
Heuristically Arrival Time Field-Biased (HeAT) Random Tree:
An Online Path Planning Algorithm for Mobile Robot

Considering Kinodynamic Constraints

Igi Ardiyanto and Jun Miura

Abstract— This paper presents a new path planning algo-
rithm for mobile robot in dynamic environments. We calculate
the arrival time field as a bias which gives larger weights for
shorter and safer paths towards a goal. We apply a randomized
path search guided by the arrival time field for constructing
the path considering kinematic and dynamic (kinodynamic)
constraints of actual robot. We also consider path quality by
adding heuristic constraints such as directing the initial heading
of the robot and reducing unstable movements of the robot
by using a heading criterion. The path will be extracted by
backtracking the nodes which reach the goal area to the root
of the tree generated by the randomized search. We provide
a brief comparison between our algorithm and other existing
algorithms. Simulation and experimental results prove that our
algorithm is fast enough to be applied to the real robot and show
the effectiveness of the algorithm for handling kinodynamic
problems.

I. INTRODUCTION

Path planning is one of developing problems in the field of
robotics. Path planning algorithm is used to make the robot
fulfill given tasks, such as approaching the destination or
avoiding collision with obstacles. A good path planner must
be able to make a path reaching the destination efficiently
and safely, can deal with both static and dynamic obstacles
in the real environment, consider about path quality, and can
be applied online in the real robot.

Many approaches have been presented and discussed to
address the problem of path planning. Randomized technique
is one among many approaches which is used by a lot
of researchers ([7], [11]). Randomized path planner such
as RRT (Rapidly-exploring Random Tree) [3] is widely
accepted because of its ability to explore the tree in the vast
area. A problem in RRT is that it produces a very spreading
path over the space due to its natural behavior of using
randomized technique. Some studies have been conducted to
overcome this problem. Urmson and Simmons [4] proposed
a heuristic technique based on a probabilistic cost function
to optimize generated trajectories. Another approach is pre-
sented by Bruce and Veloso [1] by introducing additional
waypoint caches to improve the performance of the random
tree algorithm. Rodriguez, et al. [11] presented a variant of
RRT algorithm which can explore narrow passages. There
are also researches on RRT using kinodynamic constraints
by La Valle, et al. [5] and Plaku, et al. [10].

I. Ardiyanto and J. Miura are with Department of Computer Sci-
ence and Engineering, Toyohashi University of Technology, 1-1 Hibari-
gaoka, Tenpaku-cho, Toyohashi, Aichi, 441-8580, Japan {iardiyanto,
jun}@aisl.cs.tut.ac.jp

Several researchers ([6], [7], and [9]) also worked on
sampling-based path planners. Karaman and Frazzoli [6]
designed an incremental sampling-based path planner and
proved its optimality on a static environment. Jaillet, et al. [7]
proposed a sampling-based method on configuration-space
costmap. Zucker, et al. [9] introduced a workspace-biased
sampling to be applied on a bidirectional RRT.

Another work proposed by Hassouna, et al. [2] does
not use randomized technique, but instead uses a potential
function generated by the Level Set Method over the free
space. The path is extracted using sequences of the best value
of the field between the initial position of the robot and the
goal.

Most of those algorithms are either only consider static
environment (e.g. [2], [3], [4], [5], [6], [7], [9], and [11]) or
need a long calculation time thereby making it hard to be
applied in the real robot (e.g. [10]). Some other algorithms
do not consider kinodynamic restrictions of the robot in their
simulations (e.g. [2] and [6]). That means it will need much
efforts and modification to apply those algorithms to the real
robot.

Based on those problems, we propose a novel approach
by introducing the arrival time field to guide a randomized
path search. Basically, we want to take advantages of the
randomized search method which can widely explore the
area, then combine it with the arrival time field bias which
can ensure the convergence of the path. We also consider
kinodynamic constraints and the path quality of the robot so
that our algorithm is applicable to the real robot.

This paper is organized as follows. We explain the arrival
time field and its properties used by our algorithm to perform
the randomized search in section II. Section III describes
the main algorithm of random tree and how we optimize
the trajectory generated by our path planner using heuristic
method. We compare our algorithm with existing path plan-
ner algorithms in section IV. We then show the simulation
and experimental results in section V. The rest is conclusion
of our work and possible future works.

II. ARRIVAL TIME FIELD

A. Notation

Let us consider the environment C as a two dimensional
space that holds information as follows:
• Non-passable area, holds information about walls and

static obstacles, denoted by O ⊆ C;

978-1-4577-2137-3/11/$26.00 © 2011 IEEE

• Free space area, defines visible areas where robot will
not collide walls as well as static obstacles, denoted by
F ⊆ C;

• Unknown area, defines the area that is not visible by
the robot, e.g. area behind obstacle which cannot be
observed by any sensor, denoted by U ⊆ C.

We use unknown area only for real implementation pur-
pose (see section V, experiments on the real robot), because
in the simulation we assume that every region can be
classified either as free space or non-passable area.

B. Arrival Time Field

An arrival time field is used to provide a bias to drive
expansion of the tree in a favorable direction toward the
destination. We want the tree expands through a safe place
within the fastest time. To fulfill such requirements, we apply
the distance transform over free space F to give more weights
on the cells near static obstacles and walls. We then perform
calculation of the arrival time field originated from a goal
point to give less weight on the closer position towards the
goal.

The distance transform of point x1 is calculated by

f(x1) =

{√
‖x1 − x2‖2 for x1 ∈ F

0 otherwise
(1)

f(x1)← nf(x1) (2)

where x2 is the nearest obstacle to x1.
We implement Level Set Method as described in [2] to

generate the arrival time field. For every point (i,j) in F, the
arrival time is given by√

max (D−x
i,j T,−D+x

i,j T,0)
2
+max(D−y

i,j T,−D+y
i,j T,0)

2
= 1

fi,j
;(i,j)∈F

(3)
where

D+x
i,j = Ti+1,j − Ti,j ,

D−xi,j = Ti,j − Ti−1,j ,
D+y

i,j = Ti,j+1 − Ti,j , and
D−yi,j = Ti,j − Ti,j−1.

(4)

Ti,j is the arrival time value of cell (i,j), and fi,j denotes
speed function of cell (i,j).

Equation (3) indicates that the arrival time of each point
depends on its speed function f. That means we can set
the influence of walls and static obstacles by adjusting the
speed function, so that areas near obstacles have larger arrival
time. For that purposes, we implement a monotonic function
to the distance transform as described in (2) to give more
differences on each cell and use the distance transform’s
result as speed function for calculating the arrival time field,
which will make the speed near obstacle become smaller.
These definitions make the robot keep some distances from
the walls and obstacles (see Fig. 1).

The value of each point is normalized and inverted so
that the goal point has the highest weight. We consider the
normalized arrival time value of every cell produced by those
calculation above as a bias for guiding the tree expansion.

(a) (b) (c)

Fig. 1: (a) Environment map, where blue area denotes free space, green line
is wall, the orange circle denotes robot position, the red circle is destination,
the triangles are moving obstacles, and the black area is extending space
for obstacles. (b) Distance transform of (a). (c) Arrival time field, brighter
area means higher value.

III. HEAT RANDOM TREE

It is easy to extract an optimal path for a point robot,
i.e. the robot can freely move to all direction, using the
result of arrival time field by backtracking the path along
the fastest field from start to the goal [2]. In the case of
considering kinematic and dynamic of robot as constraints,
as well as dynamic environments, it is very difficult to
apply such approaches. We therefore propose a randomized
kinodynamic path planner algorithm utilizing the arrival time
field bias as its guidance and heuristic search to optimize the
path.

Heuristically Arrival Time Field-biased (HeAT) Ran-
dom Tree is constructed by collections of reachable states
called node. Every node is defined by the tuple N =
{x, y, θ, v, w, t}, representing robot position in xy-axis and
its heading of θ, current translational velocity (v) and rota-
tional velocity (w) of the robot in that node, and time t for
reaching that node from the current state.

A. Predefined Motion Set

We give a predefined set of possible motions to the path
planner. Each motion in the set consists of a translational
and a rotational velocity as robot control notated by ui =
{vi, wi} , (i = 1, 2, . . . ,Ku), where Ku is the total number
of the motions, which satisfies kinematic constraints of the
robot.

B. State Extension

Let Nt be the current state and Nt+1 be the next state
reached from Nt using a chosen motion set u1 = {v1, w1}.
We define this action of extending state Nt as a function

Nt+1,u1 ← g(Nt, u1), (5)

and according to [8], the new robot pose of Nt+1 can be
obtained by the following equation:
xt+1

yt+1

θt+1

=

xt
yt
θt

+
v1
w1

− sin θt + sin (θt + w1∆t)
cos θt − cos (θt + w1∆t)

0

+

0
0

w1∆t

(6)

where ∆t is the time difference between Nt and Nt+1.

C. Short-time Dynamic Obstacle Motion Model

In a dynamic environment, we consider a state as collision-
free state if the state does not hit any static and dynamic
obstacles. We need to perform a collision checking of every
new state. Collision with static obstacles is checked using the
information of non-passable area O. For dynamic obstacles,
we make a short-time dynamic obstacle motion model using
constant speed for motion prediction of dynamic objects. Let
D
′

x (t) and D
′

y (t) be the predicted position of an obstacle
at time t in x and y coordinate. We predict the position of
each dynamic obstacle by

D
′

x(t) = Dx(0) + vDxt (7)

D
′

y(t) = Dy(0) + vDy
t (8)

where Dx(0) and Dy(0) are the current position of each
obstacle, and vDx

and vDy
are speed of the obstacle on the

respective x and y coordinate.
We assume that motion prediction of moving obstacle

is effective for a short range of time, due to its uncertain
behavior. We currently use fixed 10 time slices with cycle
time of 500 milliseconds, started from the time of the current
state of the robot. For each time slice, we predict both the
position of each moving obstacle and that of the robot to
see whether the robot and dynamic obstacles will cause a
collision in that time slice.

D. Directing Initial Robot Heading

The utilization of kinodynamic constraints to the robot,
i.e. the robot can’t freely move to all directions, may lead
the randomized planner to make a large curve of path when
the target position is in the opposite direction of the robot. In
this case, it is better to direct the robot in a certain heading,
but pointing the robot directly to the goal position is not
best choice, because in appearance of obstacles, it may lead
the robot to wrong trajectories or even local minima. We
overcome this problem by adding a heuristic that is to direct
the initial robot heading to the most promising area using a
small frame of arrival time field.

A small frame of the arrival time field, centered on the
robot initial position, is divided into four regions (Fig. 2).
We calculate the total weight of each region and choose the
region which has the largest weight.

When the region behind the initial position of the robot
has larger weight, we will rotate the robot to that region and
make that rotation as the initial expansion of the tree. We
can see a comparison of the algorithms with and without
this initial heading in Fig. 3. Fig. 3a shows a long arch of
path when the robot doesn’t use the initial heading. Contrary,
we can reduce the cost of the path when we apply the initial
heading at the beginning of the tree, as shown in Fig. 3b.

E. Best-first Strategy for Simple Situation

We aim at the fastest calculation time for making an on-
line path planner. In a simple situation (e.g., the goal is in
front of the robot with little number of obstacles), we try
to generate a simple motion using kinodynamic constraints.

Fig. 2: (a) the arrival time field, (b) a part of (a) centered at the robot
position, divided into four region

(a) (b)

Fig. 3: Effect of directing the initial heading of the robot, (a) without and
(b) with the initial heading

Basically, we try to generate the path by repeatedly adding
the best motion in the motion set to the current state Nt and
get the predicted state Nt+1

Nt+1,ubest
← g(Nt, ubest), (9)

where ubest is obtained by examining all of possible motions

Nt+1,u ← g(Nt, u), for u ∈ {u1, u2, u3, . . . , uKu
} (10)

ubest = arg min
u

cost(Nt+1,u) (11)

where Ku is the total number of the motion set, which
satisfies kinematic constraints of the robot. cost(Nt+1,u) is
a cost function for evaluating a motion, defined by

α ∗M1 + β ∗M2 + δ ∗M3, (12)

M1 = bias(xt+1, yt+1) (13)
M2 = dist((xgoal, ygoal)− (xt+1, yt+1)) (14)
M3 = |θt+1 − θt| (15)

where bias(xt+1, yt+1) is the arrival time value at
predicted point(xt+1, yt+1) generated by a motion u,
dist((xgoal, ygoal) − (xt+1, yt+1)) is the distance be-
tween destination point (xgoal, ygoal) and predicted point
(xt+1, yt+1). |θt+1−θt| is the heading difference of the robot
between the current state and the predicted state, and α, β,
and δ are constants.

This heuristic motion planner is very fast when it finds a
feasible path, so we make a time limit for performing this
action. If this heuristic cannot find a path or collide with an
obstacle within the time limit, then we invoke the randomized
tree search.

(a) (b) (c)

Fig. 4: Expanding the tree using bias (see algorithm (1)). The white area
is the region for choosing a random point.

F. Random Tree Algorithm

We expand the tree from the current position of the
robot, using a similar approach to basic RRT [3] to take
the advantages of its random exploration ability. Unlike the
basic RRT algorithm which chooses a random point from the
entire space, we select a random point using the bias from
the arrival time field so that the tree grows in a favorable
direction towards the goal. We choose a random point which
has higher value of arrival time field than a threshold value.
This threshold value is started from the value of the arrival
time field of the initial state, and grows when a new created
node has a better value than this threshold (see Fig. 4). This
heuristic is performed as algorithm 1.

Every time a node is chosen and eligible to be expanded,
we will calculate a new state of this node using all of
possible motion controls. We then pick one of the motion
controls by repeating (9), (10), and (11), which is free from
any collision and gives the best cost function evaluated by
(12), (13), (14), and (15), where (14) is slightly modified
to dist((xtarget, ytarget)− (xt+1, yt+1)), that is the distance
between chosen random point(xtarget, ytarget) and the pre-
dicted point (xt+1, yt+1).

The basic randomized planner always tends to make
a disperse path due to its natural behavior. We need to
determine a proper criterion for extending every node chosen
by the randomized planner to reduce inefficient and disperse
motions. In this case, we want to reduce unstable movements
that are often found in the path created by randomized
planner. We use the previous heading criterion as defined in
(15) to ensure that we will not choose a very large difference
of heading on each pair node causing unstable movements.

G. Restarting Tree Algorithm

We can expect that growing the tree from the initial point
to the goal using the arrival time field bias takes a small
amount of time. We will take the advantage of this fact to
construct more possible paths. Once a node in the tree reach
the goal area, the threshold for choosing random point is set
back to value of arrival time field of robot’s current state,
and we repeat the process of expanding the tree. We call
that processes as ”restarting tree algorithm”. We run the tree
expansion’s algorithm on a fix amount of time, currently 200
ms, or we stop the algorithm if the maximum number of
node is reached (currently 3000 nodes). These restrictions

Algorithm 1: HeAT Random Tree
Properties :
N = collection of nodes
u = motion control
bias(x) = arrival time value of point x

Function : HeAT RANDOM TREE PLANNER()
N ⇐ xinit
temp bias⇐ bias(xinit)
while time is available do
xnear ⇐ CHOOSE STATE(xrand, N)
N ⇐ N ∪ EXTEND TREE(xnear)1

if bias(xnew) ≥ temp bias then
temp bias⇐ bias(xnew)

end if
end while

Function : CHOOSE STATE(xrand, N)
while time is available do
xrand = random point from F
if bias(xrand) ≥ temp bias then

return BEST NODE(xrand, N)2

end if
end while
1make an extension node by evaluating every possible u according to
(10).
2return the nearest node of N to xrand.

are implemented in order to keep the computation time as
fast as possible to be recognized as a real-time path planner.

H. Path Extraction

HeAT Random Tree will provide several feasible paths
of the robot from the initial state to the goal satisfying the
kinodynamic constraints and is free of collision with any
static and dynamic obstacles. We select the fastest path by
backtracking the nodes which reach the goal area to the root
of the tree. The first motion of the path is sent to the robot
controller.

I. Reusability of Path

We use a pretty fast time cycle (currently, 500 milliseconds
per cycle) for calculating the entire algorithm i.e., updating
map information, static and dynamic obstacles, and perform-
ing calculation of HeAT Random Tree. We assume that the
environment is not so much changed during that cycle. The
path generated by the previous calculation is still expected
to be feasible for the current cycle. The previous path is
examined from the root to the longest collision-free state of
the path and used it as initial tree for the current calculation.

IV. COMPARISON OF HEAT RANDOM TREE AND OTHER
EXISTING ALGORITHMS

We provide a brief comparison between HeAT Random
Tree algorithm and other existing RRT-based path planning
algorithms. We use RRT algorithm by [3] and hRRT al-
gorithm by [4] for comparison. RRT algorithm chooses a

TABLE I: Comparison of Path Planning Algorithms

Success Rate Average of Execution
of 20 times Time of Successful

Run (%) Runs (ms)
Basic RRT 65 75
hRRT 70 95
HeAT Random Tree 95 110

(a) (b) (c)

Fig. 5: Comparison of tree expansion, (a) Basic RRT, (b) hRRT, and (c)
HeAT Random Tree

random point uniformly from the entire space, then extends
the tree from the nearest node to that random point.

hRRT algorithm uses a heuristic method based on a
probabilistic cost function. This algorithm selects a random
point for extending the tree using a distance cost function so
that dispersion of the tree is expected to be reduced.

For fairness of comparison, we use the same environment
including presences of the static and dynamic obstacles.
We also apply the same kinodynamic constraints to all of
algorithms, even if each original algorithm did not concern
about it. We set the maximum number of nodes to 1000 and
the maximum time to 200 milliseconds for performing the
calculation of each algorithm. Table I and Fig. 5 show the
comparison of each algorithm.

Table I shows the effectiveness of HeAT Random Tree
against Basic RRT and hRRT. High-rate of successful path
generation is needed to ensure the robustness of the algo-
rithm. HeAT Random Tree is expected to have longer time
of calculation because of arrival time field generation, but
surprisingly it is just a slight difference of the execution time
among the three algorithms. This slight difference happens
because basic RRT and hRRT face many collision states that
will slow down the computation time due to kinodynamic
constraints, whereas HeAT Random Tree is well-guided by
the arrival time field so that the tree will be expanded to the
safe area.

Fig. 5 can give us a good illustration about how the tree
will expand in each algorithm. Basic RRT algorithm expands
the tree in a disperse way (Fig. 5a). hRRT gives better
result than Basic RRT by occupying heuristic method of
cost function, but this heuristic method based on distance
cost only considers the free spaces and the static obstacles,
therefore it cannot handle dynamic environment and difficult
to get out of obstacles in front of the robot as shown in Fig.
5b. On the contrary, HeAT Random Tree algorithm is nicely
guided by the arrival time field and heuristics, and expands
in a favorable way as shown in Fig. 5c.

TABLE II: Statistic of Simulation Result

Statistic Value
Arrival Time Field calculation 40 ms
Best-first Path calculation 10 ms
Random Tree calculation 250 ms
Number of nodes 3000 nodes
Maximum speed 400 mm/second
Number of simulation 10 times
Successful runs 100%

(a) (b)

Fig. 6: Screenshot of simulation using Environment and People
Movement Simulator

V. RESULT

We test HeAT Random Tree path planner in both of
simulation and experiment with the real robot. All of im-
plementations were done using a laptop PC (Core2Duo, 2.1
GHz, 2GB memory, Windows XP). We implement our path
planner algorithm as an RT-component which is software
module running on RT-middleware1 environment [14] for
reusability.

A. Simulation

We use an Environment and People Movement Simulator
[12] to perform simulation of our path planner. The simulator
generates a 200x200 cells of map consist of free space and
static obstacles mimicking canteen of our university. This
simulator also provides dynamic objects information to the
path planner. These dynamic objects represent the movement
of people. We apply HeAT Random Tree path planner to
people tracking problems (see Fig. 6).

The robot has to follow one of dynamic obstacles consid-
ered as a person while avoiding static obstacles, walls, and
other people moving inside the simulator. Simulation’s flow
is as follows: people enter the canteen, queue the ticket at
ticket machine, take the meals using a tray, go to a free seat,
stay on the seat for eating, bring the tray to the washing
place, and go to the exit. We will say that the robot has
succeeded in solving people tracking problem when the robot
can follow the tracked person from the entrance until that
people stay at the table for eating.

Table II shows the robustness of HeAT Random Tree
algorithm. All of 10 times simulations have been done
successfully. Overall calculations need less than 500 mil-
liseconds, it means HeAT Random Tree can be run online.

1RT-middleware is a specification on a component model and infrastruc-
ture services applicable to the domain of robotics software development,
authorized by OMG (Object Management Group).

Fig. 7: Experiment of following waypoints, (from left to right) sequences
of the real world (top) and local map scene (bottom)

Fig. 8: Experiment of people tracking, (from left to right) sequences of
the real world (top) and local map scene (bottom)

B. Experiment on The Real Robot

We use an ENON robot by FUJITSU for experiments,
equipped with a stereo camera (Bumblebee2 by Point Grey),
a laser range finder (by Hokuyo), and laptop PC. We test
HeAT Random Tree path planner using two problems; fol-
lowing waypoints and people tracking problems.

In the first problem, we determine several waypoints which
have to be reached by the robot on the real world. For people
tracking problem, the robot has to follow a person using a
people tracking algorithm [13].

We utilize a 200x200 grids of probabilistic local map with
actual size of 10x10 meter. For real implementation, we
introduce Unknown Area U as mentioned in section II. This
area (grey area in Fig. 7 bottom and 8 bottom) appears due
to the limitation of the sensors.

Fig. 7 is a screenshot of the robot following waypoints.
The robot has to reach the sequence of destinations safely by
avoiding any obstacle. Fig. 8 is a screenshot of the people
tracking problem. In this problem, the robot has to follow
a person while checking its environment. Both following
waypoints and people tracking tasks are successfully done
within 500 milliseconds of computation time per cycle
and using maximum speed of 400 millimeters per second.
Those experiments show the ability of HeAT algorithm to
be directly implemented on the real robot using a real
environment.

VI. CONCLUSION

We have presented a novel path planning algorithm which
uses the arrival time field as bias for a randomized tree

search. Heuristic approaches of our algorithm are proved
to be effective for handling a dynamic environment and
kinematic constraints of the robot. We have shown that our
algorithm is superior against other existing path planner
algorithms. Simulation and experimental results also show
that our algorithm is applicable to the real robot, and can be
used real-time.

Several improvements are possible to be applied. One of
them is to integrate the moving obstacle model to the arrival
time field so that we will get 3D time-space model of moving
obstacles for a more reliable and efficient path. By using 3D
time-space model of moving obstacles, we can obtain several
possibilities of routes and examine them to extract the most
promising region for generating the path.

VII. ACKNOWLEDGMENT

We would like to thank Atsushi Shigemura for developing
the environment simulator component and Junji Satake and
Masaya Chiba for developing the people tracking com-
ponent. This work is supported by NEDO (New Energy
and Industrial Technology Development Organization, Japan)
Intelligent RT Software Project.

REFERENCES

[1] J. Bruce and M. Veloso. ”Real-Time Randomized Path Planning for
Robot Navigation”, in Proc. IEEE/RSJ Conf. on Robotics and Systems,
2002.

[2] M. S. Hassouna, A. E. Abdel-Hakim and A. A. Farag., ”PDE-based
robust robotic navigation,” Image and Vision Computing, vol. 27, pp.
10-18, 2009.

[3] S. M. LaValle and J. Kuffner. ”Rapidly-exploring random trees:
Progress and prospects”. In Proc.of Fourth Intl. Workshop on Algo-
rithmic Foundations onRobotics (WAFR’00), 2000.

[4] C. Urmson and R. Simmons, ”Approaches for heuristically biasing
RRT growth,” in Proc. of the IEEE Int. Conf. on Intelligent Robots
and Systems (IROS), 2003.

[5] S. M. LaValleand J. Kuffner. ”Randomized kinodynamic planning”. In
Proc.IEEE Int. Conf. Robotics and Automation (ICRA), pages 473-
479, 1999.

[6] S. Karaman and E. Frazzoli. ”Incremental sampling-based optimal
motion planning”. In Robotics: Science and Systems (RSS), 2010.

[7] L. Jaillet, J. Cortes, and T. Simeon, ”Sampling-Based Path Planning on
Configuration-Space Costmaps,” IEEE Transactions on Robotics,vol.
26, no. 4, pp. 635-646, Aug. 2010.

[8] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, The MIT
Press, 2005.

[9] M. Zucker, J. Kuffner, and J. A. Bagnell, ”Adaptive workspace biasing
for sampling-based planners”. In Proc. IEEE Int. Conf. on Robotics
and Automation (ICRA), pp. 3757-3762 (2008).

[10] E. Plaku, L. E. Kavraki, and M. Y. Vardi. ”A Motion Planner for a
Hybrid Robotic System with Kinodynamic Constraints”. In Proc. of
the 2007 IEEE Int. Conf. on Robotics and Automation, pp. 692-697.

[11] S. Rodriguez, X. Tang, J.M. Lien, and N.M. Amato. ”An obstacle-
based rapidly-exploring random tree”. In Proc. of the IEEE Int. Conf.
on Robotics and Automation (ICRA), pp. 895-900, 2006.

[12] A. Shigemura, Y. Ishikawa, J. Miura , and J. Satake, ”People
Movement Simulation in Public Space and Its Application to Robot
Motion Planner Development”, Proc. 2010 Int. Conf. on Advanced
Mechatronics, pp. 504-509, Osaka, Japan, Oct. 2010.

[13] J. Satake and J. Miura , ”Robust Stereo-Based Person Detection and
Tracking for a Person Following Robot”, Proc. ICRA-2009 Workshop
on Person Detection and Tracking, Kobe, Japan, May 2009.

[14] Ando, N., Suehiro, T. , Kitagaki, K., Kotoku, T. , Yoon, W.K.: RT-
middleware: Distributed component middleware for RT (robot tech-
nology). In: Proceedings of 2005 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 3555-3560, 2005.

	Previous Menu
	Search
	Print

	ROBIO11PageNumber:
	0:
	42465101236450353: 360
	19818037452979986: 361
	8158339041598996: 362
	15513671705696952: 363
	31117286387450316: 364
	3241179505630334: 365

	TL1:
	0:
	9990940363994599: Proceedings of the 2011 IEEE

	TL2:
	0:
	5654468614142135: International Conference on Robotics and Biomimetics

	TL3:
	0:
	17681138025661203: December 7-11, 2011, Phuket, Thailand

