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Abstract

This paper describes a framework for vision and motion planning for a mobile robot. The task

of the robot is to reach the destination in the minimum time while it detects possible routes by

vision. Since visual recognition is computationally expensive and the recognition result includes

uncertainty, a trade-o� must be considered between the cost of visual recognition and the e�ect

of information to be obtained by recognition. Using a probabilistic model of the uncertainty of

the recognition result, vision-motion planning is formulated as a recurrence formula. With this

formulation, the optimal sequence of observation points is recursively determined. A generated

plan is globally optimal because the planner minimizes the total cost. An e�cient solution

strategy is also described which employs a pruning method based on the lower bound of the total

cost calculated by assuming perfect sensor information. Simulation results and experiments with

an actual mobile robot demonstrate the feasibility of our approach.
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1 Introduction

There has been an increasing interest in autonomous mobile robot which recognizes an envi-

ronment with vision and moves without guidance of human operators. A key to realize such

a robot is the ability to generate a plan of vision and motion operations so that a robot can

e�ciently reach the destination. To design a planning algorithm for such a robot, we need to

consider two characteristics of visual recognition: cost and uncertainty. Visual recognition is

generally costly because the image data is large, and because relatively complicated reasoning

is necessary. Visual information contains uncertainty from many sources such as discretization.

This paper is concerned with vision-motion planning for a mobile robot navigation in a

known but uncertain indoor environment. We consider situations where there are only known

objects and their rough positions are also known. Such a situation arises, for example, in a

typical o�ce environment; the position of desks, chairs, and other furniture are roughly known,

while their exact positions are uncertain; some chairs may block the robot from taking a certain

path to the destination.

In such a situation, a robot has to determine the location of objects and the passable space

between objects so that it can maneuver about the objects. Fig. 1 illustrates a typical example

of such a situation. The objective of planning here is to generate a sequence of observation

points and observation conditions which leads the robot to the goal point at the minimum

cost (in the minimum time). Only the passability of each space is uncertain, which the robot

determines by vision.

goal

uncertainty

Figure 1: A sample situation.

Let us consider two behaviors of the robot in Fig. 1: one is to approach the objects and to

observe the objects again in order to obtain more accurate information for further planning;

the other is to take a known detour immediately without further observations. To decide which

behavior is better, we �rst need to consider not only the cost of motion but also that of visual

recognition. Moreover, for determining the best observation points for the former behavior,
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it is necessary to consider a trade-o� between the cost of visual recognition and the e�ect of

information to be obtained.

Decision theory is a useful tool to evaluate such trade-o�s. If the information used for

decision making is uncertain, and some statistical knowledge of the uncertainty is available,

statistical decision theory can be very useful.

Feldman and Sproull (1977) �rst applied decision theory to planning, where a success ratio

of each motion and a utility function for the comparison of plans were given in advance.

Hu and Brady (1994) applied Bayesian decision theory to on-line path selection of a mobile

robot. The proposed method dealt with selection of a single-step action based on the current

information, and the resultant behavior is not always globally optimal.

Cameron and Durrant-Whyte (1990) applied Bayesian decision theory to optimal sensor

placement. A utility function was given which represents a kind of accuracy of information.

Hutchinson and Kak (1989) used Dempster-Shafer theory to represent uncertainties of hypothe-

ses in object identi�cation. The entropy of a hypothesis set was used as a utility function and

a sensor placement was selected which minimizes the entropy. Zheng (1992) proposed a similar

method. These works did not consider the cost of sensing.

Hager (1990) described a decision-theoretic approach to sensor planning, in which the cost

of sensing is considered. In this approach, each task requires a new utility function which

evaluate the e�ect of a sensing action. He also considered a planning for multiple actions, and

employed a �xed sample size n-step look ahead approximation (1985) to increase the quality of

the resultant plan. Dean et al. (1990) proposed to use a network of probabilistic dependency

to cope with similar planning problems. Similar to the above work, a plan was evaluated based

on a predetermined utility function with limited look ahead. In these approaches, a utility

function tries to evaluate how each action (or a short sequence of actions) is appropriate for

optimizing the whole behavior. Such a utility function needs to be designed for each task,

sometimes in a heuristic manner. In addition, since a whole plan is not evaluated at once, the

resultant behavior is not always globally optimal.

In this paper, we propose to evaluate the utility of a sequence of sensing actions by eval-

uating the e�ciency of a whole plan, i.e., the total execution cost of the plan. This utility

measure is general and appropriate for almost all tasks, and the selected plan is globally opti-

mal. This approach, however, should be accompanied with e�cient search strategies to cope

with combinatorial explosion which is caused by a long lookahead.

This paper formulates a vision-motion planning for a mobile robot with stereo vision along

the above-mentioned approach. The cost of visual recognition is considered as well as that of

motion. Uncertainty of recognition results are represented by a probabilistic model. A plan is

selected which minimizes the expectation of the total cost for accomplishing a given task. By

predicting recognition results using the model of uncertainty, the planner recursively searches

for an optimal sequence of observation points by the branch-and-bound method. An e�cient

pruning method is developed which is based on the lower bound of the total cost calculated by

the assumption of perfect sensor information.

In this paper, we assume the motion estimation of the mobile robot is fairly accurate, and

therefore the motion uncertainty is negligible. It is possible, however, to cope with the case of

large motion uncertainty by combining the motion uncertainty with the vision uncertainty and

making a plan for the combined uncertainty.

The rest of this paper is organized as follows. Section 2 describes our formulation of vision-

motion planning, which is basically represented by a recurrence formula. A search strategy using

the branch-and-bound method is also described. Section 3 describes an uncertainty model of
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stereo vision. Section 4 describes a method of predicting sensor information based on fusion

of predicted sensor data. Section 5 describes how to calculate the lower bound of alternative

actions using the probabilistic uncertainty model of visual information. Section 6 describes

simulation results, preceded by some implementation issues. Section 7 describes experimental

results for actual planning problems. Section 8 summarizes the paper and describes future

works.

2 Formulation of Vision-Motion Planning Problem

2.1 Formulation in a Recurrence Formula

This section describes a general formulation of a vision-motion planning problem with uncer-

tainty. We assume that information about the environment is represented by a multivariate

probabilistic distribution, each variable of which is a property of the environment such as the

position of a feature, and that an observation result is represented by a vector of such properties

with uncertainties, which is also represented by a multivariate probabilistic distribution.

i i

xi+1

Goal

i i+1

xi

cost of
the next move

cost of
the next observation

cost from the next position
to the goal point

oi+1

Figure 2: Calculating the cost to the goal point.

The quality of a plan is evaluated by its execution cost. Since a plan is generated based

on probabilistic information, the planner selects a sequence of observation points so that the

expectation of the total cost for reaching the destination is minimized. We here derive a

recurrence formula which calculates the optimal next observation point xi+1 and the optimal

next observation condition Oi+1, such as the observation direction, from the current observation

point xi and the current information I i. As indicated in Fig. 2, for the robot at xi with

information I i, the cost to the destination is given by the sum of the following three costs:

1. the cost of motion to the next observation point,

2. the cost of the next observation,

3. the cost from the next observation point to the destination.

The next observation point and condition (xi+1 and Oi+1) are determined so that the sum

is minimized. Since the optimal plan after the next observation depends on the observation

result, in the minimization process, the expectation of the minimum cost is used for the third

term. Thus, the following recurrence formula is derived:
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Figure 3: An AND/OR search tree.

Rectangles indicate OR nodes; Ellipses indicate AND nodes.

Coptimal(xi; Ii) = min
xi+12X

Oi+12O

0
@ Cmotion(xi;xi+1) + Cvision(Oi+1)+Z

Prob(I i+1)Coptimal(xi+1; I i+1)dI i+1

1
A : (1)

Coptimal(x; I): The optimal cost with information I at x.

Cmotion(x;y): The cost of motion from x to y.

Cvision(O): The cost of observation O.

Prob(I): The probability of acquiring information I.

X : A possible range of xi+1.

O: A possible range of Oi+1.

If there are direct paths to the destination which a robot can follow without examining the

passability of any space (we call such paths direct-path solutions), the optimal (minimum-cost)

direct path solution is selected and compared with the solution of Equation (1), and �nally the

better one is selected.

In order to solve Equation (1), the planner recursively searches for an optimal sequence

of observation points. The search tree becomes an AND/OR tree (see Fig. 3); an OR node

corresponds to an observation condition at an observation point; an AND node corresponds to

possible information after an observation (see Section 4). By selecting an observation position

and an observation condition (OR node), each predicted information after the observation

(AND node) is automatically calculated. A solution is also an AND/OR tree because the

actual behavior of the robot after an observation depends on the observation result.
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2.2 Termination Condition

Since every observation result includes uncertainty, the resultant observed data always include

uncertainty and never converges to deterministic values. This fact may lead one to believe that

the above-mentioned recursive computation never terminates. In terms of passability, however,

situations can become deterministic. Let us consider the situation shown in Fig. 1. Suppose the

robot has obtained a probability distribution of the distance between the objects. According

to the relationship between the distribution and the robot width, possible situations can be

classi�ed into three cases (Fig. 4): if the lower bound of the distribution is larger than the

robot width (case (a)), the space between the objects is passable; if the upper bound of the

distribution is smaller than the robot width (case (b)), the space is impassable; otherwise (case

(c)), the robot cannot decide the passability of the space. In the �rst two cases, the situation

is now deterministic in terms of passability, and no further sensing is necessary for this space.

width of
the robot
(W        )robot

distance
between
the objects

Wrobot

probability

distance

passable
(a)

probability

distance

impassable

(b)

Wrobot

probability

distance

undecided

(c)

Wrobot

Figure 4: Three possible relations between the robot width and the distribution of the distance

between objects.

2.3 Search with Branch-and-Bound

In our formulation, the cost for solving a vision-motion planning problem is roughly given

by O((mnl)k); m is the average number of observation points; n is the average number of

observation conditions; l is the average number of possible observation results; and k is the

average depth of the search tree. An exhaustive search at each level of the search tree may cause
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combinatorial explosion. Among the above parameters which specify the computational cost,

m and n are reducible by employing a pruning method; others depend on the problem setting.

In this paper, we employ the branch-and-bound method with best-bound search (Ibaraki 1987)

to obtain the optimal solution e�ciently.

Under the planning process, there are many candidates for the solution. Each candidate is an

AND/OR tree whose leaves are either open OR nodes or deterministic nodes; a deterministic

node is the node for which the �nal (deterministic) action is assigned (see Fig. 5). Each

candidate, in general, has multiple open nodes. Although every open node can be expanded

next, the open node which has the highest probability is to be expanded next in order to reduce

the search cost.

initial state

selected
action

state}
}

AND node (open)

AND node (expanded)

OR node (non−deterministic)

OR node (deterministic)

Figure 5: A candidate of solution is a partially expanded AND/OR tree.

There is a list which contains solution candidates (or solutions) in ascending order of the

lower bound (or the actual value) of the cost. In the search process, the head of the list is picked

up and expanded iteratively. When an OR node of a solution candidate is expanded, the lower

bounds or the deterministic actions for its successive open OR nodes are calculated, and the

modi�ed candidate is put into the list. If the head of the list is a solution, it is the optimal

one, and the search terminates. The planner also keeps the incumbent, i.e., the best feasible

solution among those which have been acquired so far (Ibaraki 1987). If the lower bound of

the cost of a candidate is larger than the cost of the incumbent, the candidate is eliminated

because the candidate can never produce a better solution than the incumbent.

The quality of the lower bound a�ects the e�ciency of the search process, that is, the nearer

the lower bound of the cost of a solution candidate is to the actual cost, the more e�ciently

the optimal solution is found. Section 5 will discuss a method of calculating the lower bound
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using the uncertainty model of vision.

2.4 Use of Easily-Obtainable Feasible Solutions

By employing the best-bound search, the number of expanded nodes is minimized. A large

number of unresolved candidates (candidates containing open OR nodes), however, must be

kept in memory during search. A feasible solution can be used as an incumbent to eliminate

useless candidates, and thereby to reduce the memory space. Thus, if a good feasible solution

is easily obtained, it is worth calculating.

We currently use one type of feasible solution. In the feasible solution, a robot observes

each space at most once. If a space is decided to be passable, the robot may use the space;

otherwise, the space is not used.

If the passability of each space is low, the feasible solution is especially useful. This fact

is explained as follows. Since only for the unknown case, further observations are searched for

in order to obtain the optimal solution, if that probability is small, the di�erence between the

cost of the feasible solution and that of the optimal one becomes small.

If there are multiple spaces to be observed, the best order of observing each space is calcu-

lated, and one feasible solution is generated. At the beginning of the expansion of an OR node,

we calculate this feasible solution for the node. If the new feasible solution is less costly than

the current incumbent, the new solution becomes the incumbent. The feasible solution for the

initial state is used as the initial incumbent.

In time-bounded situations, a feasible solution may be used as the solution to the problem.

When the planning time is exhausted, the current incumbent may be returned as the �nal

solution.

3 Uncertainty Modeling of Stereo Vision

This section describes the uncertainty modeling of a segment-based stereo vision. There are

various sources of uncertainty such as quantization error in images (Matthies and Shafer 1987;

Ayache and Faugeras 1989; Kriegman, Triendl, and Binford 1989), calibration errors (Ayache

and Faugeras 1989) and stereo matching ambiguity (Miura and Shirai 1993).

The uncertainty caused by quantization error is modeled using a normal distribution, as

explained in Section 3.2. This modeling is veri�ed using actual data in Section 7.1. Calibration

errors are also reasonably modeled using normal distributions as long as they are unbiased.

In this paper, therefore, we construct the uncertainty model by considering only quantization

error because calibration errors can approximately be included in this model, if necessary, by

adjusting its covariance matrix.

3.1 Segment-Based Stereo Vision

In indoor scenes, there are many line segments that are components of arti�cial objects. Such

segments are useful as primitive features for stereo matching because structural information is

implicitly imposed as constraints (Medioni and Nevatia 1985). Especially, vertical line segments

are useful for a mobile robot to detect collision-free areas on the 
oor. Thus, we use only vertical

segments and consider their two-dimensional position on the 
oor.

We here treat a stereo system (Miura and Shirai 1993) in which two cameras are mounted

in parallel with each other and with the 
oor. Thus, vertical segments in a real scene are
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projected as vertical segments onto the image plane. For a pair of matched segments, the

horizontal position of each segment is calculated by �tting a line to the overlapping part of

the segment (see Fig. 6). The position of the segment in a real scene is then calculated by

triangulation.

left right

edges used for
line fitting

Figure 6: Valid parts of segments.

3.2 Model of Uncertainty Caused by Quantization Error

The uncertainty of an edge's horizontal position caused by quantization error is modeled by a

uniform distribution of one-pixel wide. Since the horizontal position of a vertical segment in

the image is calculated as the mean position of its edges, and since the distribution of each

edge position is considered to be independent, the distribution of the segment position can be

approximated by a normal distribution (the central limit theorem (Fisz 1963)). In addition,

that distribution is apparently bounded within the range of one pixel. Thus, we use a certain

part of the normal distribution.

We then derive the positional uncertainty of a segment in a real scene. Suppose a vertical

line segment at (x; z) is projected onto the right and the left image at Xl and Xr, respectively

(see Fig. 7). The following equation is derived:

 
x

z

!
=

1

Xl �Xr

 
a(Xl +Xr)

2af

!
;

where 2a is the baseline and f is the focal length of the cameras.

Since the uncertainties of both segments are independent, and since the e�ective numbers of

edges are the same for both segments (see Fig. 6), the distribution of a vector (Xl; Xr) becomes

a two-dimensional normal distribution; its covariance matrix �(Xl;Xr) is given by

�(Xl ;Xr) =

 
�
2
img 0

0 �
2
img

!
;
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Figure 7: Geometry of a stereo system.

where �2img is the variance of the distribution of the horizontal position of each segment in the

image. The value of �2img is approximately inversely proportional to the number of edges in a

segment (Fisz 1963).

Assuming that �img is small enough compared with Xl � Xr, by linearizing the equation

of image projection using up to the �rst order terms of Taylor expansion, the position of a

segment in a real space is represented by a two-dimensional normal distribution (Kriegman,

Triendl, and Binford 1989; Matthies and Shafer 1987). Letting (�l; �r) be the mean vector of

the distribution of (Xl;Xr), the linearized equation is given by

 
x

z

!
= A

 
Xl

Xr

!
+ b;

A =
2a

(�l � �r)2

 
��r �l

�f f

!
;

b =
a

�l � �r

 
�l + �r

4f

!
:

Thus, the covariance matrix �(x;z) of the distribution of (x; z) is given by

�(x;z) = A�(Xl;Xr)A
T
;

where T indicates transpose.
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3.3 Uncertainty of the Width of a Space

Using the above model of uncertainty, we can compute the uncertainty of the width of a space

which a robot may pass through. Suppose that a robot is measuring the distance between

two features at xl and xr (see Fig. 8). Let Pl(xl) and Pr(xr) denote their positional distri-

butions. From the above-mentioned uncertainty model of stereo vision, Pl(xl) and Pr(xr) are

normal distributions; let �l, �r, �l, and �r be the means and the covariance matrices of them,

respectively.

The distribution P (d) of the distance d is given by

P (d) =

Z Z
kxl�xrk=w

Pl(xl)Pr(xr)dxldxr: (2)

Since the equation d =k xl�xr k is non-linear, the distribution P (d) is not normally distributed.
Allen et al. (1991) derived a closed form using a modi�ed Bessel function in case that the

distribution of xl � xr is a two-dimensional normal distribution, and that the distribution is

isotropic, i.e., the equi-probability contour of the distribution is a circle. In general, however,

we cannot obtain the closed form of the probability density function of d. Thus, we approximate

the distribution of d by a one-dimensional normal distribution by assuming that jj�xljj and
jj�xrjj are considered to be small enough as compared with k �l � �r k.

Using up to the �rst order terms of Taylor expansion of Equation (2), we obtain

d =k �l � �r k +Jl(xl � �l) + Jr(xr � �r);

where Jl (Jr) is the Jacobian matrix from �xl (�xr)to �d at (�l;�r). The mean �d and the

variance �2d of the distance between the points is given by

�d = k �l � �r k (3)

�
2
d = Jl�lJ

T
l + Jr�rJ

T
r : (4)

Note that the positional distributions for the left segment and the right one are independent

of each other.

Fig. 9 shows the change of the variance of the distance (�2d) according to the change of

the observation point. From the �gure, we can see that the variance depends not only on the

observation distance but also on the observation direction. For the case of Fig. 9, we calculated

the actual mean and variance from Equation (2) by numerical integration and compared the

actual values with the approximate ones in terms of error ratios. The maximum and the average

error ratio with respect to the actual values are 0:12% and 0:02% for the mean, and 5:63% and

2:98% for the variance, respectively. This result shows that the approximation is reasonable.

This approximation will also be veri�ed using actual data in Section 7.1.

Since the positional distribution of vertical segments are bounded as mentioned above, the

distribution of the width of a space is also bounded; we use the �3� points as boundaries.

4 Prediction of Sensor Information

To make a plan including sensing, a robot must be able to predict sensor information. More

concretely, we need to calculate the information after an observation, which is indicated as I i+1
in Equation (1), to solve a problem. This section explains how to predict sensor information.
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Figure 9: Change of the variance of the distance using an

approximate normal distribution. The means of feature

positions are (�40; 0) and (40; 0).

4.1 Predicting Information after an Observation

Suppose that a robot is estimating a scalar property x such as the width of a space, and that the

uncertainty of information is represented by a normal distribution. Let a normal distribution

N(�0; �
2
0) be the current distribution of the scalar property acquired by the sensing so far.

Assume the uncertainty �
2
obs of the next observation result is constant regardless of the true

value xtrue of x.

If the next observation result is xobs, we can consider that the newly obtained information is

N(xobs; �
2
obs). Thus, using Bayes' theorem, the information after the next observation is given

by N(�1; �
2
1), where

�1 =
�
2
obs�0 + �

2
0xobs

�
2
0 + �

2
obs

and (5)

�
2
1 =

�
2
0�

2
obs

�
2
0 + �

2
obs

: (6)

In actual, we cannot know in advance the actual value of xobs. Instead, we can predict the

distribution of xobs from the current information N(�0; �
2
0) and the uncertainty �2obs in the next

observation result. The distribution P (xobs) is calculated as follows:

P (xobs) =

Z 1

�1

P (xobsjxtrue)P (xtrue)dxtrue

=

Z 1

�1

1q
2��2obs

e
�(xobs�xtrue)

2=2�2
obs � 1q

2��20

e
�(xtrue��0)

2=2�2
0dxtrue

=
1q

2�(�20 + �
2
obs)

e
�(xobs��0)

2=2(�2
0
+�2

obs
)
: (7)

Once the distribution of xobs is calculated, we can obtain a set of possible distributions and

their probabilities after the next observation. As shown in Fig. 10, for each possible value
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Pi Pj Pk

. . . . . . . . .
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P(x     )
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one possible distribution
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µ1 σ1
2N(     ,      )
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+

Figure 10: Prediction of information after an observation with uncertainty. For each possible

observation result xobs, the distribution N(�1; �
2
1) after the next observation is calculated. As

a result, a set of possible distributions is obtained. The probability of obtaining each possible

distribution is equal to the probability of the corresponding observation result.
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of xobs, the distribution after observation is calculated; its variance, given by Equation (6), is

constant; its mean, given by Equation (5), varies depending on the observation result xobs.

Let us derive the distribution of the mean �1 of the distribution after observation. In general,

if two variables p and q have a linear relation q = ap+b, and if the distribution of p is N(�; �2),

q is also normally distributed with N(a� + b; (a�)2). Since �1 is linear to xobs from Equation

(5), and since the distribution of xobs is N(�0; �
2
0 + �

2
obs) from Equation (7), �1 is normally

distributed. The mean of the distribution of �1 is given by

�
2
obs�0 + �

2
0�0

�
2
0 + �

2
obs

= �0; (8)

and the variance �2�1 is given by

�
2
�1

=

 
�
2
0

�
2
0 + �

2
obs

!2

(�20 + �
2
obs) =

�
4
0

�
2
0 + �

2
obs

: (9)

To summarize, the distribution after the next observation is given by Equations (5) and (6);

especially, N(�0; �
4
0=(�

2
0 + �

2
obs)) speci�es the distribution of �1.

1

Note that even if the motion uncertainty is not negligible, the observed width of a space is

not a�ected by the uncertainty because the width is calculated as the relative distance between

two segments in a single pair of stereo images.

4.2 Predicting the Passability of a Space

Let us consider the problem of predicting the passability of a space. After the next observation,

the robot classi�es the state of the space into one of the following three states: (1) the space

is passable; (2) the space is impassable; (3) the passability is still unknown. Because the

classi�cation result depends on information after the next observation, the robot cannot know

the result in advance. The robot, however, can predict the the probabilities of the three states

without obtaining actual data. These probabilities, which we denote as P
, P�, and P4 for

the passable, impassable, and unknown cases, respectively, are calculated as follows.

We use the uncertainty model of stereo vision described in the previous section; the uncer-

tainty of the width of the space is modeled with a certain portion (i.e., within �3� points) of

a normal distribution. In this case, the criterion on passability, which is shown in Fig. 4 in

Section 2.2, is stated as follows. If the robot width (Wrobot) is outside the boundaries (�3�
points), the situation is deterministically passable or impassable; otherwise, the passability is

unknown.

1This fact is veri�ed by calculating the distribution of the width of the space assuming that every possible

xobs is observed with probability indicated by N(�0; �
2
0 + �

2
obs

). This calculation is done by the following

integration: Z
1

�1

1p
2�(�20 + �

2
obs

)
e
�(x

obs
��0)=2(�

2

0
+�2

obs
)

�

1p
2��21

e
�(x��1)=2��

2

1dxobs:

The result of the integration becomes

1p
2��20

e
�(x��0)=2�

2

0 :

This is the original distribution before observation because no information has been added in actual.
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Following the notation above, let N(�0; �
2
0) be the current distribution of the width of the

space, and �
2
obs be the uncertainty of the next observation. Using equations (5) and (6), the

distribution after the next observation is speci�ed by N(�1; �
2
1); the distribution of its mean �1

is given by equations (8) and (9).

Based on the criterion on passability, if Wrobot < �1 � 3�1, then the space is passable; if

Wrobot > �1 + 3�1, then the space is impassable; otherwise, the passability is unknown. Since

the variance �21 of the distribution after the observation is constant, only the mean �1 a�ects

the passability of the space. Thus, from the knowledge of the distribution of �1 (equations (8)

and (9)), we can calculate, by the following equations, the three probabilities as:

P
 =

Z 1

Wrobot+3�1

1q
2��2�1

e
�(�1��0)

2=2�2�1d�1;

P4 =

Z Wrobot+3�1

Wrobot�3�1

1q
2��2�1

e
�(�1��0)

2=2�2�1d�1; (10)

P� =

Z Wrobot�3�1

�1

1q
2��2�1

e
�(�1��0)

2=2�2�1d�1:

These values correspond to integrations of the three parts shown in Fig. 11. We would like to

stress that we can calculate the above three probabilities without knowing the actual observation

result xobs.

µ1Prob(    )

µ0 Wrobot

3σ1 3σ1

P P P

distribution of µ1

µ1

µ1N(     ,     )σ1
2A possible distribution

after the next observation 

Figure 11: Calculation of three probabilities.

5 Calculating Lower Bound using Uncertainty Model

of Visual Information

We use the branch-and-bound method with best-bound search to obtain the optimal solution

e�ciently, as described in Section 2.3. The branch-and-bound requires methods of calculating

15



the lower bound of each alternative for pruning. This section describes a method to calculate

the lower bound using the uncertainty model of visual information.

5.1 Assumption of Perfect Sensor Information

Let Iu be information including uncertainty to be obtained by the next observation O, and Ip
be information to be obtained by assuming thatO can provide information without uncertainty.

The cost of a solution sp based on Ip is less than or equal to that of a solution su based on Iu.

Therefore, sp gives the lower bound of the cost of possible solutions. We call the cost of sp the

lower bound under the assumption of perfect sensor information.

In order to employ this, it is necessary to know what perfect sensor information is. If a

property (e.g., the position of a segment) is to be sensed, perfect sensor information means that

the variance of the distribution of the property is zero. Such information is, however, useless

because the probability of obtaining each possibility of the perfect information is the obtained

distribution itself.

If the possible situation is classi�ed into several situations according to the values of prop-

erties, and if the cost can be calculated for each situation, the assumption of perfect sensor

information provides useful information. The classi�cation of the passability of a space is ex-

actly such a case. Let us consider again the situation depicted in Fig. 1. Suppose the robot

has obtained a probability distribution of the width of the space between objects. After the

next observation, the robot classi�es the situation into one the three cases as shown in Fig. 4.

The probabilities (P
, P� and P4) for the three cases are given by Equation (10). Let P
p

,

P
p
� and P

p
4 be the three corresponding probabilities under the assumption of perfect sensor

information. These probabilities are obtained by letting observation uncertainty �
2
obs be zero

in Equations (5), (6), and (10) as follows:

P
p

 =

Z 1

Wrobot

1q
2��20

e
�(�1��0)

2=2�2
0dw1;

P
p
4 = 0;

P
p
� =

Z Wrobot

�1

1q
2��20

e
�(�1��0)

2=2�2
0dw1:

(11)

Note that, under the assumption of perfect sensor information, the passability of the space is

perfectly determined without knowing the actual observation result xobs.

5.2 Calculating Lower Bounds

By applying the assumption of perfect sensor information to the current situation, a set of

�xed situations with probabilities is obtained. Then, the lower bound Costlb is obtained as the

expectation of the total cost as follows:

Costlb = Cvision + P
p

Cost
 + P

p
�Cost�; (12)

where Cvision is the cost of one observation and Cost
 and Cost� are the costs from the current

position to the destination for the passable and the impassable case, respectively.

Using the uncertainty model of vision, a better lower bound can be computed for each

candidate of the next observation point. Once an observation point x and a target of observation

are chosen, the uncertainty �2obs is determined and thereby the probabilities (P
, P� and P4) in
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Equation (10) are calculated. In the case where the space is either passable or impassable, costs

can be calculated. In the case where the passability is unknown, the lower bound is obtained

by applying the assumption of perfect sensor information recursively. The better lower bound

Cost
0
lb is calculated by

Cost
0
lb = Cmotion(xcurr;x) + Cvision + P
Cost

0

 + P�Cost

0
�

+ P4(Cvision + P
p0


Cost
0

 + P

p0

�Cost
0
�); (13)

where xcurr is the current position, P
p0


 and P
p0

� are the probabilities under the assumption

obtained by an observation at x, Cost0
 and Cost
0
� are the cost from x to the destination for

the passable and the impassable case, respectively (see Fig. 12).

x (       ,   )

goal

xcurr

x

Cmotion xcurr

Pp’

P

P

PP
Cost’

Pp’

Cvision

Cost’

Figure 12: Calculation of the lower bound Cost
0
lb. Two dots for x is identical in actual. For

the case that the passability is unknown at x, the space is supposed to be observed again at

the same place.

Since the uncertainty of the width of a space is represented by a normal distribution, the

two values P4P
p0


 and P4P
p0

� are approximated by P
p

 � P
 and P

p
� � P�, respectively (see

Appendix A). Thus, Equation (13) is approximated by

Cost
0
lb = Cmotion(xcurr;x) + (1 + P4)Cvision + P

p

Cost

0

 + P

p
�Cost

0
�: (14)

Since the value of Cost0lb depends on x, the minimum value provides the lower bound at the

current position. If there is only one space to be observed, the computational cost for obtaining

the best Cost0lb is O(mn), wherem and n are the numbers of observation points and observation

conditions, respectively.
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For example, Fig. 13 shows the lower bounds, which are calculated with Equation (14), for

possible next observation points in front of the obstacles in Fig. 1. If the lower bound of a

point is higher than the cost of the incumbent (the best feasible solution among those which

have been acquired so far), the point can be eliminated from the candidates.

-250

0

5001250

1500

250

250

0
X

Z

Figure 13: Lower bound of the cost for each observation point which is less than the incumbent

value (the cost of the detour in this case). A robot is at (�250; 0); the observed features of the

obstacles are at (�40; 500) and (40; 500).

If there are multiple spaces to be observed in the environment, the lower bound is obtained

by recursively applying the assumption of perfect sensor information to the spaces in turn.

In this case, the lower bound is calculated for each triplet of the observation position, the

observation condition and the space to be observed.

6 Simulation

This section �rst describes what should be done before implementing the proposed method,

then presents simulation results on typical planning problems.

6.1 Problem

Simulation has been performed for typical problems. Fig. 14 shows a situation where a robot

is surrounded by walls and gates. The cost from each gate to the goal point is given. Only the

widths of the gates are uncertain, and the robot measures them by stereo vision. Based on the

initial information obtained by observing each gate once at the initial position, a robot searches

for observation points inside the walls. The cost is evaluated in terms of the distance to move,

by assuming that the speed of the robot is constant, and that the time for one observation is

constant and can be converted into an equivalent distance.

6.2 Implementation Issues

In order to solve the problem by search in a discrete space, several operations are necessary in

advance: (1) observation points are limited only to grid points on the working environment of
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Goal

Robot

detour

gate

gate

Figure 14: Simulation problem.

the robot; (2) if the passability of a space is unknown after an observation, the mean of the

width of the space varies continuously from Wrobot � 3�1 to Wrobot + 3�1 as shown in Fig. 11.

Each possible mean corresponds to a branch at an OR node (see Fig. 3). For such a case, we

divide the range of the width into a predetermined number of discrete values, and continues

further search for each value; (3) if the probability that the passability is unknown, which is

given by Equation (10), is less than a certain threshold for a branch, the branch is not expanded

further and is given the initial incumbent (see Section 2.4).

6.3 Results

Fig. 15 shows the planning results for the case where there is one gate to observe. The goal

position is located above the left-upper corner of the wall. Solid lines indicate paths from the

initial position to the next observation point. Dotted lines indicate possible paths from the

next observation point. Branches with squares indicate planned observation points, and arrows

indicate observation directions. Numbers attached to each path indicate the probability of

taking the path. Of course, we cannot predict which path the robot actually takes because

actual behaviors depend on further observation results.

In Figs. 15(a)-(c), if the gate is narrow, the next observation point is selected such that the

cost of taking the detour is low. On the other hand, if the gate is broad, the next observation

point is near to the gate. In Fig. 15(d), the gate is so broad that the robot decides to take the

gate at the initial position.

Fig. 16 shows the simulation result for the case that there are two gates to observe. If

GateB is broader than GateA as shown in Fig. 16(b), the next observation point is near to

GateB and the passability of only GateB is decided by this observation. For the case that GateB
is impassable, a further plan including observations of only GateA is generated by a recursive

search.
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GateA

(a) GateA is narrow.

69.2%

30.8%

GateA

(b) GateA is narrower.

76.9%

21.5%1.6%

1.4%

0.2%

(c) GateA is broad.

GateA

99.1%

0.9%

GateA

(d) GateA is broad enough.

100.0%

observation point

observation direction

Figure 15: Simulation results (1): one gate to observe.
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(b)  GateB is broader than GateA.(a)  Both gates have the same width.

GateA

GateB

79.2%

17.8%

3.0%

GateA

GateB

93.0%

1.52%

5.17%

0.31%

0.002%

5.48%

Figure 16: Simulation results (2): two gates to observe.

In order to evaluate our method, we compared it with the adaptive behavior, which chooses,

among the following two behaviors, the one with less expected cost:

� minimum-uncertainty behavior: the robot always move to the point where the uncertainty

of visual information is minimum. In this problem, the minimum-uncertainty point is the

gate.

� detour behavior: the robot always takes the detour regardless of the passability of the

gate.

This adaptive behavior is similar to the strategy employed in (Hu and Brady 1994).

Fig. 17 shows the comparison result for the problem shown in Fig. 15. We compared

the two behaviors for several initial gate widths. The horizontal axis indicates the probability

that the gate is passable, which is calculated from the gate width and the uncertainty of the

initial observation. The vertical axis in the �gure indicate the di�erence of an expected total

cost and the lower bound of the total cost which is given by Equation (12). This result shows

e�ectiveness of our method.

7 Experiments

7.1 Veri�cation of Uncertainty Model

In the experiments, we �rst veri�ed the uncertainty model, in which the width of a space is

approximated with a normal distribution as described in Section 3.3. Fig. 18 shows the scene

used for the examination; the width of the space composed of a blackboard and a cabinet was

set to about 90 [cm]. We took about a hundred stereo data from the same observation point.

Fig. 19 shows the histogram of the calculated space widths. The distribution of the observed

data shows that the approximation with the normal distribution is reasonable.
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E[Cost] − Cost

200.0

150.0

100.0

50.0

0.0
0.0

0.2 0.4 0.6 0.8 1.0
Prob.

optimal behavior

lb

adaptive behavior

detour behavior
minimum−uncertainty behavior

Figure 17: Comparison of the two behaviors. The horizontal axis (Prob.) indicates the proba-

bility that the gate is passable. The vertical axis indicates the di�erence between an expected

total cost and the lower bound of the total cost calculated using Equation (12).

Figure 18: A scene used for examining the uncertainty model.
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Figure 19: Histogram of the observed space widths and �tted normal distribution. The mean

and the variance of the distribution are 90:1 [cm] and 4:42 [cm2], respectively. Using these

values, a discrete normal distribution is calculated, as indicated in the �gure.

7.2 Planning Results for Real Problems

We applied the proposed method to an actual planning problem. Fig. 20 shows the experimental

environment. A robot is going to the given destination. If the robot takes the shorter route to

the destination, it has to pass the narrow space composed of a blackboard on the left side and

a cabinet on the right. If the space is too narrow to pass, the robot takes a detour through the

hallway. We will show below several results on this planning problem.

(a) Experimental setup.

desks and
chairs

hallway

destination

blackboard

cabinet

detour

initial 
position

(b) Top view of the environment.

Figure 20: Experimental environment.

Fig. 21 shows a pair of stereo images taken at the initial position. Fig. 22 shows a set

of vertical segments extracted from the left image, which are superimposed on the original

image. The 3D position of these segments were calculated using our stereo method. In order

to obtain the position of the blackboard and the cabinet, the 3D segments above the ground

plane were �rst projected onto the 
oor, thereby obtaining a set of 2D points. By referring to
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the approximate position of the objects given to the robot in advance, the segments shown in

Fig. 23 were selected which belonged to the blackboard and the cabinet.

Figure 21: A pair of stereo images taken at the initial position.

Figure 22: Extracted seg-

ments in the left image.

camera direction

field of view

segments
for blackboard

segments
for cabinet

Figure 23: Obtained segments of the objects. Segments are

extracted which are considered to belong to the blackboard

or to the cabinet. The positional uncertainty of each segment

is indicated by an ellipse as well as the mean position of the

segment.

From these projected points, we selected the nearest pair of segments in terms of the Maha-

lanobis distance, one from the blackboard's segments and the other from the cabinet's. This pair

was used to calculate the mean �d and the standard deviation �d of the probability distribution

of the width of the space.

We added the margin Wmargin to the actual width Wrobot of the robot; if �d+3�d (�d�3�d)

is smaller (larger) than Wrobot +Wmargin, the space is determined to be passable (impassable).

In our experiment, Wrobot is 64 [cm] and Wmargin was set to 15 [cm].

As the initial estimate of the space width, we obtained �d = 80:77 [cm] and �d = 1:953 [cm];

the probability of the space being passable was calculated as 0:83. Based on these values, the

plan shown in Fig. 24 was generated. Then, the robot proceeded to the �rst observation point,

took another pair of stereo images shown in Fig. 25, and calculated the width of the space
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between the objects. By integrating the two sets of data, we obtained the distribution with

�d = 79:46 [cm] and �d = 0:092 [cm]. From the integrated data, the robot determined the

space was passable and passed through it towards the destination.

67.7%
11.8%

20.5% 15.8%

4.7%

destination

Figure 24: A generated plan for the data shown in Fig. 21. Circles indicate planned observation

points. The solid arrow indicate the path to the next observation point. Dotted arrows indicate

possible paths after the next observation. The probability of taking each path is also indicated

in the �gure.

Figure 25: A pair of stereo images taken at the planned next observation point.

Fig. 26 shows the stereo images taken at the initial position for another experiment, in

which the space was set to be narrower than in the �rst experiment. From the initial data, the

probability distribution of the space was calculated as �d = 77:97 [cm] and �d = 1:814 [cm],

from which the probability of the space being passable was estimated as 0:26. Based on these

values, the plan shown in Fig. 27 was generated. At the planned next observation point,

the robot took data shown in Fig. 28. By integrating the two sets of data, we obtained the

distribution with �d = 78:3 [cm] and �d = 0:580 [cm]. This time the passability of the space

was still undecided, and the probability that the space was passable was estimated as 0:10. The

robot made a plan from there using the newest information, and eventually decided to take the

detour through the hallway.
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Figure 26: A pair of stereo images for another experiment.

destination

44.4%

28.5% 7.0%

9.8% 17.3%

20.8%
0.7%

8.7%

29.4%

Figure 27: A generated plan for the data shown in Fig. 26. Circles indicate planned observation

points. The solid arrow indicate the path to the next observation point. Dotted arrows indicate

possible paths after the next observation. The probability of taking each path is also indicated

in the �gure.

Figure 28: A pair of stereo images taken at the planned next observation point in the second

experiment.
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8 Conclusion

This paper has formulated a vision-motion planning for a mobile robot under uncertainty of

visual observations. By considering both the cost of motion and that of vision, the proposed

method generates a globally optimal plan. An e�cient pruning method is developed which is

based on the lower bound of the total cost calculated under the assumption of perfect sensor

information. Experimental results as well as simulation results demonstrated the feasibility of

our approach. The proposed method can be applied to the robot which uses sensors other than

vision as long as the error in sensor data is represented by a probabilistic model.

In spite of the e�cient pruning, our current solution still requires too much computation to

be used in real-time application. In the future work, we will take the following two approaches.

One is to develop an approximation method that can be executed in real-time by extensively

using domain-speci�c heuristics for pruning. The other approach is to develop a planning

method which minimizes the expectation of the total cost of planning and execution. This

method is based on knowledge of relationship between planning time and plan quality (Dean

and Boddy 1988).

We have developed a method of modeling obstacles and free spaces from the stereo data with

uncertainty (Miura and Shirai 1994). The modeling method generates a topological structure of

possible routes and enumerates critical (narrow) regions whose passability should be examined.

These information is enough for the proposed planning method to be applied to an unknown

environment. We are now planning to conduct experiments using both the planning method

and the environment modeling method.
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A Calculation of P4P
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The value of P4P
p0


 is, referring to Fig. 11 and Equation (11), given by
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In the second term, since the term

Z Wrobot

�1

1q
2��21

e
�(u��1)

2=2�2
1du

is inside the integration of �1 from �1 to Wrobot � 3�1, this term is the probability that the

second observation result u satis�es �1 < u � Wrobot in case that the �rst fusion result �1
satis�es �1 < �1 � Wrobot � 3�1. This probability is almost one because the probability of

acquiring u is N(�1; �
2
1) and �+ 3�1 � Wrobot. Similarly in the third term,

Z Wrobot

�1

1q
2��21

e
�(u��1)

2=2�2
1du

is the probability that u satis�es �1 < u � Wrobot in case that � satis�es Wrobot + 3�1 �
� <1. This probability is almost zero because the probability of acquiring u is N(�1; �

2
1) and

�1 � 3�1 �Wrobot. Therefore, the value of P4P
p0

� is approximated by
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Similarly, the following approximation also holds:

P4P
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 � P
p

 � P
:
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