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Abstract

This paper proposes a planning method for
a vision-guided mobile robot under vision un-
certainty and limited computational resources.
The method considers the following two trade-
o�s: (1) granularity in approximating a prob-
abilistic distribution vs. plan quality, and (2)
search depth vs. plan quality. The �rst trade-
o� is managed by predicting the plan quality
for a granularity using a learned relationship
between them, and by adaptively selecting the
best granularity. The second trade-o� is man-
aged by formulating the planning process as a
search in the space of feasible plans, and by ap-
propriately limiting the search considering the
merit of each step of the search. Simulation re-
sults and experiments using a real robot show
the feasibility of the method.

1 Introduction

There has been an increasing interest in autonomous
mobile robot which recognizes an environment with vi-
sion and moves without guidance of human operators.
A key to realize such a robot is the ability to gener-
ate a plan of vision and motion operations so that a
robot may e�ciently reach the destination. To design
a planning algorithm for such a robot, we have to con-
sider the following two issues: limited computational re-
sources and uncertainty in visual data. These two issues
are closely related; planning based on uncertain data
usually requires more computation than planning with-
out uncertainty because multiple possible outcomes of
actions should be considered, and therefore, the limita-
tion of computational resources tends to be critical.
One of the useful tools for planning under uncertainty

is statistical decision theories [Berger, 1985]. Several
works applied statistical decision theory to vision and/or
motion planning tasks (e.g., [Hutchinson and Kak, 1989]
[Cameron and Durrant-Whyte, 1990] [Dean et al., 1990]
[Miura and Shirai, 1993]). One drawback of these ap-
proaches is that a large branching factor of a search tree,
which is determined not only by the number of possible
actions but also that of possible situations that arise due

to the uncertainty of sensory data, makes a planning pro-
cess computationally expensive.

Regarding the limitation of computational resources,
many works have recently been focusing on the concept
of limited rationality [Russell and Wefald, 1991], in which
the cost of planning is explicitly considered and the time
for object-level planning is allocated so that the overall
utility including both plan e�ciency and planning cost
is maximized. Some of examples are: 
exible computa-
tion [Horvitz, 1990], decision-theoretic meta-level control
of (object-level) reasoning [Russell and Wefald, 1991],
and expectation-driven iterative re�nement (EDIR) us-
ing anytime algorithms [Boddy and Dean, 1989].

This paper is concerned with a vision-motion plan-
ning of a mobile robot considering vision uncertainty and
planning cost. Fig. 1 shows an example problem. Our
mobile robot is going to the destination while avoiding
obstacles. There is a route which passes the narrow space
(we call it the gate) between the board and the partition;
however the passability of the gate is initially unknown
due to the uncertainty of visual data. The detour passing
through the hallway is known to be passable, although it
is longer. The robot estimates the gate width with stereo
vision to determine the passability. The planner deter-
mines a set of observation points which e�ciently navi-
gates the robot to the destination. For this problem, we
propose a planning method combines a decision-theoretic
approach with consideration of planning cost.
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Figure 1: An example planning problem.
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Figure 2: Three possible state of the gate.

2 Basic Planning Strategy

2.1 Plan Representation

An action is composed of a movement to the next obser-
vation point and an observation at that point. A state
is represented by the current estimate of the gate width
and the current robot position. Due to the uncertainty
in observation results, the robot cannot determine the
gate width deterministically but obtains its probabilistic
distribution.
After an observation, the robot classi�es the state of

the gate into one of the three states (see Fig. 2): if
the robot width is smaller than the minimum value of
the probabilistic distribution of the gate width, the gate
is passable; if the robot width is larger than the maxi-
mum value of the probabilistic distribution, the gate is
impassable; otherwise the passability is unknown.
Since the actual state after an observation depends

on the observation result and cannot be determined be-
forehand, a subplan is generated for each possible state,
which is predicted using the uncertainty model of vision.
Fig. 3 shows an example plan for the problem shown
in Fig. 1. Such a plan is represented by an AND/OR
tree; an OR node corresponds to selection of an action;
an AND node corresponds to a possible state. The qual-
ity of a plan is measured in terms of its execution cost,
which is the expectation of the total execution time for
movement and observation.
The leaves of an AND/OR tree are either terminal

node or open node. At a terminal node, the passability
is decided without uncertainty and, thus, the �nal ac-
tion (i.e., passing the gate or taking the detour) is also
decided. At an open node, since the passability is un-
known, the �nal action has not been decided yet. A plan
candidate is re�ned by expanding (making subplans for)
one of its open nodes. In expansion of an open node,
the possible range of the gate width is discretized with
some granularity, and a subplan is generated for each
discretized state.

passable

unknown
impassable

passable

impassable,
unknown

Figure 3: An example plan. Dotted arrows indicate pos-
sible movements after observation. Bold arrows indicate
observation of the gate.

2.2 Computational Trade-o�s to be

Considered

The planning method is designed to deal with the fol-
lowing two computational trade-o�s:
search depth vs. plan quality: This trade-o� has

been investigated by several researchers (e.g., DTA� by
Russell and Wefald [1991]). We consider this trade-o�
in generating a multi-step plan.
granularity vs. plan quality: A �ner granularity

for discretization improves plan quality, but it increases
the planning cost. This trade-o� has little been consid-
ered, although it is important in planning under uncer-
tainty.
The �rst trade-o� is managed by formulating the plan-

ning process as an iterative re�nement process [Boddy
and Dean, 1989], and by appropriately limiting the iter-
ation. To cope with the second trade-o�, we represent
the relationship between granularity and the expectation
of the reduction of a plan cost (we call this expectation
a plan improvement) as a performance pro�le [Dean and
Boddy, 1988] [Zilberstein, 1993], and then determine the
best granularity by examining the performance pro�le
and the cost of node expansion. With consideration of
these trade-o�s, the planner tries to minimize the total
cost of plan generation and plan execution.

3 Formulation as Iterative Re�nement

3.1 Easily-Obtainable Feasible Plan

In an iterative re�nement framework, the planner
searches the space of feasible plans (executable plans)
for the �nal plan. This formulation entails an easily-

obtainable feasible plan for any open node. There are two
such feasible plans. One of them is to take the detour
from the current position; this feasible plan is usually
costly. Thus we use the other feasible plan:

The robot moves from the current position to

the position just before the gate
1
. If the gate

1At this position, the robot is assumed to be able to
measure the gate width without uncertainty; this position
is called the zero-uncertainty point, indicated as x�.
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Figure 4: Expansion of an open node of a plan candidate.
Ellipses drawn with bold lines indicate open nodes.

is passable, the robot passes it; if not, the robot

takes the detour from that position.

Each plan candidate has the temporary cost, Ctemp,
which is obtained by temporarily assigning the above fea-
sible subplan to all of its open nodes.

3.2 Selection of Open Node to Expand

In the planning process, the most promising open node is
selected and expanded. Before expansion, an unknown
state is treated as one open node and has a feasible plan
with it (see Fig. 4(a)). The expansion of the open node
consists of searching for the best action for each dis-
cretized state and assigning the feasible subplan to newly
generated open nodes (see Fig. 4(b)).
The open node to be expanded is determined as fol-

lows. Suppose we can predict the maximum plan im-
provement (i.e., cost reduction) �C of a plan candidate,
which will be obtained by expanding its best open node2.
Then, the merit of expanding the node is given by sub-
tracting the expansion cost Cexp from the predicted plan
improvement �C.

Let C
temp

i , �Ci, and C
exp

i denote the temporary cost,
the predicted plan improvement, and the expansion cost
of a plan candidate PCi, respectively. Then, we de�ne
the new cost Cnew

i as:

Cnew
i = C

temp

i � (�Ci � C
exp

i ) : (1)

Let CFP� be the cost of the incumbent (the best feasi-
ble plan among those which have been obtained so far).
During the planning, the plan candidates are kept whose
new costs are less than CFP � . Among the candidates,
the plan candidate PCi� which is to be expanded next
is determined as:

PCi� ; i
� = argmin

i
Cnew
i : (2)

The planner iteratively selects PCi� and expands its
best open node. This planning process has the anytime

[Dean and Boddy, 1988] property. The iteration stops
when Cnew

i� is larger than CFP� .

2The method to predict the plan improvement will be de-
scribed in Section 4.

3.3 Consideration of Meta-Planning Cost

The above algorithm will expand a node as long as Cnew
i�

is less than CFP� even if their di�erence is very small.
Expansion in such a case, however, may be useless if the
meta-planning cost is high.

Thus, we slightly modify the termination condition.
That is, if the di�erence is less than the meta-planning
cost, the iteration process stops and the best feasible
plan is returned as the �nal plan. The cost of meta-
planning is, at present, considered to be constant.

3.4 Deciding Only the Next Action

When the objective of the planner is not to generate
a whole plan but to select the best next action (in a
dynamic environment, for example), the algorithm is al-
tered as follows.
Let CFP �

A
be the cost of the best feasible plan which

starts with action A. If the smallest value of Cnew
i of

plan candidates which start with actions other than A is
larger than CFP �

A
, the planning process terminates and

returns A as the best next action. This strategy is similar
to that of DTA� [Russell and Wefald, 1991].

4 Determining the Best Granularity

We have mentioned that the granularity in discretizing
the ranges of random variables (the gate width in our
case) directly a�ects both the plan improvement and the
expansion cost. The selection of the best granularity
is, therefore, crucial to managing the trade-o� between
planning cost and plan e�ciency.
This paper proposes to represent the relationship be-

tween the granularity and the predicted plan improve-
ment as a performance pro�le, and to calculate the best
granularity and the merit of expansion simultaneously.

Currently we equally divide the range of a variable;
thus, the granularity is speci�ed with the number of divi-
sions. Let PI(n) denote the predicted plan improvement
for granularity n.
The best granularity n� is given by

n� = argmax
n

fPI(n)� Cexp(n)g ; (3)

where Cexp(n) is the cost of expansion with granularity
n, which is de�ned as follows:

Cexp(n) = Ncand � C
exam

� n; (4)

where Ncand is the number of action candidates; Cexam

is the cost required for examining one action candidate.
Fig. 5 illustrates the determination of the best granu-
larity. Once the best granularity n� is determined, the
merit of expansion is calculated as PI(n�)� Cexp(n�).

If there is at least one OR node between the root node
and an open node, the probability of reaching the open
node is less than one. In this case, we multiply PI(n),
which is originally generated for the case that the reach-
ing probability is one, by the current reaching probabil-
ity.



PI(n)−C     (n)

plan improvement

best granularity

exp

n*
granularity n

exp− C     (n)

PI(n)

Figure 5: Determining the best granularity. This �gure
is based on [Horvitz, 1990].

Every time an open node is generated (by expansion
of its parent), the best granularity for the node is de-
termined. We include the cost of determining the best
granularity in the cost of expanding the parent node.

5 Deriving Performance Pro�le

Derivation of a performance pro�le (PP) is one of the im-
portant issues in anytime algorithm-based approaches.
In some cases, PPs may be obtained from the struc-
tural analysis of the problem; in other cases, PPs may
be obtained from experimental data. It is, however, usu-
ally di�cult to obtain PPs for complex problems only
with one of these methods. We, thus, derive a PP
through structural and experimental analysis of the plan-
ning problem in the following steps:

1. Analyze the structure of the planning problem and
extract important problem parameters which can
reasonably characterize the PP.

2. Construct a generalized PP using the parameters
obtained above; a generalized PP has coe�cients to
be estimated.

3. Calculate actual PPs for an enough number of prob-
lem parameter sets, and adjust the coe�cients of the
generalized PP so that the PP �ts well to the actual
data set.

5.1 Problem Analysis

The plan improvement is the di�erence of temporary
costs of a plan candidate before and after expanding one
of its open nodes. Let us calculate the plan improvement
using an example situation shown in Fig. 6.
Suppose that the robot is initially at x0 and the next

observation point is x1. The open node under consider-
ation is the state that the gate's passability is unknown
after the observation at x1. The feasible plan before ex-
pansion is to go from x1 directly to the zero-uncertainty
point x�, where the robot can measure the gate width
without uncertainty. Expansion of this open node, i.e.,
selection of a second observation point xi2 for each dis-
cretized state results in a new feasible plan.
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Figure 6: An example situation.

Using the cost of movement between points de�ned in
Fig. 6 (for example, Di

a is the cost of movement from x1

to xi2), the plan improvement �C is described as (see
Appendix A):

�C =

nX
i=1

0
@
Pxi

2
;ng(Db+Dd�D

i
a�D

i
e)

�P
x
i

2
;udCv

�(Pxi
2
;ok+Pxi

2
;ud)(D

i
a+D

i
b�Db)

1
A; (5)

where Cv is the cost of one observation; Pxi
2
;ok (Pxi

2
;ng,

P
x
i

2
;ud) is the probability that the gate's state is passable

(impassable, unknown) after observation at xi2. We here
suppose that xi2 indicates the best second viewpoint for
the ith divided state.
This equation represents the trade-o� between the ef-

fect of visual information to be obtained by observation
at xi2 and the cost of observation including that of move-
ment to the observation point. The �rst term inside the
parentheses is the e�ect of visual information, which is
gained by deciding to take the detour at xi2, instead of
decision at x�, in case that the gate is impassable. The
second term is the cost of the extra observation at x�

in case that the passability is still unknown at xi2. The
third term is the extra movement cost to visit xi2.

5.2 Designing Generalized Performance

Pro�le

We examine equation (5) in order to design a generalized
PP which can reasonably approximate the equation.
The actual values which depend on xi2 (e.g., P

x
i

2
;ng)

cannot be obtained before performing the search for xi2;
it may also be hard to reliably predict these values.
Thus, we would like to predict the plan improvement
using only parameters whose values are available.
We use an upper bound of plan improvement for

constructing a generalized PP. To calculate the upper
bound, we �rst employ the concept of the assumption

of perfect sensor information [Miura and Shirai, 1993],
which is based on the fact that a plan generated using
certain information is always more e�cient than plans
generated using uncertain information.
Assuming that the observation result at xi2 includes

no uncertainty (i.e., P
x
i

2
;ud ! 0), a modi�ed plan im-

provement �C 0 is given by



�C0 =
Xn
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Pxi

2
;ng(Db +Dd �Di

a �Di
e)

�

Xn

i=1
P
x
i

2
;ok(D

i
a +Di

b �Db):
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Since �C 0 still includes values depending on xi2, we then
�nd its maximum value. �C 0 is maximized by letting
x
i
2!x1 (i.e., Di

b!Db, D
i
e!De, and Di

a! 0); �nally,
we obtain the following upper bound:

�Cub = Px1!x
�;ng(Db +Dd �De); (7)

where Px1!x
�;ng is the probability that the gate is im-

passable after observations at x1 and x
�, and is equal

to
Pn

i=1 Pxi
2
;ng under the assumption of perfect sensor

information. We suppose that the actual plan improve-
ment �C increases as �Cub increases.
We also reasonably assume that the plan improvement

is a monotonically increasing function of the granularity
n and asymptotically approaches some limit value.
Based on the above examination, we eventually de-

cided to use the following generalized PP (function
PI(n)) as an approximation of equation (5):

PI(n) = K(1 � e�k1n); (8)

K = k2 � �Cub
k3 ; (9)

where k1, k2, and k3 are coe�cients to be estimated from
the experimental data.

5.3 Determining PP through Experiments

We found that the coe�cients in PI(n) varies as the
initial position x0 changes. Thus, we divided the work
space of the robot, which is the triangle composed of
x0, x

�, and xd (see Fig. 6), into several regions and
generated a PP for each divided region. The size of one
region is determined empirically.
In each region, its center is selected as x0. Then, we

calculated actual PPs about a hundred problems with
various x1's and gate widths. We limited n to one of
f1;3; 5; 7; 9; 11g.
In estimating the coe�cients, we �rst �tted equation

(8) to each PP and estimated K and k1. Fig. 7 shows
an example of actual PP and the �tted curve. Then,
we examined the relationship between K and �Cub in
equation (9). Fig. 8 shows a log-scaled plot of these
values. By �tting a line to the plotted data, we obtained
k2 = 0:033 and k3 = 1:319 in this case. As for k1, we
adopted the mean of all k1's because we could not �nd
any strong correlation between k1 and other problem
parameters.

6 Simulation Results

Fig. 9 shows examples of generated plan for a planning
problem. From the initial observation result of the gate
width, a complete plan, which is an AND/OR tree of
observation points, was planned o�-line. Observation
points are limited only to grid points set on the work
space of the robot.
In order to show that the planner can adaptively de-

termine the planning time (search depth and granular-
ity) according to its computational power, we performed

0.00 granularity
1 3 5 7 9 11

data
fitted curve

1

10.00

 8.00

 6.00

 4.00

 2.00

plan improvement (sec.)

K = 9.945
k  = 0.774

Figure 7: An example performance pro�le and the �tted
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Figure 8: Log-scaled plot of data for equation (9).

simulations for the same problem with di�erent com-
puting powers (Cexam's, see equation (4)). Notice that
the higher the computing power is (the smaller Cexam

is), the more precise and the less costly plan is gener-
ated. The di�erence of the costs is, however, rather small
compared with that of the computing powers. This is be-
cause that the initial feasible plan is already a good plan
in this case.
We then compared, in terms of the total of planning

cost and execution cost, the proposed method with the
�xed method, which uses a �xed granularity and a �xed
search depth. Fig. 10 shows a comparison result. The
proposed method gives the best performance.
We conducted this comparison for about forty di�er-

ent problems; in about two-thirds cases, the proposed
method outperformed others. In other cases, the dif-
ference between the best result and the result by the
proposed method was less than one percent of the best
result. Note that in order to obtain the best result
with the �xed method, we had to adjust the granularity
and search depth for each problem, while the proposed
method always performed well without any such adjust-
ments.

7 Experiments using Real Robot

This section describes preliminary results for a real plan-
ning problem shown in Fig. 1. The gate width is esti-
mated by the two vertical segments on both sides; its
probabilistic distribution is calculated using an uncer-
tainty model of stereo vision [Miura and Shirai, 1993].
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Figure 9: Simulation results: circles indicate observation points; solid arrows indicate the path to the next observation
point; dotted arrows indicate possible paths after observations. n� is the granularity used for discretizing the open
node at the next observation point. In case of (c), the initial feasible plan is used.
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In the experiment, the planner decides only the next
action (see Section 3.4). Then the robot moves to the
planned observation point and observes the gate. The
planning and action operations are iteratively performed
until the passability of the gate is determined.
Fig. 11 shows the result of a trial. From the initial im-

age (at lower-right in the �gure), the robot estimated the
probabilistic distribution of the gate width; the probabil-
ity of the gate being passable was 0.53. Then the planner
determined the next observation point as shown in the
map. The robot moved to the next observation point
(lower-left) and obtained the new image (upper-right).
After this observation, the gate was determined to be
passable; thus the robot moved forward and passed the
gate (upper-left).

8 Conclusions and Discussion

Wehave proposed a planning method for a vision-motion
planning of a mobile robot under vision uncertainty and

limited computational resources. We managed granular-

ity vs. plan quality and search depth vs. plan quality

trade-o�s by: (1) considering the relationship between
granularity and plan improvement which is represented
as a performance pro�le, and (2) formulating the process
of generating a multi-step plan as an iterative re�nement
process. The proposed method is always comparable
with the best of the methods which uses �xed granu-
larity and �xed search depth. We have also described
a method to derive a performance pro�le through struc-
tural and experimental analysis of the planning problem.
In the performance pro�le (PP)-based planning, the

quality of PP has the largest importance. If the parame-
ters (e.g., con�guration of obstacles) of the current prob-
lem are largely di�erent from those of problems used in
derivation of PPs, the predicted plan improvement may
not be accurate enough. In this paper, in order to in-
crease the accuracy, we divided into the problem space
into several regions and obtained a PP for each region.
Such a strategy might be practical if a PP which is ap-
plicable to a wide problem space is hard to �nd.
This paper has treated a relatively simple vision-

motion planning problem (a single-gate problem). A
future work is to apply the proposed method to large
planning problems which have many gates to observe.
To solve such a large problem, it is necessary to decom-
pose the problem into a set of single-gate problems. We
are now developing an e�cient decomposition method.
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A Derivation of Plan Improvement �C

Only the subplan for the open node at x1 changes by
expansion. The cost C1 of the subplan before expansion



initial position

planned
observation
point

movements of robot obtained right images

Figure 11: An experimental result: [center] the planned observation point and the trajectory taken by the robot;
[lower-right] the right image obtained at the initial position; [upper-right] the right image obtained at the next
observation point; [lower-left] the movement from the initial position to the next observation point; [upper-left] the
movement from the next observation point into the gate.

is given by

C1 = Px1;ud(Db+Cv) + Px1!x
�Dgoal

+ Px1!x
�;ng(Dd +Ddetour);

(10)

where Dgoal and Ddetour is the cost of movement
from x

� to the destination and from xd to the des-
tination through the detour, respectively; Px1!x

�;ok

(Px1!x
�;ng) is the probability that the gate is pass-

able (impassable) at x� in case that the passability is
unknown at x1. The cost C2 after expansion is given by

C2 =

nX
i=1

min
x
i

2

Ci
2; (11)
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i
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P
x
i

2
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1
CCA; (12)

where P i
x1;ud

is the probability of the ith divided

state; Pxi
2
!x�;ok (Pxi

2
!x�;ng) is similarly de�ned as

Px1!x
�;ok (Px1!x

�;ng). The best x
i
2 is selected for each

state Si.
The plan improvement is obtained as C1 � C2. The

following relations hold among probabilities:

Px1;ud =
Pn

i=1 P
i
x1;ud

;

Px1!x
�;ok =

Pn

i=1 Pxi
2
;ok +

Pn

i=1 Pxi
2
!x�;ok;

Px1!x
�;ng =

Pn

i=1 Pxi
2
;ng +

Pn

i=1 Pxi
2
!x�;ng;

P i
x1;ud

= P
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i

2
;ok + P

x
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2
;ng + P

x
i

2
;ud:

(13)

After a series of calculation using the above relations, we
eventually obtain equation (5).
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