured fea-

ture) and comes from the CAD-based world model,

should ideally be satis�ed for each measurements:



f
i
(xi;a) = 0 (2)

The initial estimate of the parameters are also ob-

tained from the CAD-based world model. Since this

equation is non-linear in general, by applying the Ex-

tended Kalman Filter theory [2] to this estimation

problem, the covariance matrix S of a is given by

S

�1
=

NX
i=1

M

T

i
W

�1
Mi;

Mi =
@f

i

@a
; (3)

Wi =
@f

i

@xi
�i

@f
i

@xi

T

;

where �i is the covariance matrix representing the un-

certainty in the ith measurement xi.
Accuracy of an estimate can be evaluated based on

the covariance matrix S. Note that the uncertainty

of each element of a has a di�erent e�ect to the suc-

cess of the current operation, and that this relative

e�ects of the elements depends on the assembly opera-

tion currently being carried out. The next subsection

describes a general method to de�ne an appropriate

evaluation function for each assembly operation.

4.2 Evaluation Based on Predicted Suc-
cess Probability

One of the most direct criteria that measures the

\goodness" of a sensing strategy is whether the cur-

rent operation will succeed with the selected sensing

strategy. Therefore, we use the predicted success prob-
ability of the operation as the criterion; the sensing

strategy that is selected is the one most likely to re-

sult in successful task execution.

To calculate the success probability, we �rst calcu-

late a region in the space of the error of the position

parameter vector such that if the error is inside the

region, the current operation succeeds. We call this

region a success region. Then, the predicted success

probability is given by calculating how much portion

of the uncertainty distribution of the error, which is

predicted from the sensor model, is inside the suc-

cess region of the current operation (see Fig.9). This

success probability is numerically calculated by quan-

tizing the space of the error vector. After calculating

the probabilities for all feasible sensing strategies, the

one with the highest probability is selected as the �nal

sensing strategy.

4.3 Calculation of Success Region

A success region is a representation of the clearance

of the operation, and is formed by a set of simultane-

ous inequalities in the space of unconstrained degrees

of freedom in each operation. In case of the operation

shown in Fig. 7(a), for example, the success region is

formed in a three-dimensional space composed of two

translational and one rotational degrees of freedom on

∆X

∆Y

Uncertainty ellipse (ellipsoid)
obtained from the sensor model

Success region  obtained from
the CAD−based world model

Fig. 9: Calculation of the predicted success probability.

This �gure shows the case where the position parameter

of the object is two-dimensional, (X; Y ).

the plane perpendicular to the insertion direction. A

method of automatically calculating success regions is

described in [10].

Here, as an example, we derive the success region

for the case where the shape of the cross-section is

rectangle. Fig. 10 shows a top view of the operation.

Edges of the hole are aligned to the X and the Y

axes. Let WX and WY be the widths of the peg in

the X and Y axes, respectively. Also, let k denote the

clearance ratio of the hole. These values come from

the CAD model. We need to adjust the position and

the orientation of the peg, (X;Y; �).

Let (�X;�Y;��) denote the error of (X;Y; �). We

can obtain eight inequalities for this operation: two for

each vertex of the peg. For the upper-right corner of

the peg and the hole, for example, the following two

inequalities are obtained:

�X +
WX

2
cos�� �

WY

2
sin�� �

k + 1

2
WX ;

�Y +
WX

2
sin�� +

WY

2
cos�� �

k + 1

2
WY :

We calculated the actual success regions for two sets

of geometric values. Fig. 11 shows the resultant suc-

cess regions. As shown in the �gure, the tolerance in

�X in case (b) is larger than that in case (a), while

the tolerance in �� is smaller. If the uncertainty dis-

tribution of the position parameter is the same to both

cases, the resultant success probabilities should di�er

from each other. Thus, the e�ect of the uncertainty

in the parameter vector to the task execution needs to

be evaluated by considering the success region.

X

Y
Y(1+k)W

X(1+k)W

WX

WY

∆θ

(X+   X, Y+   Y)∆ ∆

Fig. 10: Rectangular peg-in-hole operation.
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(b) WX = 38:10 (mm),

WY = 19:05 (mm),

k = 0:043.

Fig. 11: Example success regions.

5 Implementation of the Method using

Line Laser Range Finder

5.1 Laser Range Finder and General
Sensing Strategy

The proposed method has been implemented us-

ing a Toyota line laser range �nder (LRF) [11] as the

sensor. The LRF emits slit laser, detects highlighted

portion of the object by a TV camera, and obtains a

line of 3D measurements (see Fig. 12). The LRF is

attached to an overhead platform of the RobotWorld

[13]. This platform has four degrees of freedom: three

degrees of freedom for translation and one for rotation

about the vertical axis.

Every assembly operation that requires visual in-

formation is a kind of \peg-in-hole" operation. The

location of a peg is measured by observing its side

faces; the location of the hole is measured by observ-

ing several points (currently, �ve points) on its edges.

Thus, we prepare sensing primitives for the following

two geometric features: a straight edge and a planar

face. We use a sensing strategy as shown in Fig. 13;

data for one assembly operation are collected at sev-

eral position by moving the LRF in parallel with the

insertion direction because the relative displacement

on the plane perpendicular to the insertion direction

is important for the operation. We also control the po-

sition of the range �nger so that each measured point

is kept within a certain area of the slit laser; the uncer-

tainty of the measurement with the LRF is considered

to be almost constant in this area. Thus, the only pa-

rameter that speci�es the position of the range �nder

is the angle � between the direction of the slit laser and

some axis of the plane perpendicular to the insertion

direction (see Fig. 14).

5.2 Assembly Operation with Visual
Feedback

The actual vision-guided assembly operation is per-

formed in a \stop and sense" mode. First, a peg is

moved by a manipulator to the position just before a

hole. Then, the LRF is placed to the planned position,

and measures the position of the hole and the peg. If

the error in the relative position between the peg and

the hole is within the success region (see Section 4.2),

the peg is inserted. Otherwise, the peg position is ad-

justed and the peg is observed again. This �nal step

is repeated until the relative position becomes satis-

factory, and then the peg is inserted.

6 Experimental Results

This section describes the experimental results of a

peg-in-hole operation. Experimental results for other

operations can be found in [10].

To validate the selection of visual sensing strategy

based on predicted success probability (see Section

4.2), we compared the predicted success probability,

which is predicted from the object models and sensor

models, with the actual success ratio, which is statisti-

cally obtained through a number of actual trials of the

same operation by the actual robot and the sensor.

6.1 Uncertainty Model of Laser Range
Finder

The laser range �nder we used provides quite ac-

curate measurement: less than 0:1(mm) in depth and

less than 0:3(mm) in the horizontal position. In order

to stress the e�ect of uncertainty to the success proba-

bility, we arti�cially added a relatively large Gaussian

noise to the measurement; we added Gaussian of stan-

dard deviation 0:12(mm) to the depth measurement

and that of standard deviation 0:30(mm) to the hor-

izontal position measurement; uncertainties of these

two measurements are set to be independent of each

other. Fig. 15 shows the distribution of 500 measure-

ments of the same point. The resultant uncertainties

are reasonably Gaussian with almost the desired stan-

dard deviations.

The reason why we used this uncertainty model

is that the purpose of this paper is not to construct

an uncertainty model of our laser range �nder but to

demonstrate that our method can generate the opti-

mal sensing strategy if the uncertainty model of the

sensor is given.
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Fig. 15: Distribution of measurements and estimated

standard deviation.
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Fig. 12: Laser range �nder.
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Fig. 13: A strategy for observing a
peg and a hole.
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Fig. 14: Candidate positions.

6.2 Face Contact Analysis and Actual
Operation

Fig. 16 shows the face contact analysis of the op-

eration. This operation results in two translational

degrees of freedom being constrained. The face con-

tacts to be achieved are (f1-f
0

1
), (f2-f

0

2
), (f3-f

0

3
) and

(f4-f
0

4
). The candidates for observed features are f1,

f2, f3 and f4 for the peg, and e
0

1
, e

0

2
, e

0

3
and e

0

4
for the

hole. To obtain su�cient information for localization,

two neighboring faces and edges were observed.

Considering the conditions that �ve points are com-

pletely observed on an edge, and that the LRF does

not collide with the robot manipulating the peg, the

range of the feasible viewing direction (�) were deter-

mined as shown in Fig. 17. The center of the circular

trajectory of the LRF was placed on the vertex at the

intersection of the two neighboring edges. Fig. 18

shows a successful peg-in-hole operation.

6.3 Comparison of Predicted Success
Probability with Actual Success Ra-
tio

We compared the predicted success probability

with the actual success ratio in the following two sets

of the objects:

Case (a): The cross-section of the peg is a square of

19:05(mm)� 19:05(mm). The clearance ratio of the

hole is 0:043. The success region for this case is shown

in Fig. 11(a).

Case (b): The cross-section of the peg is a rectangle

of 38:1(mm)� 19:05(mm). The clearance ratio of the

hole is 0:043. The success region for this case is shown

in Fig. 11(b).

In each case, several viewing angles (� in Fig. 17)

were selected; for each angle, the same operation was

performed 50 times and the numbers of success and of

failure were accumulated to calculate the actual suc-

cess ratio.

Fig. 19 shows the comparison results; the results of

actual experiments coincide with the predicted results

quite well. We think this result shows the importance

of task-oriented evaluation of sensing strategies, i.e.,

the appropriate sensing strategy should be selected by

considering the task to be performed.

insertion
direction

f1

f2

f
3

f4

f’
1

f’2

f’3
f’4

e1
e3

e4

e2

e’1
e’2

e’3

e’4

Fig. 16: Face contact analysis of the rectangular peg-

in-hole operation. The triplet of DOFs (see Section 2.2)

changes from (3; 0; 0) to (1; 0; 2).

trajectory of 
laser range finder

edges to be observed

φ

projected
slit laser

direction of

range fin
der

range of candidate
viewing direction

measured
 points

Fig. 17: Top view of candidate viewing directions for

observing two edges and faces.

7 Conclusion

We have described a method of systematically gener-

ating visual sensing strategies in assembly tasks using

the knowledge of the task to be performed. Based

on the result of the analysis of the assembly tasks in

terms of the transition of face contacts between object

surfaces, we can determine which degrees of freedom

of the assembled objects should be measured. A set

of visual features to be observed are then selected by

which the necessary degrees of freedom are measured.

Finally, among feasible visual sensing strategies, the

one with the highest predicted success probability is

selected as the �nal sensing strategy.

The proposed method has been implemented using
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Fig. 18: A successful peg-in-hole operation.
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Fig. 19: Comparison of the predicted success probability
with the actual success ratio.

a line laser range �nder as the sensor. The experi-

mental results show the feasibility of the method, and

point out the importance of task-oriented evaluation

of visual sensing strategies.

In [10], we have extended the proposed method to

more general assembly tasks where an object can be

composed of planar or cylindrical surfaces, and where,

in addition to three translational degrees of freedom,

one rotational degree of freedom is allowed. Since most

of assembly operations in practical situations are re-

alized by these four degrees of freedom, this extension

would be useful for practical use. We have successfully

applied this extended method to several assembly op-

erations such as a gear-mating operation [10].
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