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a b s t r a c t

In this paper, we propose a novel path planning algorithm for a mobile robot in dynamic and cluttered
environmentswith kinodynamic constraints.We compute the arrival time field as a biaswhich gives larger
weights for shorter and safer paths toward a goal.We then implement a randomizedpath search guided by
the arrival time field for building the path considering kinematic and dynamic (kinodynamic) constraints
of an actual robot. We also consider path quality by adding heuristic constraints on the randomized path
search, such as reducing unstable movements of the robot by using a heading criterion. The path will
be extracted by backtracking the nodes which reach the goal area to the root of the tree generated by
the randomized search, and the motion from the very first node will be sent to the robot controller.
We provide a brief comparison between our algorithm and other existing algorithms. Simulation and
experimental results prove that our algorithm is fast and reliable to be implemented on the real robot
and is able to handle kinodynamic problems effectively.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

In many robot applications, a path planner plays an important
role for making the robot fulfill the given tasks, such as approach-
ing a destination and avoiding collision with obstacles. The usual
sequence of the path planning algorithm is as follows: get the en-
vironment data using sensors, generate the path, and control the
robot according to the generated path. There are several things
which have to be considered to develop a path planning algorithm
for real implementation of the robot: path optimality, path safety,
and applicability to the real robot and environments.

Several parameters can be used tomeasure the path optimality,
e.g. distance metrics, time cost, and other cost functions. For
example, if we use a distance metric as the measurement, it
means that the path which gives the shortest distance toward a
destination will be considered as the optimal path. The path safety
means the algorithm must ensure that the robot has a ‘‘good’’
interactionwith its surrounding environment, such as not colliding
with other objects. The safety of the path also means that the
generated path does not harm the robot itself, e.g. the algorithm
does not generate a path with a very drastic change of velocity,
which may harm the motor of the robot.

In the real application, the robot has kinematic and dynamic
restrictions, such as speed, acceleration, and possible motion.
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These problems are often addressed as kinodynamic constraints
of motion planning. Calculation time is also very critical for a real
implementation of path planning algorithms.

1.1. Related works

There are a lot of works which have been presented and dis-
cussed to address the problem of path planning. The randomized
technique is one among many approaches which is used by many
researchers [1,2]. A randomized path planner such as RRT (Rapidly-
exploring Random Tree) [3] is widely accepted because of its abil-
ity to explore the tree in a vast area. A problem in RRT is that it
produces a path with many branches over the space due to its
natural behavior of using the randomized technique. Some stud-
ies have been conducted to overcome this problem. Urmson and
Simmons [4] proposed a heuristic technique based on a proba-
bilistic cost function to optimize generated trajectories. Another
approach is presented by Bruce and Veloso [5] by introducing addi-
tional waypoint caches to improve the performance of the random
tree algorithm.

Rodriguez et al. [2] presented a variant of the RRT algorithm
which can explore narrow passages. Vonasek et al. [6] propose an
iterative scaling approach for RRT search, based on an iterative
refinement of the guiding path using a scaled model of the robot.
There is also research on RRT using kinodynamic constraints by
LaValle et al. [7] and Plaku et al. [8].

Several researchers [9,1,10] also worked on sampling-based
path planners. Karaman and Frazzoli [9] designed an incremental
sampling-based path planner and proved its optimality in a static
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environment. Jaillet et al. [1] proposed a sampling-based method
on a configuration-space cost map. Zucker et al. [10] introduced a
workspace-biased sampling to be applied on a bidirectional RRT.

Another work proposed by Hassouna et al. [11] does not use
the randomized technique, but instead uses a potential function
generated by the Level Set Method over the free space. The path
is extracted using sequences of the best value of the field between
the initial position of the robot and the goal.

1.2. Our approach

Most algorithms either only consider static environments
(e.g. [11,3,4,7,9,1,10,2]) or need a long calculation time thereby
making it hard to be applied to the real robot (e.g. [8]). Some other
algorithms do not consider kinodynamic restrictions of the robot in
their simulations (e.g. [11,9]). That means it will need much effort
and modification to apply those algorithms to the real robot.

We introduce an algorithm called Heuristic Arrival Time Field-
biased Random Tree (HeAT-RT) to overcome all of those problems.
This paper is an extended version of [12] which explains the
HeAT-RT algorithm. Basically, it is a real-time path planning
algorithm that takes advantage of the high-exploration ability of a
randomized tree combinedwith an arrival time field and heuristics
to achieve the path optimality, safety, and applicability to the
real robot. We use the arrival time field to give a bias, and guide
the randomized tree expansion in a favorable way. Together with
heuristics, the arrival time field effectively ensures that the robot
chooses the path in the tree expansionwith considerable clearance
from any obstacle (safety) and has an optimum cost to reach the
destination. These costs include the length, the time to reach the
goal, and the smoothness of the path.

1.3. Paper outline

This paper is organized as follows. We explain the arrival time
field and its properties used by our algorithm to perform the
randomized search in Section 2. Section 3 describes the main
algorithm of the random tree and how we optimize the trajectory
generated by our path planner using a heuristic method. We then
show simulation results, a comparison with other existing path
planner algorithms, and experimental results in Section 4. The rest
is the conclusion of our work and possible future work.

2. Arrival time field

We first describe the basic idea of the arrival time field. Let us
consider the environment C as a two dimensional space that holds
information as follows:

• Non-passable area, which holds information about walls and
static obstacles, denoted by O ⊆ C.
• Free space area, which defines observed areas where the robot

will not collide with walls as well as static obstacles, denoted
by F ⊆ C.
• Unknown area, which defines areas that have never been

observed by the robot, e.g. an area behind an obstacle which
cannot be observed by any sensor, denoted by U ⊆ C.

2.1. Definition

We define the arrival time field as a space containing the in-
formation about the time needed by each point in the space for
approaching a determined goal point. Let us first consider a basic
kinematic equation in the one dimensional case which correlates
speed V , position x, and time T as
1x = V1T , (1)

or we can rewrite it as
1T
1x
=

1
V

. (2)

In a higher dimension, (2) can be expressed as

|∇T | =
1
V

. (3)

Let a monotonic wave front originating from a determined
source pointmove across a space; then the arrival time of thewave
front in every point can be calculated using (3). The arrival time
of a point depends on the distance from the source point and the
speed used by the wave front traveling toward that point. This
problem is known as the eikonal equation problem which can be
solved by Godunov approximation [13]. In 2D space, for example,
the equation is given by
max


D−xi,j T ,−D+xi,j T , 0

2
+max


D−yi,j T ,−D+yi,j T , 0

2
=

1
Vi,j
; (i, j) ∈ F (4)

where

D+xi,j = Ti+1,j − Ti,j,

D−xi,j = Ti,j − Ti−1,j,

D+yi,j = Ti,j+1 − Ti,j, and

D−yi,j = Ti,j − Ti,j−1.

(5)

Ti,j is the arrival time value of cell (i, j), and Vi,j denotes the speed
function of cell (i, j). The solution of (4) can be retrieved using
a solver such as Fast Marching Method [11,13], Fast Sweeping
Method [14], or Fast Iterative Method [15].

We use Fast Marching Method (FMM) to solve (4). According
to [11], (4) can be approximated by the first order finite difference
scheme

max

Ti,j − T1

1x
, 0
2

+max

Ti,j − T2

1y
, 0
2

=
1
V 2
i,j

(6)

where

T1 = min

Ti+1,j, Ti−1,j


T2 = min


Ti,j+1, Ti,j−1


.

(7)

The solution1 of (6) is given by

Ti,j =


T1 +

1
Vi,j

for T2 ≥ T ≥ T1

T2 +
1
Vi,j

for T1 ≥ T ≥ T2

quadratic solution of (6) for T ≥ max (T1, T2) .

(8)

Eq. (4) indicates that the arrival time of each point depends on
its speed function Vi,j. That means we can set the influence of walls
and static obstacles by adjusting the speed function, so that the
areas near obstacles have larger arrival times. For that purpose, we
implement a monotonic function denoted by

Vi1,j1 =


n
xi1,j1−xi2,j2

 for xi1,j1 ∈ F , xi2,j2 ∈ O
1 otherwise

(9)

1 The quadratic solution in this equation means a quadratic equation ax2 + bx+

c = 0 has the solution −b±
√

b2−4ac
2a .
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Fig. 1. Advantages of usingmonotonic velocity function: (a) An environmentwith two possible paths toward the goal. (b)Monotonic velocity field of (a). (c) Arrival time field
with uniform velocity function. (d) Arrival time field with monotonic velocity function. Darker color means longer arrival time. By occupying monotonic velocity function,
taking path B is better according to (d).
where Vi1,j1 is the speed on the point xi1,j1 , xi2,j2 is the nearest
point of an obstacle to xi1,j1 , and n is a constant for adjusting the
monotonic function’s value, to give more differences on each cell.
We use the monotonic function’s result for the speed function for
calculating the arrival time field, which will make the speed near
obstacles smaller. These definitions make the robot keep some
distance from walls and obstacles.

The emphasis point of the arrival time field is that it provides
the minimum predicted arrival time for each point rather than the
shortest distance to the goal. This predicted arrival time depends
on its speed function. We can exploit the speed function by
inserting information about several possibilities that the robot
may face in the environment. For example, in a plain environment
with obstacles, we can determine that it is better for the robot to
move slower at a narrow space, a corridor, or an area next to the
obstacles. We set a smaller speed on the area near the obstacle;
then a shorter travel time will be through an area far from the
obstacle (see Fig. 1). This example shows that the safety factor is
also taken into account in the arrival time field calculation.

The result of the arrival time field calculation is normalized and
inverted so that the goal point has the highest weight.We then use
that result as a bias for guiding the tree expansion.

3. HeAT Random Tree

It is easy to extract an optimal path for a point robot, i.e. the
robot can freelymove in all directions, using the result of the arrival
time field by backtracking the path along the fastest field from the
start to the goal [11]. In the case of considering kinematics and
dynamics of robot as constraints, aswell as dynamic environments,
it is very difficult to apply such approaches. We therefore propose
a randomized kinodynamic path planner algorithm utilizing the
arrival time field bias as its guidance and heuristic search to
optimize the path, called Heuristic Arrival Time Field-biased (HeAT)
Random Tree.

3.1. Definition

Our randomized tree is constructed by collections of reachable
states S called nodes. Every node is defined by the tuple S =
{x, y, θ, v, w, t} ∈ S, representing the robot position in xy-axis
and its heading θ , current translational velocity (v) and rotational
velocity (w) of the robot in that node, and time t for reaching that
node from the current state.

We give a predefined set of possible motions to the path plan-
ner. Each motion in the set consists of a translational and a rota-
tional velocity as robot control denoted by ui =


vi, wi


,

i = 1,

2, . . . , K

, where K is the total number of motions, which satisfies

kinematic constraints of the robot. Based on experiments, we cur-
rently use K = a set of 85 motions, which combines translational
velocity (in mm/s) v ∈ {−100,−50, 0, . . . , 600} and rotational
velocity (rad/s) w ∈ {−π

2 , . . . , π
2 }.

Let St be the current state and St+1 be the next state reached
from St using a chosenmotion u = {v, w}. We define this action of
extending state St as a function

St+1 ← g(St , u), (10)

and according to [16], the new robot pose in state St+1 can be
obtained by the following equation:xt+1
yt+1
θt+1


=

xt
yt
θt


+

v1

w1


− sin θt + sin (θt + w11t)
cos θt − cos (θt + w11t)

0



+

 0
0

w11t


, (11)

where 1t is the time difference between St and St+1.

3.2. Short-time dynamic obstacle motion model

In a dynamic environment, we consider a state as a collision-
free state if the state does not hit any static and dynamic obstacles.
We need to perform a collision checking of every new state.
Collision with static obstacles is checked using the information of
non-passable area O. For dynamic obstacles, wemake a short-time
dynamic obstacle motion model using constant speed for motion
prediction of dynamic objects. Let D′x(t) and D′y(t) be the predicted
positions of an obstacle at time t in x and y coordinates.We predict
the position of each dynamic obstacle by

D′x(t) = Dx(0)+ vDx t (12)

D′y(t) = Dy(0)+ vDy t (13)

where Dx(0) and Dy(0) are the current positions of the obstacle,
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and vDx and vDy are the speed of the obstacle on the respective x
and y coordinates.

We assume that the motion prediction of a moving obstacle is
effective for a short range of time, due to its uncertain behavior.
We currently use fixed 10 time slices with a cycle time of 500 ms,
starting from the time of the current state of the robot. For each
time slice, we predict both the position of each moving obstacle
and that of the robot in order to seewhether the robot and dynamic
obstacles will cause a collision in that time slice.

3.3. Random tree algorithm

Weexpand the tree from the current position of the robot, using
a similar approach to basic RRT [3] to take advantage of its random
exploration ability. Unlike the basic RRT algorithm which chooses
a random point from the entire space, we select a random point
using the bias from the arrival time field so that the tree grows
in a favorable direction toward the goal. We iteratively choose a
random point Ptarget which has a higher value of arrival time field
than a threshold value (note that we invert the result of the arrival
time field calculation, so that the goal point has the highest value).
The threshold Th is determined by

Th = bias(Sinit)+ Kth(bias(Sfar)− bias(Sinit)) (14)

where bias(Sinit) is the arrival time value at the current robot
position, bias(Sfar) is the arrival time value at the node which has
the highest value of the arrival time in the current iteration, and
Kth is a constant between 0 and 1. The threshold value starts from
the value of the arrival time field of the initial state (current robot
position), andwill growwhen a new created node has a higher bias
value than all of the current existing nodes. We then choose the
nearest node Snear to the Ptarget among all of the nodes in the tree.

Every time Snear is chosen and is eligible to be expanded, wewill
calculate a new state Snew of that node (Snear) by evaluating all of
the possible motion controls

Sui ← g(Snear, ui), for i ∈ {1, 2, 3, . . . , K} (15)

where Sui is the extension of Snear using motion control ui, and K is
the total number of motions, which satisfies kinematic constraints
of the robot, and is free from any collision. Let {vi, wi} ∈ ui be
{v2, w2} and {v, w} ∈ Snear be {v1, w1}; then possible motion
controls which meet kinematic constraints can be chosen if the
motion satisfies

v2 ≤ vmax,

w2 ≤ wmax,

(v2 − v1)

1t
≤ amax,

(w2 − w1)

1t
≤ αmax,

(16)

where vmax, wmax, amax, and αmax respectively denote the max-
imum allowable translational velocity, angular velocity, transla-
tional acceleration, and angular acceleration, and 1t is the cycle
time of calculation, currently 500 ms.

We then pick the best motion control

ubest = argmin
i

cost(Sui), (17)

which gives the best cost function, to get the new node

Snew = Subest ← g(Snear, ubest). (18)

cost(S) is a cost function for evaluating a definedmotion as follows:

αM1 + βM2 + δM3, (19)

M1 = bias(S), (20)
M2 = dist(Ptarget − S), (21)

M3 =
θS − θSnear

 , (22)
where bias(S) is the arrival time value at predicted point (xS, yS),
dist((xPtarget , yPtarget)− (xS, yS)) is the distance between destination
point (xPtarget , yPtarget) and the predicted point (xS, yS). |θS−θSnear | is
the heading difference of the robot between the current state and
the predicted state, and α, β , and δ are constants.

The algorithm above is summarized as follows (see also Fig. 2
and Algorithm 1):

1. Determine the threshold of the region for picking a random
point by (14).

2. Pick a random point Ptarget which has a better bias value than
the threshold (see Algorithm 2).

3. Choose the nearest node Snear to the random point Ptarget.
4. Evaluate all possible motions using (15); and
5. Extend the tree (Snew) by choosing the best motion (see

Algorithm 3).

Algorithm 1: HeAT Random Tree Planner
Properties :
S = collection of nodes
u =motion control
bias(S) = arrival time value of node S
threshold = bound the area for choosing random point

Function : HeAT_RANDOM_TREE_PLANNER()
S⇐ Sinit
threshold⇐ bias(Sinit)
while time_is_available do

Snear ⇐ CHOOSE_STATE(Ptarget , S)
S⇐ S ∪ EXTEND_TREE(Snear , u)
Update(threshold)1

end while
1update the threshold value, according to (14).

Algorithm 2: Choose State
Properties :
S = collection of nodes

Function : CHOOSE_STATE(Ptarget , S)
while time_is_available do

Ptarget = random point from F
if bias(Ptarget) ≥ threshold then

return nearest_node(Ptarget , S)1

end if
end while
1return the nearest node in S to Ptarget .

The constant Kth in (14) gives us control over how fast the tree
will grow and how disperse the tree will be. A high value of Kth
means the threshold will increase rapidly, which then makes the
tree grow fast and focus toward the goal. A low value of Kth means
the thresholdwill increase slowly; thenwewill get amore disperse
tree. In the current implementation, we use Kth = 0.25. Fig. 3
shows the growth of the threshold.

The basic randomized planner always tends to make a disperse
path due to its natural behavior. We need to determine a proper
criterion for extending every node chosen by the randomized
planner to reduce inefficient and disperse motions. In this case,
we want to reduce unstable movements that are often found in
the path created by the randomized planner. We use the previous
heading criterion as defined in (22) to ensure that we will not
choose a very large difference of heading on each pair node causing
unstable movements.
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Fig. 2. Random tree algorithm: (a) Initial condition before extending the tree. (b) Determine the threshold. (c) Pick a random point (Ptarget). (d) Choose the nearest node
(Snear). (e) Evaluate all possible motions. (f) Extend the tree (Snew).
Fig. 3. Growing the threshold from (a) to (c). The white area is the region for choosing a random point.
Algorithm 3: Extending Tree
Properties :
u = set of motion controls
temp_cost = temporary variable for storing cost value
S ′ = temporary variable for storing the information of a node

Function : EXTEND_TREE(Snear , u)
for all u do

S ′ ⇐ (Snear , u)
if cost(S ′)1 ≤ temp_cost then

Snew⇐ S ′
temp_cost = cost(S ′)

end if
end for
return Snew
1cost value is calculated according to (19).

3.4. Restarting tree algorithm

We can expect that growing the tree from the initial point to
the goal using the arrival time field bias takes a small amount
of time. We will take advantage of this fact to construct more
possible paths. Once a node in the tree reaches the goal area,
the threshold for choosing a random point is set back to the
value of arrival time field of the robot’s current state, and we
repeat the process of expanding the tree. We call these processes
‘‘restarting tree algorithm’’. We run the tree expansion algorithm
for a fixed amount of time, currently 200 ms. These restrictions
are implemented in order to keep the computation time as fast as
possible to be recognized as a real-time path planner.
3.5. Directing initial robot heading

The utilization of kinodynamic constraints to the robot, i.e. the
robot cannot freely move in all directions, may lead the random-
ized planner tomake a large curve in the pathwhen the target posi-
tion is in the opposite direction of the robot. In this case, it is better
to direct the robot in a certain heading; pointing the robot directly
to the goal position is not the best choice, because with the ap-
pearance of obstacles, it may lead the robot to wrong trajectories.
We overcome this problem by adding a heuristic that is to direct
the initial robot heading to the most promising area using a small
frame of the arrival time field.

A small frame of the arrival time field, centered on the robot’s
initial position, is divided into four regions (Fig. 4). We calculate
the totalweight of each region and choose the regionwhich has the
largest weight. When the region behind the initial position of the
robot has a larger weight, we will rotate the robot to that region
and set that rotation as the initial expansion of the tree. We can
see a comparison of the algorithms with and without this initial
heading in Fig. 5.

Fig. 5(a) shows a long arch in the path when the robot does not
use the initial heading. On the contrary, we can reduce the cost
of the path of the robot when we apply the initial heading at the
beginning of the tree, as shown in Fig. 5(b).

3.6. Path extraction

HeAT Random Tree will provide several feasible paths of the
robot from the initial state to the goal due to our restarting tree
algorithm, satisfying the kinodynamic constraints and is free of
collision with any static and dynamic obstacles. We examine all
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Fig. 4. Making a small frame of the arrival time field: (a) the arrival time field, (b) a part of (a) centered at the robot position, divided into four regions.
Fig. 5. Effect of directing the initial heading of the robot: (a) without and (b) with the initial heading. The goal is at the lower left corner.
of the feasible paths by backtracking from the nodes which reach
the goal area to the root of the tree and select the path which is
the fastest one and has the most Minimum Work (MW) cost (see
Eq. (23)). The term fastest here means the path which has the
minimum time to reach the goal, and there are possibilities that
several paths will have the same minimum time because of the
restarting tree algorithm.

MW cost is computed by

MW =
goal

t=start

|w(t + 1)− w(t)| (23)

wherew(t) is the angular velocity/steering radius (in rad/s) on the
node St . The path, the steering radius of which often changes, i.e. a
non-smooth path, will have a higher value of MW.

MW cost ensures that the chosen path is the smoothest one
among all of the fastest paths. The first motion of the path is sent
to the robot controller.

3.7. Reusability of path

We use a very fast time cycle (currently, 500 ms per cycle) for
calculating the entire algorithm, i.e. updating map information,
static and dynamic obstacles, and performing calculations of HeAT
Random Tree. We assume that the environment has not changed
very much during that cycle. The path generated by the previous
calculation is still expected to be feasible for the current cycle. The
previous path is examined from the root to the longest collision-
free state of the path and is used as the initial tree for the current
calculation.

4. Experimental results

We test the HeAT Random Tree path planner both in simulation
and experiment with the real robot. All implementations were
Fig. 6. RT-component connection for the simulations.

done using a laptop PC (Core2Duo, 2.1 GHz, 2 GB memory,
Windows XP). We implement our path planner algorithm as an
RT-component (see Figs. 6 and 7) which is a software module
running on RT-middleware2 environment [17] for reusability
(cooperates with other modules in the real implementation, e.g.
sensor modules, mapping modules, etc.).

4.1. Simulation: local planner

We use an Environment Simulator [18] to perform the simu-
lation of our path planner as a local planner. The simulator gen-
erates a 200 × 200 cell map consisting of free space and static
obstacles as the local map for the robot, mimicking the canteen

2 RT-middleware is a specification on a component model and infrastructure
services applicable to the domain of robotics software development, authorized by
OMG (Object Management Group).
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Fig. 7. RT-component connection for the experiments.
Fig. 8. Modeled environment for simulation.

of our university. This simulator also provides information about
people movement to the path planner. The flow of the simulated
people behavior is as follows: people enter the canteen, queue up
for tickets at the ticket machine, take meals using a tray, go to a
free seat, remain in the seat for eating, bring the tray to the wash-
ing place, and go to the exit (see Fig. 8).

We apply the HeAT Random Tree path planner to people track-
ing and waypoint following problems. Fig. 9 shows the simulation
result on both problems, where the blue area denotes free space,
the green line is wall and static obstacles, the orange circle denotes
the robot position, the red circle is the goal, the triangles represent
peoplemovement, and the black area is the extending space for ob-
stacles. Here, wewant to show that our path planner is fast enough
to run as a local planner, and can deal with both static and dynamic
obstacles. Especially for the people tracking problem, we want to
show that our path planner can deal with a dynamic goal.

In the people tracking simulation, the robot has to follow one of
the people while avoiding static obstacles, walls, and other people.
We will say that the robot has succeeded in solving the people
tracking problem when the robot can follow the tracked person
from the entrance until that person sits at a table for eating (see
Fig. 9(a) and (c)).

In the waypoint following simulation, the robot is given a
sequence ofwaypoints to followwhere the goal lies on the very last
Table 1
Statistics of simulation result.

Statistics People tracking Waypoint following

Arrival time field calculation (max) (ms) 40 40
Random tree calculation (max) (ms) 250 250
Number of nodes (avg.) 1500 nodes 3000 nodes
Maximum speed (mm/s) 500 600
Number of simulations 10 times 10 times
Successful runs (%) 100 100

waypoint of the sequence. The simulator gives several conditions
of environment like corridors, intersections, and open space with
wandering dynamic obstacles. The task of waypoint following
problem will be judged a success if the robot can arrive at the goal
safely (see Fig. 9(b) and (d)).

Table 1 shows the robustness of the HeAT Random Tree al-
gorithm. The simulation of each problem is done 10 times suc-
cessfully. Overall calculations need less than 500 ms. The path
planner produces fewer nodes in the people tracking problem be-
cause the robot keeps close to the goal (i.e. the followed person), so
that the area for expanding the tree becomes narrower than that
on the waypoint following problem.

4.2. Simulation: global planner

We then use our algorithm as a global planner (see Fig. 10).
Fig. 10(a) and (b) show the benefit of the arrival time field with
a safety profile as we had explained in Section 2, where the
safest path will be chosen if applicable for the robot. Fig. 10(d)
and (f) show how our path planner will act in the environment
with several possible paths. By using the arrival time field, our
algorithm will try to find the fastest and smoothest path for the
robot while maintaining safety. For example in Fig. 10(f), there are
many possible paths and the the arrival time field nicely guides the
tree expansion.

4.3. Comparison with other algorithms by simulation

Weprovide a brief comparison between the HeAT Random Tree
algorithm and other existing RRT-based path planning algorithms.
We use the original RRT algorithm by [3] and the hRRT algorithm
by [4] for comparison. The original RRT algorithm chooses a
random point uniformly from the entire space, and then extends
the tree from the nearest node to that random point. The hRRT
algorithm uses a heuristic method based on a probabilistic cost
function. This algorithm selects a random point for extending the
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Fig. 9. Screenshot sequences of simulation using Environment Simulator: (a) people tracking problem, (b) waypoint following problem, (c) global map view of (a), (d) global
map view of (b). People are the goal in (a). The blue area denotes free space, the green line is wall and static obstacles, the orange circle denotes the robot position, the red
circle is the goal, the triangles represent people movement, and the black area is extending space for obstacles. Gray circles in (c) and (d) are global positions of the robot
with respect to local positions in (a) and (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Simulation of HeAT Random Tree as global planner using various maps, its arrival time field (left), and respecting tree expansions (right). The blue lines denote trees,
the red line is robot path, the orange circle denotes robot position, the red circle is the goal, the white area is free spaces, and the black area is obstacles. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Comparison of tree expansion on the dynamic environment: (a) original RRT, (b) hRRT, and (c) HeAT Random Tree.
tree using a distance cost function to reduce the dispersion of the
tree produced by the original RRT algorithm.

For fairness of comparison, we use the same environment. We
also apply the same kinodynamic constraints to all algorithms,
even if each original algorithm did not deal with them. We set the
maximum time to 300 ms for performing the calculation of each
algorithm, to be considered as a real-time algorithm.

Fig. 11 can give us a good illustration about how the tree will
expand in each algorithm on a dynamic environment. The original
RRT algorithm expands the tree in a disperse way (Fig. 11(a)).
hRRT gives a better result than the original RRT by occupying
heuristic method of cost function, but this heuristic method based
on distance cost only considers the free spaces and the static
obstacles; therefore it cannot handle dynamic environments and
finds it difficult to get out of obstacles in front of the robot as shown
in Fig. 11(b). On the contrary, HeAT Random Tree algorithm is
nicely guided by the arrival time field and heuristics, and expands
in a favorable way as shown in Fig. 11(c).
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Fig. 12. Comparison of RRT, hRRT, and HeAT-RT algorithms: (a) successful rate of finding the path, (b) number of nodes.
Fig. 13. Comparison of tree expansion on the environment with narrow passage: (a) original RRT, (b) hRRT, (c) arrival time field, and (d) HeAT Random Tree.
Fig. 12 shows the effectiveness of HeAT Random Tree against
the original RRT andhRRT to find the path, based on the experiment
shown in Fig. 11. HeAT Random Tree can rapidly find and generate
the path, even though RRT and hRRT can produce more nodes
at the same time. A high-rate of successful path generation is
needed to ensure the robustness of the algorithm. HeAT Random
Tree is expected to have a longer calculation time because of
arrival time field generation, but surprisingly it is just a slight
difference of nodenumbers among the three algorithms. This slight
difference happens because the original RRT and hRRT face many
collision states that will slow down the computation time due
to kinodynamic constraints, whereas HeAT Random Tree is well-
guided by the arrival time field so that the tree will be expanded to
the safe area.

Figs. 13 and 14 show the comparison of each algorithm on the
environment with narrow passages and bug-traps. Our algorithm
effectively expands the tree, produces a nice path, and maintains
safety, while RRT and hRRT fail to find the path. Both figures show
the benefit of the arrival time fieldwith a safety profilewhich guides
the tree expansion in a favorable way. Note in Fig. 13(d) that, the
path lies in the middle of a narrow passage, which means our
path planner can maintain the safety of the path even in a difficult
environment.

We then compare our HeAT Random Tree algorithm with RRT
and hRRT algorithms using the Environment Simulator for solving
the waypoint following problem. The robot is given the same
initial position and goal to reach using each algorithm. Along the
way in the simulator, the robot runs through several situations
like narrow corridors, intersections, and open spaces with several
moving obstacles surrounding the robot (see Fig. 15). We aim
to test each algorithm using different kinds of environments
and situations, to get better illustrations of performance of each
algorithm. We run the simulation 10 times for each algorithm.
Fig. 15 shows that our algorithm can keep the path as smooth as
possible on the narrow corridor and intersection, and effectively
grows the tree toward the goal in all situations, compared to other
algorithms.

Table 2 shows the simulation results of each algorithm for the
waypoint following problem. The results are taken and averaged
from successful runs (i.e. the robot reaches the goal). Most of
the collisions occur because of moving obstacles. Averaged MW-
cost results show the smoothness of the path generated by HeAT
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Fig. 14. Comparison of tree expansion on the environment with multiple bug-traps: (a) original RRT, (b) hRRT, (c) arrival time field, and (d) HeAT Random Tree.
Fig. 15. Comparison of three algorithms at (a) narrow corridor, (b) intersection, and (c) open space with several moving obstacles.
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Fig. 16. Experiment of people tracking in complex environment (canteen of our university): (from left to right) sequences of the real world (top) and local map scene
(bottom). The robot has to follow the person in the red circle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 17. In-room experiment of following waypoints: (from left to right) sequences of the real world (top) and local map scene (bottom). Circles in the top images represent
detected people.
Random Tree, computed by

Averaged MW =

goal
step=start

|w(step+ 1)− w(step)|
step

(24)

where w(step) is the angular velocity/steering radius control (in
rad/s) in each step, and


step is the total number of steps

from the start to the goal, and collision states are not included
in the computation. A lower value of Averaged MW means the
robot rarely changes direction. Overall, these results show the
superiority of our algorithm.

4.4. Experiment on real robots

We use a Patrafour robot by Kanto Auto Works Ltd. and ENON
by Fujitsu Ltd. for experiments, equipped with a stereo camera
(Bumblebee2 by Point Grey), a laser range finder (UTM-30LX by
Table 2
Comparison of three algorithms using Environment Simulator.

RRT hRRT HeAT RT

Time to goal (avg.) (s) 157 113 58
Number of collisions (avg.) 10 9 2
MW-cost (avg.) 0.57 0.33 0.15
Successful runs (%) 50 70 100

Hokuyo), and laptop PC.We test the HeAT Random Tree path plan-
ner using two problems: people tracking and waypoint following
problems.

The path planner utilizes a 200 × 200 grid of probabilistic lo-
cal map with an actual size of 10 × 10 m. In the people tracking
problem, the robot has to follow a person using a people tracking
algorithm [19] while examining its environment. We use the can-
teen of our university representing a more complex environment
(see Fig. 16). The robot follows one person while avoiding any col-
lision with surrounding people.
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In the waypoint following problem, we determine several
waypoints which have to be reached by the robot in the real world.
We use an in-room environment for doing a waypoint following
experiment. The robot has to reach the goal which is located in
front of the door while avoiding any collision with obstacles and
wandering people (see Fig. 17).

Both following waypoints and people tracking tasks are suc-
cessfully done within 500 ms of computation time per cycle and
using amaximum speed of 500mmper second. These experiments
show the ability of the HeAT algorithm to be directly implemented
on the real robot using a real environment.

5. Conclusions

Wehave presented a novel path planning algorithmwhich uses
the arrival time field as a bias for a randomized tree search. Heuristic
approaches of our algorithm are proved to be effective for handling
a dynamic environment and kinematic constraints of the robot.We
have shown that our algorithm is superior to other existing path
planner algorithms. Simulation and experimental results also show
that our algorithm is applicable to the real robot, and can be used
in real-time.

Several improvements are possible to be applied. One is to
integrate themoving obstaclemodel to the arrival time field so that
we will get a 3D time–space model of moving obstacles for a more
reliable and efficient path. By using the 3D time–space model of
moving obstacles, we can obtain several possibilities of routes and
examine them to extract the most promising region for generating
the path.
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