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Abstract— This paper describes an approach to realize a
cameraman robot. Here a robot is given a task to follow
a certain trajectory for taking the video of an actor in a
designated time. The trajectory is relative to the actor, so
that the robot has to take into account the actor’s movement.
We map the given trajectory to a new one in the state-
time space based on the prediction of the actor’s pose. We
then build a trajectory tracking system using a 3D time-space
wavefront potential considering the robot kinematic, trajectory
cost, obstacles, and visibility constraints. This potential is then
used for generating the robot motion control by using a modified
random tree search algorithm with the control law. Simulation
results show the effectiveness and feasibility of our approach.

I. INTRODUCTION

In the process of making a movie or a TV program, we
often see a cameraman takes a video from a moving base
mounted on a track, like the Fig. 1. This track structure
is called dolly track. There is also so-called pedestal, a
wheeled-base mounting for the camera [1]. Both are used
for creating a smooth and stable camera movement.

Let us take an example where the director of the movie
or TV program needs to plan how the camera should move
to take the video. In an advertisement program, the director
wants to slowly take the video of a standing kid from his
right-side to the left-side in 10 seconds showing him eating
an ice cream product. A dolly track then can be configured,
for example in front of the kid forming a curve, and then
the cameraman should pull the camera on top of the track
in the planned time and pose.

The scenario above is then changed, the company wants
the same setting while the kid walks around. The director has
some options; the camera is handled directly by a cameraman
with a degraded camera stability in return; or, changes the
dolly track by considering the kid movement.

We are interested in the second case, where the dolly track
is used. Obviously, this method is not handy because there
are some efforts for replacing the track when the scenario
is changed. For example using the case above, changing the
curve path of the camera to a straight line means we need
completely change the dolly track. Moreover, some obstacles
such as studio pillars may block the path of the dolly track
at the set or studio. We offer the usage of a robotic system
as solution of this problem.

Basically we replace the dolly track with a mobile robot
system. The robot is then given the scenario as above, where
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Fig. 1: An illustration of dolly track1

the planned movement, time, and the camera pose can be
easily changed according to the director, for example by
using a sketch. This scenario resembles a trajectory tracking
problem in the robotic field ([3], [6]), with additional issues,
such as final time constraint, dynamic trajectory, and camera
visibility. Several popular methods for solving the trajectory
tracking, such as LQR [2] and MPC ([3], [4], [5], and [6])
do not fully cover our cameraman robot problem, as we will
explain later.

Here we develop a new approach to solve those problems.
We deal with a dynamic actor by bringing the relative
trajectory into the state-time space, considering the actor
movement. The state-time space is ranged from the current
time to the final time constraint. Several cost maps are
then built for handling the obstacles, camera visibility, and
trajectory error. These maps are then used for building a
wavefront potential, which will guide a modified randomized
tree search with the control law. The first control of the best
tree is then chosen, and the process is repeated until the robot
reach the end of the trajectory.

Our contributions are the construction and formalization
of the cameraman robot problem as a dynamic trajectory
tracking (i.e. trajectory tracking with a dynamic reference)
with the final time constraint, and the usage of a stochastic
approach for solving it, by utilizing wavefront potential and
random tree search which consider the obstacles and camera
visibility.

The rest of our paper is organized as follows. In section II
we construct the definition of the cameraman robot problem.
We then build up a comprehensive strategy for solving the
cameraman robot problem in section III. We then verify the
experiment results in section IV. The rest is the conclusion
and possible future works.

1The action in the figure is done by the author and just intended for
giving an illustration only, not an act of a professional.
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II. DYNAMIC TRAJECTORY TRACKING WITH FINAL TIME
CONSTRAINT

In this section, we construct and transform the cameraman
robot problem into a dynamic trajectory tracking problem
with the final time constraint.

A. Problem Statement
1) Definition of Cameraman Robot Task: Given a scene

of a movie where the cameraman person is required to follow
a certain trajectory P relative to the actor A in a determined
time Tf for taking the film, the actor is not necessarily
motionless (i.e. can take any movement). The trajectory P
can be at any form up to the movie director’s desire, e.g. a
straight line, a circular, or even a curve relative to the actor.

Let us imagine that the cameraman person is then replaced
by an omnidirectional robot R equipped by a static camera.
Here the robot needs to imitate the cameraman person task,
e.g. to follow the trajectory P while keeping the camera
orientation towards the actor A. To simplify the problem,
we assume the movement of A follows a constant velocity
motion model, as will be described in subsection II-B. The
determined time Tf is then defined as the interval time from
which the robot has to reach the end of the trajectory P , and
from now, it is called as final time constraint.

2) Comparison with Established Method: When the actor
A is motionless and the final time constraint Tf is not
considered, the problem above becomes a standard trajectory
tracking problem. The trajectory tracking problem (without
the final time constraint) has been derived and investigated by
many researchers using several methods, for example Linear
Quadratic Regulator (LQR) [2], Model Predictive Control
(MPC) ([3], [4], [5], and [6]), and Sliding Mode Control
(SMC) [9].

We now take a look on the MPC which is widely used for
solving the trajectory tracking problem. The basic idea is to
search for a set of control which minimizes the error cost to
the desired trajectory in a fixed time horizon, take the first
control, and then repeat.

Let q ∈ Q be the state of the robot R, u ∈ U be the robot
control, and q̇ be the dynamics of R given by

q̇ = f(q,u), (1)

where Q and U respectively represent the state space and
the control space of R. Let ũ : [t0, TH ]→ U be the control
sequences from the current time t0 to TH . The MPC is then
generally defined as a minimization of the objective function
J to find the optimal control sequence ũ∗ ← ũ, given by

ũ∗ = min
ũ
J ' g(q,u, TH), (2)

subject to

q̇ = f(q,u),

qmin ≤ q ≤ qmax,

umin ≤ u ≤ umax,

(3)

where the second and third inequality term of eq. 3 respec-
tively represent the state (e.g. boundary/collision) and control
(e.g. velocity/acceleration) constraints.

For the trajectory tracking problem, the objective function
g(.) is associated with the error between the state and
the reference. Given a priori known relative trajectory (as
mentioned in the previous subsection) P := q̃r ⊂ Q,

q̃r = {qr0, qr1, . . . , qrf} ∈ P, (4)

where q̃r denote the state reference sequences, qr0 and
qrf denote the initial and final state of the trajectory.
Subsequently, eq. 2 becomes

ũ∗k = min
ũk

Jk ' m(qTH
,uTH

) +

t0+TH∑
k=t0

`(qek,uk),

qek = qk − qrk,

(5)

where m(.) and `(.) respectively denote the terminal and
integrand cost, qek is the state error, and TH is the time
horizon. In the case of linear/linearized system, some re-
searchers (e.g. [5], [7], and [8]) turn function `(.) into a
Quadratic Programming (QP) problem, given by

`(qek,uk) = qe
T
kQqek + uTkRuk, (6)

where Q and R denote positive semidefinite matrices for
weighting respectively the state and control.

Equation 5, which is the standard MPC, does not consider
the final time constraint, i.e. the robot R can possibly reach
qrf at any time. Another problem which makes the standard
MPC not directly applicable to our problem is the state
references q̃r matter. In the standard MPC, q̃r is given as
a priori known function and will not be changed once the
system runs. Contrary, our cameraman needs to maintain a
dynamic reference towards the target, i.e. even if the target is
moving, our robot has to keep the relative shape of trajectory,
which means the reference will be continuously updated
based on the target state.

3) Robot Kinematic Model: Here we use an omnidirec-
tional robot model on which a camera is statically attached,
which means the camera view will be aligned with the
robot orientation. The robot state q ∈ Q is described by its
center position (qx, qy) and orientation (qθ), forming a tuple
q = {qx, qy, qθ}. Let the robot control u ∈ U be described by
a tuple u = {ux, uy, uθ} denoting the translational (ux, uy)
and angular (uθ) velocity of the robot, the kinematic model
of the robot is then derived as

q̇ = f(q,u), q̇x
q̇y
q̇θ

 =

 cos qθ − sin qθ 0
sin qθ cos qθ 0

0 0 1

 ux
uy
uθ

 . (7)

4) Problem Construction: Now we will construct our
cameraman robot problem which is an extension of the
trajectory tracking problem, by considering the target move-
ment and the final time constraint. We keep the idea of the
MPC for taking the first control of the generated optimal
control sequences. We then construct our problem as follows:
(a) The final time (Tf ) constraint is added by modifying the

upper bound of the summation in eq. 5, (t0 + TH ) into
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(a) (b)

Fig. 2: Trajectory: (a) 2D space and (b) state-time space. The red color is
the trajectory reference, and the blue one represents the target.

(Tf − t0), which means the horizon of the optimization
problem changes over the time.

(b) One of the critical tasks of our cameraman robot is to
maintain the relative shape of the trajectory. It means the
trajectory will change and follow the target movement.
Here we define fqA : q̃r 7→ q̃Ar as a function which maps
the relative trajectory reference q̃r to a new trajectory
reference q̃Ar which is aware of the target state qA.
The basic idea is to bring the trajectory curve (i.e. q̃r)
into a state-time space Q × T, and then sample it with
a specific time step (∆t) using a sampling function fs :
q̃r 7→ q̃r,s, giving

q̃r,s = {∀qr(k∆t); k = {0, 1, . . . , Tf
∆t
}}, (8)

where qr(0) and qr(Tf ) represent the initial and final
state of the trajectory (see Fig. 2).
Definition 1: Every sampled state of the trajectory
(qr(k∆t)) retains relative metric properties (e.g. dis-
tance, orientation, and time) w.r.t. the target A.
Using this definition, the dynamic trajectory is consid-
ered by first assuming that the target is motionless, from
which the relative metric property of each qr(k∆t) can
be extracted. We then calculate the target movement and
estimate the target poses at each time step. Let q̃A be
sequence of the target pose in the space-time when it is
motionless, and q̃′A be the estimated one when moves,
there exists a set of geometric transformation GA, so
that

q̃′A = GA ◦ q̃A, (9)

which is an element-wise product. Prediction of q̃′A will
be later explained in the next subsection.
Using the obtained GA, we then describe the
target-aware trajectory (see Fig. 3) q̃Ar,s =
{qAr,0, qAr,1, . . . , qAr,f}, given by

q̃Ar,s = fqA(q̃r)

= GA ◦ fs(q̃r)
= GA ◦ q̃r,s.

(10)

(c) Additionally, another constraint is introduced for the
cameraman robot problem, which is called target visibil-
ity constraint. This constraint is a natural consequence of
the cameraman robot where the target needs to be seen

(a) (b)

Fig. 3: Trajectory comparison between static and moving target: (a) 2D
space and (b) state-time space.Magenta and blue color represent the static
and moving target, while green and red line denote the static and dynamic
trajectory references.

from the robot camera (i.e. not covered by obstacles) as
long as possible. Since the visibility is a mutual property,
we represent the constraint in the robot state space. Let
V ⊂ Q be a set of robot states visible from the target A,
we then define the visibility constraint as

fvis(q) =

{
0, ∀q ∈ V
e, ∀q /∈ V

(11)

where e is a constant.
(d) Lastly, the camera is needed to always face the target.

Since the camera is statically placed on the robot, it
means the camera direction will be the same as the robot
orientation. We then create a new constraint,∣∣∣∣qθ − tan−1(

qy − qAy
qx − qAx

)

∣∣∣∣ ≤ ξ, (12)

where {qx, qy, qθ} ∈ q is the robot state, {qAx, qAy} ∈
qA is the target state, and ξ is a small constant.

Putting them together, we then define our cameraman
robot problem as a dynamic trajectory tracking with the final
time constraint, which minimizes the cost function given by

ũ∗k = min
ũk

Jk '
Tf−t0∑
k=t0

(`(qe
′
k,u

t
k) + fvis(q

t
k)),

subject to
q̇t = f(qt,ut); qt ∈ Q× T,ut ∈ U× T,
qe
′
k = qtk − qAr,k; qAr,k ∈ q̃Ar,s,∣∣∣∣qθtk − tan−1(

qy
t
k − qAy

qxtk − qAx
)

∣∣∣∣ ≤ ξ,
qmin ≤ qt ≤ qmax,

umin ≤ ut ≤ umax.

(13)

where qt ∈ Q × T and ut ∈ U × T show that we are now
working in the state-time space.

B. Predicting Trajectory Based on The Target Movement

As already described in the previous subsection, the trajec-
tory given to the robot depends on the actor movement. It is
obvious that predicting and estimating a person movement is
a difficult task. Here we make an assumption by simplifying
the target movement as a constant velocity model.
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Fig. 4: Dynamic trajectory with uncertainty. The blue cone represents the
moving target, while the red one denotes the dynamic trajectory reference.

Let X = {x, y, θ, v}, representing the pose {x, y, θ} and
velocity v, be the actor/target A state, then the target model
is defined as follows

M(Xk) =


xk = xk−1 + vk−1 cos θk−1δt+ εx,
yk = yk−1 + vk−1 sin θk−1δt+ εy,
θk = θk−1 + εθ,
vk = vk−1 + εv,

(14)

where {εx, εy, εv, εθ} are gaussian noises. The target move-
ment is then predicted using unscented kalman filter (UKF)
[13]. Figure 4 shows the dynamic trajectory with uncertainty
and the target movement.

By omitting the detail of the UKF, we get

X̃ = {Xk}(k = 0, . . . , Tf ),

Σ̃ = {Σk}(k = 0, . . . , Tf ),
(15)

where X̃ denote the predicted state of the target from the
current time to the final time Tf , and Σ̃ are its respective
covariances. The state of each element in X̃ is then truncated
(by omitting vk) so that it will have same dimension with q̃′A
(please see eq. 9). This predicted state of the target is then
used for obtaining geometric transformation GA, and maps
the relative trajectory reference to the predicted trajectory
which consider the target movement (see eq. 10).

III. ROBOT CONTROL ALONG TRAJECTORY VIA
STATE-TIME SPACE STOCHASTIC APPROACH

After explaining the formalities of the cameraman robot
problem as pointed out by eq. 13, we will explain the solution
of those optimization problems. We propose a stochastic
approach for solving our cameraman robot problem, em-
ploying a randomized-tree guided by a state-time potential.
The guided-stochastic search is chosen in order to manage
the calculation time using its incremental behavior [14], as
it becomes one of the critical requirement for applying the
algorithm to the real system.

Here a modified random tree search algorithm is used,
from which we expect a suboptimal result in a reasonable
time. The idea is to bring all cost function and constraints
into the state-time space, and then samples the possible
control sequences. Some implementation considerations of
our algorithm will be presented in subsection IV-C. We will

also provide comparison with an optimal control solver (here
we use pseudospectral method [16]) later.

The algorithm is started by remodeling eq. 13 as follows:
(a) The obstacle constraint qmin ≤ qt ≤ qmax is modified

to the obstacle map;
(b) The visibility cost fvis(qtk) is changed to the visibility

map;
(c) The trajectory error function `(qe

′
k,u

t
k) is changed to

the trajectory cost map;
Each map will be described in the following subsection.

A. Building Cost Maps

Let C ' Q×T representing the state-time space, we build
the cost maps as follows:

1) Obstacle Map: Let F ⊂ C be a set of area in the state-
time space which is not occupied by any object, the obstacle
map is then given by

D(qt) =

{
γ‖qt − qtobs‖, for qt ∈ F ,
0, otherwise,

(16)

where qtobs is the nearest obstacle to the state qt, and γ is a
constant (currently, γ = 10).

One of the advantages of using the state-time space is
that we can directly consider the moving obstacles inside
the obstacle map, by estimating the moving object poses for
each time step.

2) Visibility Map: By reusing the notation in eq. 11, let
V ⊂ C now denote a set of area visible from the target A in
the certain time step (e.g. for t = t0, qt ∈ V is visible from
the target qtA), the visibility map is then defined as

Y(qt) =

{
0, for qt ∈ V,
e, otherwise,

(17)

where e is a constant (currently, e = 100).
3) Trajectory Cost Map: We convert the trajectory error

function (qe′k = qtk − qAr,k) into the trajectory cost map
Z ⊂ C using generalized logistic function,

Z(qt) =

{
0, for qt ∈ q̃Ar,s,

(1 + h exp−αϑ(q
t−q̃A

r,s))−
1
ϑ , otherwise,

(18)
where (qt − q̃Ar,s) is the distance of the state qt to the tra-
jectory reference q̃Ar,s, and {h, α, ϑ} are constants (currently,
h = 1, α = 0.1, and ϑ = 0.5). Equation 18 means that we
will keep the robot as close as possible to the reference.

Figure 5 shows each cost map example for one time
slice. The black circle and arrow are obstacles, the red
line is the trajectory reference, the blue dot is the target
position, and qr0 and qrf respectively denote the start and
end of trajectory reference. The color gradation blue-to-red
represents the lower-to-higher value in the map.

B. 3D Time-space Wavefront Propagation-based Stochastic
Control Search

1) 3D Time-space Wavefront Propagation Potential: Our
idea is to search for the control sequences which optimize
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(a) (b)

(c) (d)

Fig. 5: Cost maps: (a) original map, (b) obstacle map, (c) visibility map,
and (d) trajectory error map.

the cost of the obstacle, visibility and, trajectory maps. Using
the cost maps directly for control search has a drawback, i.e.
the control search may suffer from local minima. To avoid
those problem, we use a monotonic wavefront in the state-
time space, as suggested by [10].

Basically, our monotonic wavefront φ(qt) spreads from
a source point qt(0) to all spaces in the configuration by
following Eikonal expression

φ(qt) ' |∇τ(qt)| = 1

ρ(qt)
,

qt(0) = 0,

(19)

where τ(qt) denotes the time for the wavefront reaching qt,
and ρ(qt) represents the viscosity of the qt. Here we use
qt(0) = qAr,f (the end of the trajectory) as the source point.

Equation 19 needs the viscosity function ρ(qt), which
determines the speed of the wavefront. For our case, the
viscosity function is expected to make the movement of the
wavefront faster at the area which is close to the trajectory
reference, far from the obstacles, and visible from the target.
Here we utilize the previously computed cost maps to build a
viscosity function given by following element-wise product

ρ(qt) = D(qt) ◦ Y ′(qt) ◦ Z ′(qt), (20)

where Y ′(qt) and Z ′(qt) are respectively the normalized
Y(qt) and Z(qt) which gives the biggest value to the visible
area qt ∈ V and the reference Z(q̃Ar,t).

Equation 19 can be approximated by the first order finite
difference scheme(

τ(qt) − τ1

∆qtx

)2

+

(
τ(qt) − τ2

∆qty

)2

=
1

ρ (qt)2
(21)

where

τ1 = min
(
τ(qtx+1,y), τ(qtx−1,y)

)
τ2 = min

(
τ(qtx,y+1), τ(qtx,y−1)

) (22)

(a) (b)

Fig. 6: Potential wavefront propagation of the given map in Fig. 5, projected
for a time slice: (a) wavefront, and (b) the tree expansion.

The solution of (21) is numerically given by

τ(qt) =


τ1 +

1
ρ(qt)

for τ2 ≥ τ ≥ τ1
τ2 +

1
ρ(qt)

for τ1 ≥ τ ≥ τ2
Q(τ1, τ2, ρ(qt)) for τ ≥ max (τ1, τ2)

(23)

where Q(τ1, τ2, ρ(qt)) denote the quadratic solution of eq.
21. Equation 21 and 22 can be solved using a variant of Fast
Iterative Method (FIM) [10]. Due to the space limitation, the
detail of the FIM is omitted, and we encourage the reader to
refer to [10] for further explanation.

2) Stochastic Control Search: By using wavefront φ(qt)
(see Fig. 6a) as a potential, in fact we can easily extract the
optimal control sequences using steepest descent search.

The problem is that the dynamic trajectory q̃Ar,t holds
uncertainties due to the target movement prediction, as sug-
gested by eq. 15. To deal with this problem, we then propose
a stochastic control search utilizing the wavefront potential
φ(qt) as the guidance. We use the 3D time-space randomized
tree algorithm introduced in [10] with a modification.

In short, the algorithm can be summarized as follows:
(a) Initialize the threshold sth by the value of φ(qt0) and

tnow = t0;
(b) Pick a random point qtrand in t > tnow so that φ(qtrand)

has better value than sth;
(c) Find the nearest node qtnear to the qtrand, extend it using

the control law, and update tnow = tnow+∆t, or tnow =
t0 for tnow = Tf ;

(d) Update sth using following policies,

sth =

{
sth − 1

2 (φ(qtrand)− sth), for tnow < Tf

φ(qt0), otherwise;
(24)

(e) Repeat to (b) until the allocated time is reached.
The policies (c) and (d) above make sure the convergence
of the tree (see Fig. 6b) without losing the dispersion while
maintaining the final time constraint.

One notable thing in the algorithm above is the policy
(c). The original 3D time-space randomized tree search for
the best control from a set of predefined motion controls for
extending the tree. In our cameraman robot case, applying
the same method has a drawback. The weakness is due to the
control dimension (the cameraman robot needs three control
components u = {ux, uy, uθ} and one controlled parameter,
i.e. the robot orientation should face to the target) which will
slow down the searching process in the tree expansion.
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To escape from the weakness, rather than searching from
a set of motion controls, we use directly control laws for
extending the tree. The use of omnidirectional robot gives
us possibility to determine the control law for the robot
translation and orientation separately [15]. Here we adopt
[15] to use exponential gain control for the robot translation
and the Proportional-Derivative (PD) control for the robot
orientation, as follows,

ux = vd cos(arctan(−Krr) + θp),

uy = vd sin(arctan(−Krr) + θp),

uθ = Kpeθ +Kd
d

dt
eθ,

(25)

where r is the distance of the robot pose to the reference,
vd denote the desired velocity, eθ is the orientation error
towards the target, θp is tangent direction of the robot to
the reference, and {Kr,Kp,Kd} respectively denote the
constant of translation, proportional, and derivative gains
(currently, Kr = 2,Kp = 4, and Kd = 3.5).

C. Speeding Up the Algorithm

It is obvious that calculating φ(qt) takes a significant
amount of time. We then come with an idea, from the fact
that the control search is basically done at a limited area
in the φ(qt), which is around the trajectory reference. To
reduce the computational time, we apply a boundary area
from which the wavefront potential, as well as the control
search area, is limited. We take advantage the uncertainty
ellipses area of the trajectory which depends on the target
motion (please see eq. 15).

Let H ⊂ C denote the restricted area formed by the
uncertainty ellipses Σ̃ in the state-time space, so that

H =

Tf⋃
k=0

{∀qt|qt ∈ Σk}. (26)

We then build an additional cost map representing the area
limitation as follows,

S(qt) =

{
1, for qt ∈ H,
0, otherwise.

(27)

The viscosity function in eq. 20 is then modified to

ρ(qt) = D(qt) ◦ Y ′(qt) ◦ Z ′(qt) ◦ S(qt), (28)

so that we can calculate φ(qt) for a narrower area.

IV. EXPERIMENTS AND DISCUSSIONS

We verify our algorithm using a 3D simulator and compare
the performance with the Optimal Control Problem (OCP)
solver. The algorithm is implemented in C++ and runs on
a Windows laptop (Core i7, 2.4 GHz). The map used for
experiments is discretized by 10 cm resolutions and the map
size depends on the size of given trajectory.

(a) (b)

(c) (d)

Fig. 7: Snapshots of the cameraman robot simulation.

(a) (b)

Fig. 8: Executed robot trajectory for the static target: (a) straight line and
(b) curve line. The red dashes denote the given reference, the black dot is
the target position, and the blue line is the robot trajectory.

A. Simulation

We use MORSE 3D Simulator [11] which runs on a
Linux PC (Core i5, 2.1 GHz) and interconnected with the
cameraman robot algorithm using socket communication
[12]. We test our algorithm using straight and curve trajectory
references with a static and moving target. A feedback
controller running at 10 Hz is used for executing the control
commands from our algorithm. We give the final time
constraint of 20 seconds for the straight line and 24 seconds
for the curve trajectory. Figure 7 shows the example of
running simulation2.

We first evaluate the algorithm using a static target for the
straight and curve trajectories without obstacles. In the next
simulation, the target moves along x-axis with the speed of
0.4 m/s. Lastly, we assess the influence of adding an obstacle
to the algorithm performance.

Figure 8 shows the executed trajectories for the static
target cases. We can see that the robot tracks the given
trajectories well. The robot also maintains the orientation
towards the target and fulfills the final time constraint with

2An accompanying video showing the full simulation is provided
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(a) (b)

Fig. 9: Executed robot trajectory for the moving target: (a) without obstacle
and (b) with obstacle. The red dashes denote the given relative reference,
the black dots are the target movement, the blue line is the robot trajectory.

TABLE I: Final Time and Orientation Error

Final Time Orientation Error (deg.)

Error (s) avg. std. dev.

straight + static target 0.25 2.45 0.78

curve + static target 0.3 2.98 1.31

curve + moving target 0.55 4.36 2.56

curve + moving target + 0.6 4.64 2.77obstacle

the smallest error, as shown in the table I.
When the target moves, our algorithm successfully main-

tains the relative trajectory as shown in Fig. 9a. By adding
an obstacle, the robot trajectory obviously deviates from the
reference, nevertheless the algorithm manages to keep the
visibility by choosing the inner curve as shown in the Fig.
9b.

From table I, the cases with moving target tend to give
larger error for both final time and orientation error. It is
reasonable because the prediction of the moving target holds
uncertainties. But overall, the errors are in the reasonable
range for saying that the algorithm can solve the problem.

Table II shows the calculation time needed for each step in
our algorithm. With the total time of 0.845 seconds for each
iteration, our algorithm is fast enough to run real-time on a
real robot. One thing should be noted here that the calculation
time of the stochastic control search above produces around
750-1000 nodes. We will show in next subsection that our
algorithm has incremental behavior, so that the result will be
better if we add more time. Obviously, we limit the control
search to 0.5 seconds with a trade-off between speed and
quality.

TABLE II: Calculation Time Breakdown of Our Algorithm

Calculation Time (s)

Data acquisition and prediction 0.01

Building cost maps 0.035

Wavefront propagation 0.3

Stochastic control search 0.5

Total 0.845

(a) (b)

Fig. 10: The given trajectory references and obstacles for comparison: (a)
straight line and (b) curve line.

(a) (b)

Fig. 12: Comparison of final time error: (a) straight line and (b) curve line.
The blue bar denotes the OCP results, while the red is our algorithm.

B. Comparison with The OCP Solver

We compare the OCP solver [16] and our algorithm
performance for solving the eq. 13. The algorithms are tested
using the straight and curve trajectory references with the
number of obstacles ranged from zero to three and motionless
target, as shown in Fig. 10, with the desired final time is 20
seconds. We do not use the moving target for comparison,
because the solver [16] does not handle uncertainties (it will
be further explained in IV-C.3). Please note that for the
OCP solver, the visibility cost is converted into the obstacle
constraints (i.e. the area which is not visible from the target
is considered as obstacle) for easier representation for the
solver.

Figure 11 shows the averaged trajectory error of both
methods created at the robot initial position. Our algorithm
has incremental behavior, i.e. the result is getting better by
the time, due to the use of the guided-randomized search.
Without any obstacle constraint, the numerical-based OCP
can quickly solve the problem with a small trajectory error.
Our algorithm has advantages when the number of obstacle
is increased, where it quickly converges and achieves similar
trajectory error with the OCP solver in faster time. Moreover,
the OCP solver even fails to solve the equation in the case
of three obstacles are added (it is also the reason why there
is no result for the OCP with three obstacles in the Fig. 11).

We then compare the final time error of both methods in
the Fig. 12. The final time error is obtained by calculating
the difference of the time when the robot reaches the end
of trajectory and the desired time. Although the OCP solver
always has a better error, the 0.15 seconds difference (at
max) of the final time error is considerably small compared
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(a) (b) (c)

Fig. 11: Comparison of average trajectory error vs calculation time: (a) straight line, (b) symbol’s information, and (c) curve line. Lines denote our
algorithm and single markers are the OCP results. The red, green, blue, and magenta colors respectively denote 0, 1, 2, and 3 obstacles exist in the map.

to the desired final time 20 seconds, moreover if we also
take account the calculation time as shown in the Fig. 11.

C. Some Remarks

We present some considerations about our cameraman
robot system, as follows:

1) Control Constraint vs Final Time: There is possibility
when the given final time is too small, then the robot cannot
catch up with it no matter if the control is applied. To avoid
such constraint violation, here we assume that the given final
time constraint is long enough compared to the robot control
constraint. We will examine those problems for the future
work.

2) Camera Visibility Against Lower Objects: Currently
we treat all of the obstacles to have covering behavior, i.e.
the cameraman robot cannot see the target from behind of the
obstacles. In the real cases, there exist some small obstacles
which block the path of the robot, but actually do not cover
the camera view. These problems will be investigated later.

3) Comparison using Moving Target: As indicated by
the previous subsection, we compare our algorithm for the
motionless target cases only, because our intention is to clar-
ify the performance of our algorithm against the numerical
solver (i.e. how fast our algorithm runs while maintaining the
trajectory quality close to the one calculated numerically). As
the solver [16] does not handle uncertainties, the comparison
using a moving target becomes infeasible. Other possible
solutions of the moving target cases of eq. 13 are opened for
the interested readers.

V. CONCLUSION

We have presented a novel solution for a cameraman robot
problem described as the dynamic trajectory tracking with a
final time constraint. By considering the target movement,
visibility, and obstacles, we have successfully built a robotic
system which imitates one of the jobs of the cameraman
using the state-time space stochastic approach.

Regardless of the good performances shown in the ex-
periment section, we still use the static camera. In the real
situation, the cameraman person often plays with the zoom
and focus of the camera. The future direction of this research
lies on the integration of the camera zoom and focus into the

system. We will also investigate the problem arises in the sub
section IV-C.
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