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Abstract: This paper deals with 3D environment modeling for mobile robots.
The environment model we would like to generate is to be used as a medium of
communication of location information between users and mobile robots. For
such communication, a very precise environment model is not necessary. We
thus develop a method of generating 3D model which is simple enough to gen-
erate fast but has sufficient geometric and appearance information. We also de-
velop a robot localization method and a graphical user interface, and verify that
the model can actually support such communication.
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Figure 1 Four activities in communicating location information via an environment model.

1 Introduction

3D environment modeling is one of the active research areas in robotics and computer
vision. Most previous works deal with generation of precise 3D models using a large
amount of data and elaborate statistical and geometrical estimation techniques (Stamos,
2002; Fleck, 2005; Nevado, 2004; Sato, 2002). These works mainly focus on generating
as precise models as possible to be used for applications such as virtual reality and tele-
presence; preciseness of the generated model is sometimes more important than efficiency
of the modeling process. Thrun et al. (Thrun, 2003) proposed a method of generating
multi-planar models from dense range data and image data using an improved EM algo-
rithm. The method seems fast but only applicable to a relatively simple corridor environ-
ment surrounded mostly by large vertical planes.

We are interested in modeling usual office environments which have various shaped
objects. For such environments, precise modeling approaches will require much com-
putation, while fast, planar surface-based approaches may fail to capture the geometric
characteristics of the environment. A modeling method is, therefore, desirable which can
efficiently model the environment with sufficient details; obviously, whether a degree of
details is sufficient depends on how the model is used.

This paper describes an approach to environment modeling for robots. The environ-
ment model we would like to generate is to be used as a medium for communication of lo-
cation information between users and mobile service robots. Mobile service robots moves
in an environment autonomously to perform service tasks such as bringing drinks and op-
erating appliances. For a user and a mobile robot to communicate with each other about
tasks of moving to some specific positions, they should be able to perform the following
four activities (see Fig. 1):

1. The user recognizes the environment.

2. The user tells the robot where to go.

3. The robot recognizes the current location.

4. The robot tells the user where it is.

Both 3D geometric and appearance information are certainly useful for supporting such
activities. A very precise environment model is, however, not necessary; the model has
to keep only a necessary level of information. We thus develop a method of generating
approximate models efficiently, and verify if the model can actually support the above four
activities.



A simple modeling of complex environments for mobile robots 3

(a) An indoor environment. (b) 3D obstacle map.
Figure 2 A result of 3D obstacle map generation.

2 Geometric modeling

Usual indoor environments in which many objects exist are not formed only by verti-
cal planes. To simplify the modeling process while keeping a certain degree of geometric
information in the model, we represent an environment with a set of layered 2D contours
with textures; contours in each layer approximate the shape of 2D free space in the corre-
sponding height interval. We use the mobile robot in Fig. 1, which has vision and range
sensor, for the environment modeling.

2.1 Generating 3D obstacle map

The first step of our 3D environment modeling is to generate a 3D obstacle map. We use
a 3D probabilistic voxel map (Ikeda, 2006) as the representation of the obstacle map. Each
voxel is a cube whose edge length is 5 [cm], and holds the probability that an obstacle
exist there. We use the data within 3 [m] from the robot position for map generation.
Voxels whose probabilities are higher than a threshold (currently, 0.8) are considered to
be occupied by some obstacle. Fig. 2 shows an indoor environment and its 3D obstacle
map; higher voxels in the map are drawn with brighter colors for increasing observability
of voxels in the figure.

2.2 Generating layered contours from 3D obstacle map

We use four layers, three of which (layers 1 to 3) from omnidirectional stereo data and
one (layer 0) from laser range finder (LRF) data, to cope with objects and walls at various
heights in usual indoor environments. By considering the typical objects and the sensors’
characteristics, the height ranges of the layers are determined as follows:

• layer 3: from 120 ∼ 160 [cm] for shelves and other high objects.
• layer 2: from 85 ∼ 120 [cm] for objects on tables.
• layer 1: from 60 ∼ 85 [cm] for tables and chairs.
• layer 0: lower than 60 [cm] for other low objects.

We adopt active contour models (Blake, 1988) for determining the contours. All con-
tours in the four layers are simultaneously refined so as to minimize an energy function,
which considers the contours’ smoothness, fitness to object data, the degree of passing the
2D free space, and consistency between layers. Initial contours are generated from the 2D
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(a) Layer 3 (b) Layer 2 (c) Layer 1 (d) Layer 0
Figure 3 Initial (blue) and final (red) contours for the map in Fig. 2.

free space map, which is obtained by our 2D mapping method (Miura, 2002). The details
are described in the next subsection.

2.3 Active contour model for contour generation

The first step of contour generation is to detect initial vertical plane segments. As the
robot moves, obstacle data on the left and the right side are obtained. We separately detect
initial contours on each side. We detect line segments by selecting points on the free space
boundaries (Ikeda, 2006). Since we use a piecewise-linear model for 2D contours, which
represent vertical planes in 3D, endpoints of the detected line segments are used as control
points of the active contour model. This line segment detection is iterated as the robot
moves by a certain distance.

We then refine the initial segments by using the following energy function for each
control point:

E = αEint + βEext + γEbtw + ωEfree,(1)

where each E∗ is a sub-function defined below and α, β, γ, and ω are weights.
Eint is for evaluating the smoothness of a contour and the uniformness of segment

lengths. It is defined as the sum of the following three values:

E1
int = ||vc − vp|| + ||vc − vn||,(2)

E2
int = ||(vn − vc) − (vc − vp)||,(3)

E3
int = |||(vn − vc)|| − k| + |||(vc − vp)|| − k|,(4)

where vc is the position of the control point currently under consideration, v p and vn

indicate those of the previous and the next points, respectively, || · || indicates the Euclidean
norm and k is a constant.

Eext is for evaluating the fitness to obstacle data and is defined as:

Eext = −G ∗ Iobs,(5)

where Iobs is the binary image representation of 2D obstacle map in one layer (one pixel
corresponds to 5 [cm]×5 [cm] cell), G is the Gaussian operator and ∗ denotes convolution.
σ of G is 4.0 [pixel] in layer 0, and 6.0 [pixel] in the other layers.



A simple modeling of complex environments for mobile robots 5

Ebtw is for evaluating consistency between layers, and is defined using distance D 1 to
the contours in neighboring layers:

Ebtw =
{ − 100

D1+1 (0 ≤ D1 < d)
0 (d ≤ D1)

(6)

where d is a threshold (currently, 10).
Efree is the penalty for entering the 2D free space, and is defined using distance D 2 to

the free space boundary:

Efree =
{

D2 (inside free space)
0 (outside free space)(7)

The summation of E for all control points in all layers is the objective function to be
minimized. The minimization steps are as follows (in C-like code):

// Sequential minimization
refine contour(){

// Minimize energy without Ebtw in each layer
apply acm(α1, β1, γ1, ε1)
// Minimize energy in all layer
apply acm(α2, β2, γ2, ε2)

}
//active contour refinement
apply acm(α, β, γ, ε){

while (true) do {
for i = 3 to 0 do {// Minimize energy in each layer

for each control point do {
Move to one of 8-neighbors
which minimizes the energy of the point; }}

if no point has moved in this round then break;
}}

We currently use the following weights in eq. (1): (α1, β1, γ1, ε1) = (1, 100, 0, 100)
and (α1, β1, γ1, ε1) = (1, 100, 50, 100). At the first stage of the minimization, the con-
sistency between layers is ignored (i.e., γ1 = 0), while at the second stage, all energy
sub-functions are considered. This two-stage minimization is for certainly modeling the
gap between layers such as the one between PCs on the table and walls.

Fig. 3 shows the initial and the final plane segments. It is clearly shown that the final
plane segments fit well to the object data while having sufficient smoothness.

3 Texture extraction and mapping

Appearance of objects is useful for robot localization and human-robot interface. We
therefore extract textures from the images taken by two pan-tilt-zoom (PTZ) cameras and
map them to the generated plane segments.

We can extract textures for one plane segment from several images taken at various
robot positions. In order to get the best textures, we select the image which provides the
highest resolution; that is, we select the robot position which maximizes the area of the
mapped region of the segment in the image. The extracted textures are stored as images of
the size of 256 × 256 pixels.
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(a) Actual environment.

(b) Modeling result.
Figure 4 The modeling result of an environment.

4 Modeling results

Fig. 4 shows a generated model of our laboratory, with an actual view of the environ-
ment. Fig. 5 compares the modeled and the actual scenes for four different viewpoints.
The results show that the proposed method models the geometry and the appearance of the
environment relatively well.
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Figure 5 Comparison of modeled (upper) and actual (lower) scenes.

The total calculation time for modeling with 235 observations was about 700 [s], the
breakdown of which are: 183 [s] for obstacle map generation, 17 [s] for contour generation
and refinement, 500 [s] for texture generation and mapping. Since we had to move the PTZ
cameras to acquire images of a wide scene, the texture mapping took a large part of the total
time. When we used the omnidirectional images for texture extraction, it took only 43 [s]
in the expense of low texture quality. We also implemented and tested an on-line modeling
system using two wireless-connected PCs; it actually worked but the latency was not small
due to a slow wireless communication.

5 Using the model for human-robot communication

The objective of the research is to develop a method of generating 3D environment
models which are to be used for human-robot communication of location information. To
realize this, we develop a robot localization method and a graphical user interface (GUI)
for users to communicate with robots.

5.1 Robot localization using the model

We develop a localization method which uses both the geometric and the appearance
information. We try to select the most-matched position from a given set of candidate po-
sitions. For each candidate position, we compare the test data with the environment model
by first using geometric information and then using appearance (i.e., texture) information,
and select the best matched position.

The robot generates a local 3D map from several (currently, 10) consecutive data of
omnidirectional stereo and LRF, and uses it as the test data for localization.

The range profile, which shows the distance to the nearest object in each direction
centered at the robot position, is used as the representation of geometric property of a
location, as shown in Fig. 6. We also make the range profile from the local map. We
compare two profiles using an SAD (sum of absolute difference) measure with changing
orientation (i.e., with shifting the profile), and select a set of candidate positions which
have small differences. The number of selected candidates is limited to a predetermined
percentage to the total number of candidates.
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Figure 6 50 Candidate positions (red) and examples of the range profiles (at layer 2) at several
candidate positions.

Region at (a).

Region at (b).

Model texture at (a).

Model texture at (b).

Test texture at (c).

Test texture at (c).
Figure 7 Mapped regions and textures of model and test data at positions (a), (b), and (c) in Fig.
8.

We then use texture information for determining the best position. For each remain-
ing candidate position after the geometry matching, we extract the region in the omnidi-
rectional image corresponding to the plane segments in the model using the robot pose
(position and orientation) of the candidate position. Fig. 7 shows examples of texture
comparison for two candidate positions (position (a) in Fig. 8 in the upper row and po-
sition (b) in the lower row). For each candidate position, the mapped region, the texture
extracted from the model, and the test texture extracted from an input image (taken at po-
sition (c)) are shown. We compare the model and the test texture using the SAD measure
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Figure 8 Result of texture matching. The red point, the green point, and the black points are the
selected candidate position, the position of the test data, and the remaining candidate positions after
geometry matching, respectively.

and determine the position which minimizes the texture difference. Fig. 8 shows a result
of localization.

We use as candidate positions the observation positions where the robot took data for
modeling. We prepared a different set of 140 positions as test data. In the experiment, the
maximum percentage of the kept candidates after geometric matching was set to 20 [%];
a position is considered to be correctly recognized if the distance between that position
and the selected candidate position is within 1.5 [m]. For 140 test positions, 128 positions
passed the geometric matching (i.e., the correct candidate is among the kept candidates)
and 122 positions were finally correctly recognized. The success rate was 87 [%]. The
result shows that our 3D model contains enough information for robot localization. Use
of filtering techniques (e.g., Kalman filter) would further improve the localization perfor-
mance.

5.2 A GUI for human-robot communication

The previous subsection verifies that the model is effective in supporting one of the
four activities (i.e., robot recognizes location) mentioned in the introduction section. This
subsection describes how the other three activities are supported by our GUI.

Fig. 9 shows the GUI we developed. The screen is divided into the following six areas:

Area 1 displays the generated model with the robot (yellow figure) and the destination
(red cone). The user can move the viewpoint and the destination using a 6-axis
pointing device (by 3D connexion). The viewpoint can also be automatically set to
follow the robot’s viewpoint.

Area 2 is for the birds-eye-view of the whole environment. The viewpoint can be adjusted
using the same device.

Area 3 is for selecting items to operate.
Area 4 is for issuing commands to the robot.
Area 5 is for displaying the current image from the robot.
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Figure 9 A graphical user interface.

Area 6 is for the messages from the system.

Since the current robot position and the user-specified destination are displayed on the
screen, and since the user can change the viewpoint easily, the robot can tell the user where
it is and the user can tell the robot where to go.

We tested the usability of the system for five subjects among the members of our labo-
ratory. Each subject was asked to do the following three steps:

1. Recognize the environment with changing the viewpoint by using the pointing de-
vice.

2. Set a destination at an arbitrary position.
3. Move the robot to come to the destination.

The evaluations of the subjects were all positive (4.5/5 points in average).
Fig. 10 shows a sequence of remotely moving the robot to the destination. The user

can monitor the state of the robot on-line. The Area 1 of the GUI shows the views of the
model from the robot. At the left-bottom corner of the figures, the actual movements of
robot are superimposed.

6 Conclusions and Discussion

This paper has described a method of generating 3D indoor environment model. The
model is intended to be used for communication of location information between users and
mobile services robots. The model is generated by the following three steps: generation
of 3D obstacle map by temporal integration of stereo and LRF data, detection of plane
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Figure 10 Snapshots of a remote control of the robot.

segments in four layers using an active contour model, and extraction and mapping of
textures from images.

The model is efficiently generated for a complex environment but carries enough in-
formation for human-robot communication. We have shown this by verifying if the four
activities in the communication can be supported by the model, using both a robot local-
ization method and a GUI.

A future work is to speed up the modeling process. We currently use all data acquired
during the robot movement. A part of data, however, could be enough for modeling, and
reduction of data size will decrease the computation time. We also plan to test the method
in various indoor environment to examine its robustness.

Another future work is to add an object recognition capability and to put semantic
information such as object names and functions (Siegwart, 2007) or place names (Saffiotti,
2005) in the map so that a user can communicate with a robot using symbols.
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