2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

3D Time-space Path Planning Algorithm in Dynamic Environment
Utilizing Arrival Time Field and Heuristically Randomized Tree

Igi Ardiyanto and Jun Miura

Abstract— This paper deals with a path planning problem
in the dynamic and cluttered environments. The presence of
moving obstacles and kinodynamic constraints of the robot
increases the complexity of path planning problem. We model
the environment and motion of dynamic obstacles in 3D time-
space. We propose the utilization of the arrival time field for
examining the most promising area in those obstacles-occupied
3D time-space for approaching the goal. The arrival time field
is used for guiding the expansion of a randomized tree search
in a favorable way, considering kinodynamic constraints of the
robot. The quality and the optimality of the path are taken into
account by performing heuristic methods on the randomized
tree. Simulation results are also provided to prove the feasibility,
possibility, and effectiveness of our algorithm.

I. INTRODUCTION

Producing an efficient trajectory for the robot in the
cluttered and unknown environment is one of complicated
path planning problems. The complexity will increase along
with the presence of dynamic obstacles. For example, when
a dynamic obstacle passes in front of the robot which is
moving toward a goal, there are several options for the robot
to act. The robot can take the route which is predicted to
be left by the dynamic obstacle, or the robot takes a way
which is predicted not to be reached by the obstacle in the
future, or the robot can take the straight path by a stop-and-
go movement. In this problem, determining the most optimal
route for the robot is a difficult task.

The complexity of the problem will also increase by
adding the number of dynamic obstacles. In the classic path
planner, this problem is solved by doing a collision check al-
gorithm, but such a method does not take account the quality
and the optimality of the path. In several recent approaches,
handling the moving obstacles is done by using the time-
space approach. The use of time-space representation has
several advantages; one of them is that we have a wider
view for seeing the moving obstacles than using only spatial
approach, so that we can do more than just for avoiding
them.

Another important thing when we develop a path planning
algorithm is how the path planner can be applied to real
robots and environments. We have to consider kinodynamic
constraints of the robot. Besides that, the execution time of
the algorithm becomes a critical matter.

In this paper, we propose a novel approach dealing with
these problems by introducing the arrival time field to guide

I. Ardiyanto and J. Miura are with Department of Computer Sci-
ence and Engineering, Toyohashi University of Technology, 1-1 Hibari-
gaoka, Tenpaku-cho, Toyohashi, Aichi, 441-8580, Japan {i ardiyanto,
jun}@aisl.cs.tut.ac.jp

978-1-4673-1404-6/12/$31.00 ©2012 IEEE

a randomized path search in a 3D time-space. By looking
at the problem using the time-space approach, we can use
the information of moving obstacles, not only for avoiding
them but also to examine regions between obstacles and to
get the most efficient region for the robot to move toward
the goal. In our approach, basically, the introduced arrival
time field is used to provide information about those efficient
regions which can ensure the convergence and the optimality
of the path, and then combined with a randomized search
method which can widely explore the area. The utilization
of randomized search is also useful for considering kinody-
namic constraints and the path quality of the robot, so that
the produced algorithm is applicable to the real robot.

The rest of this paper is organized as follows. We present
related works in section II, followed by the basic idea of
the arrival time field and a brief explanation of the arrival
time field in 3D time-space and its properties in section
III. Section IV describes the randomized tree and heuristic
methods to optimize generated path. We then show the
simulation results in section V. Conclusion of our work and
possible future work are described in section VI.

II. RELATED WORKS

There are a lot of works which have been presented
and discussed to address the problem of path planning.
Randomized technique is one among many approaches which
is used by many researchers ([6], [4]). Randomized path
planner such as RRT (Rapidly-exploring Random Tree) [2]
is widely accepted because of its ability to explore the tree
in the vast area. Several researchers have been worked on
this sampling-based method and its variant, like Jaillet et
al. [6], Zucker et al. [7], Karaman and Frazzoli [5],Urmson
and Simmons [3], and Vonasek et al. [15]. There are also
researches on RRT using kinodynamic constraints by La
Valle, et al. [4] and Plaku, et al. [8]. Another work proposed
by Hassouna et al. [1] does not use randomized technique,
but instead uses a potential function generated by the Level
Set Method over the free space.

Other researchers try to solve the problem of moving
obstacles by using time-space approach due to its advantages
as we have mentioned in the previous section. Fujimura [17]
has employed the time-space environment to generate an
optimal motion, with a restriction that the obstacle motion
is completely known. Zucker, et al [16] develop a variant of
RRT algorithm for system with time-space constraints. The
algorithm supports planning in unknown environments, but
it does not consider kinodynamic constraints of the robot.

III. ARRIVAL TIME FIELD IN 3D TIME-SPACE

Before we talk further about the arrival time field in 3D
time-space, we first describe the basic idea of the arrival
time field itself in the lower dimension. Let us consider the
environment C as a two dimensional time-space that holds
information as follows:

o Non-passable area, holds information about walls and
static obstacles, denoted by O C C;

« Free space area, defines visible areas where robot will
not collide walls as well as static obstacles, denoted by
F CC;

A. Definition

We define the arrival time field as a space containing
the information about the time needed by each point in
the space for approaching a determined point. Let us first
consider basic kinematic equation in one dimensional case
which correlates speed V, position x, and time T’

AT 1
Ar=VAT — — = — 1
x Az V M
In higher dimension, eq. (1) can be expressed as
1
VT| == 2
VT = & @

Let a monotonic wave front originated from a determined
source point move across a space. Then the arrival time of
wave front in every point can be calculated using (2). The
arrival time of a point depends on the distance from the
source point and the speed used for travelling the wave front
toward that point. This problem is known as Eikonal equation
problem which can be solved by Godunov appoximation
[11], which is for example in a 2D space

\/max (D} T, —Df*T,0)% + max (D YT, — D} VT 0)"

=—1;(,7) €F
v (4, 7)
(3)
where
DY =Tiyr;— Ty, Dy =Tij —Tic1y, @
DY =T, 41— T, D;) =T —Tij 1.

T; ; is the arrival time value of cell (i,j), and V; ; denotes
speed function of cell (i,j). Solution of (3) can be retrieved
using the solver such as Fast Marching Method [11], Fast
Sweeping Method [12], or Fast Iterative Method [14].

The stressing point of the arrival time field is that it
provides the minimum predicted arrival time for each point
rather than the shortest distance to the goal. This predicted
arrival time depends on its speed function. We can exploit
the speed function by inserting information about several
possibilities that the robot may face in the environment, such
as rough terrain, variational distance of obstacles, etc.

For example on a plain environment with obstacle, we
can determine that the robot is better to move slower at the
narrow space or corridor or area next to the obstacle. We then
set a smaller speed on the area near the obstacle (for example,

188

()

(d

Fig. 1: (a) An environment with two possible paths towards the goal. (b)
Monotonical velocity field of (a). (c) Arrival time field with a uniform
velocity function. (d) Arrival time field with a monotonic velocity function.
Darker color means longer arrival time. By using the monotonic velocity
function, taking path B is better according to (d)

using monotonic velocity function which gives more value of
speed at an area far from the obstacle), then a shorter travel
time will be through an area far from the obstacle (see Fig.
1). It means the safety factor is also taken into account in the
arrival time field calculation. For that purpose, we implement
a monotonic function denoted by

‘/;lajl = {

where V;, ;, is the speed on the point x;, ;,, T;, j, is the
nearest point of obstacle to x;, ;,, and n is a constant
for adjusting the monotonic function’s value, to give more
differences on each cell.

n””“'il‘“_wi?’f? ||

1

for Tiy 1 S F, Tiy,jo €0
otherwise

®)

B. Modelling The Environment

We have described the arrival time field and have given
the example in 2D environment. In our proposed algorithm,
we use a 3D time-space representation. Basically, the mod-
eled environments are consist of collection of predicted 2D
environments in several time slices. In each time slice, we
estimate the position of every object such as static obstacles,
walls, and moving obstacles (see Fig. 2). For dynamic
obstacles, we make a short-time dynamic obstacle motion
model using constant speed for motion prediction of dynamic
objects. Let Z,, (t) and Z?; (t) be the predicted position of
an obstacle at time slice ¢ in x and y coordinate. We predict
the position of each dynamic obstacle by

Zo(t) = Z,(0) +vzt, Z,(t) = Z,(0) +vz,t, (6)

where Z,(0) and Z,(0) are the current position of each
obstacle, and vz, and v z, are the speed of the obstacle on
the respective x and y coordinate.

We assume that motion prediction of moving obstacle
is only effective for a short range of time, due to its
uncertain behavior. We currently use fixed 10 time slices with
cycle time of 1000 milliseconds for modelling the dynamic

(@)
Fig. 2: Modelling the environment, (a) 2D model, (b) 3D time-space model

(b)

obstacles, started from the time of the current state of the
robot.

C. Algorithm of 3D Arrival Time Field

The basic purpose of the arrival time in the 3D time-space
is to predict the arrival time of each point in every time
slice, so that we will be able to determine which region has
the most minimum arrival time. The result of arrival time
calculation is suitable for the point robot, i.e. robot can freely
move in all direction. Kinodynamic constraints of the real
robot tends to make the travel time increase and make it
difficult to predict the exact arrival time. For that reason, we
use the arrival time field as a bias for guiding the randomized
tree considering kinodynamic constraints [13] rather than use
it directly as the point robot movement.

We need to make several scenarios of arrival time describ-
ing the travel time from start to goal, beginning from the best
case to worse cases. The example of best case is when the
robot can directly take a straight path to the goal, while for
the worst case, we limit it to 10 time slices longer than the
best case. For each scenario, we propagate the wave front
using our proposed algorithm, then we merge all of scenarios
using the best value one.

Calculating the evolution of wave front using partial
differential equation (PDE) solver such as Fast Marching
Method (FMM) and Fast Iterative Method (FIM) is very
costly, even for low dimensions. For solving PDE in the 3D
time-space environment, it is impossible to use any existing
method if we aim for an online path planning algorithm.
We here propose a new method for solving those problems
in the 3D time-space, by using time boundaries variant of
Eikonal solver, which means the farthest area reaching by the
wave front is increased along with the time slice (see Fig.
3). We extend the FIM (for basic explanation about FIM,
please refer to [14]) to the 3D time-space environment. We
maintain an active list (see Fig. 4) for each scenario, then we
run those active list simultaneously (see algorithm 1, 2, and
3). We take advantage of the behavior of FIM which will
iteratively update each point until reaching convergence.

We predict the best scenario for the wave front to reach
the robot from goal position as the minimum time slice, and
the worst scenario given by

distmin

and Two’r‘st = Tbest +10 (7)

Tbest =

vmam

189

Fig. 3: Time boundaries for evolution of wave front, 7" = 1 means wave
front can only grows as far as d; along first time slice and so on.

Active list at next

Neighbor .
time slice

/

¥

1B

Source

T=0

T=1

Fig. 4: One example for creating an active list to be used on the next time
slice (see Algorithm 3).

Algorithm 1: Extended Fast Iterative Method (1)
X = set of points x in the map for all time slice ¢
L = active list

Function : Initialization
for all x € X do
T =00
for t = Tyes to t = Thorst do
if x = goal then
z=0
add neighbor of z to L
end if
end for
end for

Algorithm 2: Extended Fast Iterative Method (2)
th = very small value to determine the convergence of x

Function : Fast Iterative Method
while L is not empty do
for all x € L do
Az + solve_eikonal(x) — x
if Az < th then
Update List (x)
remove x from L
end if
end for
end while

Algorithm 3: Extended Fast Iterative Method (3)
Function : Update List ()
if = in time slice T then
add 4-neighbor of x in T+1 to L
end if

where Ty, is the arrival time at the best situation, 7,5t 1S
that at the worst situation, dist,,,;, is the Euclidean distance
from the current position to the goal, and v,,4, is the
maximum robot speed.

We modity the Eikonal equation solver in (4) to fit the 3D
time-space environment. Eq. (4) becomes

+x __ mnext_time_slice current_time_slice
Di,j — il _Ti,j)
D% — T_current,tzme,slzce o Ter_e:rt_,tzme,slzce
,J 2¥] i—=1j) 8
D+y _ Tngarctii*rnaslice _ Tcurrent,time,slice and ®)
1,5 — Tij+1 ,J ’

next_time_slice

i,j—1 .

—Y __ rmcurrent_time_slice __
D; j = T3

IV. HEURISTICALLY RANDOMIZED TREE
A. Notation

Our randomized tree is constructed by collections of
reachable states S called node. Every node is defined by
the tuple S = {z,y,0,v,w,t} € S, representing the robot
position in xy-axis and its heading 6, the current translational
velocity (v) and the rotational velocity (w) of the robot in
that node, and time ¢ for reaching that node from the current
state.

We give a predefined set of possible motions to the path
planner. Each motion in the set consists of a translational
and a rotational velocity as robot control notated by u; =
{vi,w;},(E=1,2,...,K), where K is the total number
of the motions, which satisfies kinematic constraints of the
robot.

Let S; be the current state and S;;; be the next state
reached from S; using a chosen motion v = {v,w}. We
define this action of extending state S; as a function

St+1 — g(St,’LL) (9)

B. Arrival Time-Biased Random Tree

We expand the tree from the current position of the robot,
using a similar approach to HeAT Random Tree algorithm
in [13]. We select a random point using the bias from
the arrival time field so that the tree grows in a favorable
direction towards the goal. We iteratively choose a random
point Siurger Which has higher value of arrival time field
than a threshold value. This threshold value is started from
the value of the arrival time field of the initial state, and
grows when a new created node has a better value than this
threshold. We then choose the nearest node S,,.q to the
Starget among all of nodes in the tree S.

Every time S),.4,- is chosen and eligible to be expanded,
we will calculate a new state S, of that node (S),cq) by
evaluating all of possible motion controls

Su, < g(Snear,us),fori € {1,2,3,..., K} (10)

where Sy, is the extention of 5,4, using motion control u;,
and K is the total number of the motion set, which satisfies
kinematic constraints of the robot. We do not need to perform
collision checking further because the information about both
static and dynamic obstacles have been embedded in the 3D
time-space field itself.

190

We then pick the best motion control

Y

Upest = arg min cost(Sy,),
K3

which gives the best cost function, to get the new node

Snew = Subest — g(sneara ubest)a (12)

cost(S) is a cost function for evaluating a motion, defined
by

aM1 +ﬁM2+(SM3, (13)
M, = bias(9), (14)
My = dist(Siarget — S), (15)
M3 = |65 - esnear7| (16)

where bias(S) is the arrival time value at predicted
point(zs, ys), diSt((‘TStarget7ySta7‘get) — (vs,ys)) is the
distance between destination point (s,,, ., ¥S,arse;) and
the predicted point (zs,ys). |0s — 0s,,...| is the heading
difference of the robot between the current state and the
predicted state, and «, 3, and § are constants.

We need to determine a proper criterion for extending
every node chosen by the randomized planner to reduce
inefficient and disperse motions. In this case, we want to
reduce unstable movements that are often found in the path
created by randomized planner. We use the previous heading
criterion as defined in (16) to ensure that we will not choose
a very large difference of heading on each pair node causing
unstable movements.

C. Fast Replanning Algorithm

We use a pretty fast time cycle (currently, 1000 mil-
liseconds per cycle) for calculating the entire algorithm i.e.,
updating map information, static and dynamic obstacles, and
performing calculation of 3D Arrival Time Field and Heuris-
tically Randomized Tree. We assume that the environment is
not so much changed during that cycle. The path generated
by the previous calculation is still expected to be feasible for
the current cycle. The previous path is examined from the
root to the longest collision-free state of the path and used
it as initial tree for the current calculation.

V. RESULT
A. Offline Simulation

In the offline simulation, we set the environment combin-
ing static and dynamic obstacles so that there are several
routes for the robot to reach the goal. Three dynamic obsta-
cles then are put in the fastest route (i.e. the middle route, see
Fig. 5) and are run in several scenarios; completely block the
route and move toward the robot, block the route but move
in the opposite direction of first scenario, and give a possible
way by moving one obstacle in the opposite direction. The
environment consists of a 200x200 cells of map with the
free space and static obstacles, where blue area denotes free
space, green line is wall, the orange circle denotes robot
position, the red circle is the goal, the triangles are moving
obstacles, and the black area is extending space for obstacles.

TABLE I: Calculation cost of 2D and 3D Algorithm

Type of 2D Planner 3D Planner 3D Planner
Calculation (ordinary FMM) (Ext. FIM)
Arrival Time Field 86 ms >100000 ms 400 ms
calculation

Random Tree 350 ms 250 ms 250 ms
calculation

Total Time 500 ms >100000 ms 1000 ms

TABLE II: Comparison of 2D and 3D Planning Algorithm

Statistic Blocking Scen. Crossing Scen.
Number of simulation 10 times 10 times
Averaged 2D 35 sec 15 sec
path cost (time-to-goal) 3D 26 sec 11 sec
Successful runs 2D 30% 70%

3D 100% 100%
Averaged 2D 500 nodes 1500 nodes
number of nodes 3D 4000 nodes 3000 nodes

Another scenario is that there are several moving obstacles
cross in front of the robot and block robot’s way (see Fig.
6).

To check the performance of our 3D time-space path
planner, we compare it with collision check-based 2D path
planner [13]. This 2D path planner also uses the arrival time
field as a guidance for growing the randomized tree. The
main difference with the 3D time-space arrival time field
used in our 3D path planner is that the 2D algorithm only
considers static obstacles when it makes the arrival time field,
and performs collision checks for each time we grow the tree
to avoid the moving obstacles.

We compare the 3D time-space algorithm and collision
check-based algorithm in 2D environment by applying the
crossing obstacles scenario (Fig. 6a and 6d) and the blocking
scenario (Fig. 6b and 6e) to distinguish and prove the effec-
tivity of searching path in the 3D time-space environment.
The 2D path planner algorithm will face difficulties if several
moving obstacles are blocking the way, like Fig. 6b.

Table I shows us comparison of the calculation cost of the
2D and 3D path planner. It makes sense that the 3D algorithm
takes more time than the 2D one. The most interesting
part is that by using our extended FIM algorithm, we can
dramatically reduce the calculation time of the wave front
propagation in the 3D time-space, compared with ordinary
sequential FMM algorithm. Even for the randomized tree
calculation, the 2D planner takes more time than the 3D
one, due to collision check used by the 2D planner, while
the 3D planner does not need this action. So that, with a
reasonable difference on calculation time wtih the 2D path
planner, we still can manage to build an online 3D time-space
path planner. Those differences on calculation time can be
covered by the performance of 3D time-space path planner.
Based on quantitative data (see table II), it is clear that 3D
time-space algorithm outperforms the collision check-based
algorithm in 2D environment.

191

(a)

©

(d) (e) ()

Fig. 5: Comparison of different scenarios on offline simulation (bottom row)
and its 3D time-space arrival time field on time slice T = 5 (top row), a)
and d) Moving obstacles are completely blocked the way and move toward
the robot. b) and e) Two of obstacles are away and give enough space to
the robot for moving. ¢) and f) Only one obstalce is away and the robot
will choose safer way. The goal is at top-right corner.

(b) ©

(@

(e) ®

Fig. 6: Comparison of 2D approach (top row) and 3D time-space approach
(bottom row) on: a) and d) crossing obstacle scenario, b) and e) blocking
scenario, c¢) and f) arrival time field of blocking scenario.

B. Online Simulation

We test 3D Time-space Random Tree path planner in a
simulation representing the real robot and environment. All
of implementations were done using a laptop PC (Core2Duo,
2.1 GHz, 2GB memory, Windows XP). We implement our
path planner algorithm as an RT-component which is soft-
ware module running on RT-middleware! environment [10]
for reusability.

'RT-middleware is a specification on a component model and infrastruc-
ture services applicable to the domain of robotics software development,
authorized by OMG (Object Management Group).

TABLE III: Statistic of Online Simulation Result

Statistic Value
Arrival Time Field calculation 400 ms
Random Tree calculation 250 ms
Number of nodes 4000 nodes

400 mm/second
5-12 objects
600-900 seconds
10 times
100%

Maximum speed

Number of dynamic obstacles
Total simulation time
Number of simulation
Successful runs

(@)

(b)

Fig. 7: Screenshot of simulation using Environment and People
Movement Simulator

We use a simulator [9] to perform simulation of our
path planner. The simulator generates a 200x200 cells of
map consist of free space and static obstacles mimicking
the canteen of our university. This simulator also provides
dynamic objects information to the path planner, which
represents the movement of people. We apply the 3D Time-
space Random Tree path planner to people tracking problems
(see Fig. 7).

The robot has to follow one of dynamic obstacles con-
sidered as a person while avoiding static obstacles, walls,
and other people (around 5-12 persons) moving inside the
simulator. Simulation’s flow is as follows: people enter the
canteen, queue for the ticket at ticket machine, take the
meals, go to a free seat, stay on the seat for eating, bring the
tray to the washing place, and go to the exit. The robot is
considered having succeeded in solving the people tracking
problem when the robot can follow the tracked person from
the entrance to the exit.

Table III shows the robustness of our algorithm. All of
10 times simulations have been done successfully. Overall
calculations need less than 1000 milliseconds, it means our
3D time-space planning algorithm can be run online.

VI. CONCLUSIONS

We have presented a novel real-time path planning algo-
rithm, using the arrival time field in 3D time-space as bias
for a randomized tree search. Heuristic approaches of our
algorithm are proved to generate a smooth and safe path
for the robot. Our proposed method for solving wave front
propagation in the 3D time-space makes our path planner
able to run online. Simulation results show that our algorithm
is applicable to the real robot and effectively handle a
dynamic environment and kinematic constraints of the robot.

192

Calculating the arrival time field on the 3D time-space
takes the most time in our proposed algorithm. Several
improvements are possible to be applied. One of them is
to optimize the algorithm of 3D time-space arrival time field
calculation, for example by parallelize it. Recent technolo-
gies on parallel computing give us a high possibility for
speeding up such iterative algorithm, like our proposed algo-
rithm on calculating 3D time-space wave front propagation.

VII. ACKNOWLEDGMENTS

We would like to thank Atsushi Shigemura for developing
the environment simulator component. This work is sup-
ported by NEDO (New Energy and Industrial Technology
Development Organization, Japan) Intelligent RT Software
Project.

REFERENCES

M. S. Hassouna, A. E. Abdel-Hakim and A. A. Farag. “PDE-based
robust robotic navigation”. Image and Vision Computing, vol. 27, pp.
10-18, 2009.

S. M. LaValle and J. Kuffner. “Rapidly-exploring random trees:
Progress and prospects”. In Proc. of Fourth Intl. Workshop on Al-
gorithmic Foundations onRobotics (WAFR’00), 2000.

C. Urmson and R. Simmons, “Approaches for heuristically biasing
RRT growth”. In Proc. of the IEEE Int. Conf. on Intelligent Robots
and Systems (IROS), 2003.

S. M. LaValleand J. Kuffner. “Randomized kinodynamic planning”. In
Proc.IEEE Int. Conf. Robotics and Automation (ICRA), pages 473-
479, 1999.

S. Karaman and E. Frazzoli. “Incremental sampling-based optimal
motion planning”. In Robotics: Science and Systems (RSS), 2010.
L. Jaillet, J. Cortes, and T. Simeon. “Sampling-Based Path Planning on
Configuration-Space Costmaps”. IEEE Transactions on Robotics,vol.
26, no. 4, pp. 635-646, Aug. 2010.

M. Zucker, J. Kuffner, and J. A. Bagnell. “Adaptive workspace biasing
for sampling-based planners”. In Proc. IEEE Int. Conf. on Robotics
and Automation (ICRA), pp. 3757-3762 (2008).

E. Plaku, L. E. Kavraki, and M. Y. Vardi. “A Motion Planner for a
Hybrid Robotic System with Kinodynamic Constraints”. In Proc. of
the 2007 IEEE Int. Conf. on Robotics and Automation, pp. 692-697.
A. Shigemura, Y. Ishikawa, J. Miura , and J. Satake. “People
Movement Simulation in Public Space and Its Application to Robot
Motion Planner Development”. Proc. 2010 Int. Conf. on Advanced
Mechatronics, pp. 504-509, Osaka, Japan, Oct. 2010.

N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.K. Yoon. “RT-
middleware: Distributed component middleware for RT (robot tech-
nology)”. In: Proceedings of 2005 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 3555-3560, 2005.

J. Sethian. “A fast marching level set method for monotonically
advancing fronts”. In Proc. Natl. Acad. Sci. volume 93, pages 1591-
1595, 1996.

H. Zhao. “A fast sweeping method for eikonal equations”. Mathemat-
ics of Computation, 74:603-627, 2004

I. Ardiyanto and J. Miura. “Heuristically Arrival Time Field-Biased
(HeAT) Random Tree: An Online Path Planning Algorithm for Mobile
Robot Considering Kinodynamic Constraints”. In Proc. 2011 IEEE Int.
Conf. on Robotics and Biomimetics, pp. 360-365, Phuket, Thailand,
Dec. 2011.

J. Won-Ki and W. Ross. “A Fast Iterative Method for Eikonal Equa-
tions”. SIAM 1J. Sci. Comput. 30, pp. 2512-2534.

V. Vonasek, J. Faigl, T. Krajnik, and L. Preucil. “A Sampling Scheme
for Rapidly Exploring Random Trees using a Guiding Path”. In Proc.
5th European Conf. on Mobile Robots, pp. 201-206, 2011.

M. Zucker, J. Kuffner, and M. Branicky. “Multipartite RRTs for Rapid
Replanning in Dynamic Environments”. In Proc. IEEE ICRA 2007,
pp. 1603-1609.

K. Fujimura. “Time-Minimum Routes in Time-Dependent Networks”.
IEEE Trans. on Robotics and Automation, Vol. 11, No. 3, pp. 343351,
199s.

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

