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Abstract

This paper describes a map generation method using an
omnidirectional stereo and a laser range finger. Omnidi-
rectional stereo has an advantage of 3D range acquisi-
tion, while it may suffer from a low reliability and accu-
racy in range data. Laser range finders have advantage
of reliable acquisition of data, while they usually obtain
only 2D range information. By integrating these two sen-
sors, a reliable map can be generated. Since the two sen-
sors may detect different parts of an object, a separate
probabilistic grid map is first generated by temporal inte-
gration of data from each sensor. The resultant two maps
are then integrated using a logical integration rule. An
ego-motion estimation method is also described, which
is necessary for integration of sensor data obtained at
different positions. Experimental results on autonomous
navigation in unknown environments show the feasibility
of the method.

1 Introduction

Detection of obstacles and free spaces is an essential
function of the sensing system for mobile robots. Even
if a robot is given a map, this function is indispensable to
cope with unknown obstacles or the error of the map.

Many works (e.g., [5, 9]) use stereo vision to detect ob-
stacles. Stereo vision has an advantage of simultaneous
acquisition of range data and images; it can find visual
features while measuring the distance to obstacles. Con-
ventional stereo systems using a pair of ordinary cam-
eras, however, suffer from a narrow field of view. To
cope with this problem, we have developed an omni-
directional stereo system [6]. This system can obtain
panoramic range information of almost 360 degrees. At
the same time, however, it inevitably inherits the draw-
backs of stereo vision: occasional false matches (which
will cause problematic false obstacles) and a relatively
low accuracy in range, especially for distant objects.

Laser range finders (LRFs) are also widely used (e.g., [7,
11]). Most of them scan a 2D plane and obtain only range
data on that plane at a time. They are, therefore, more
suitable for a relatively simple environment such as the
one surrounded by flat walls. When an LRF observes
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Figure 1: Our mobile robot.

a table, for example, only its legs may be detected, and
thus the area under the table may be determined as a free
space.

The integration of multiple sensor data is a typical ap-
proach to make a reliable map (e.g., [1, 2, 4]). This paper
thus proposes a method of generating a free space map
by integrating an omnidirectional stereo and a laser range
finder. Since the two sensors may detect different parts of
an obstacle, the method first generates a separate proba-
bilistic grid map for each sensor by temporal integration
of data from the sensor. This integration is carried out
using a probabilistic model of sensor uncertainty. The
resultant two maps are then integrated using a logical in-
tegration rule, which is designed by considering the char-
acteristics of sensors and environments. We also describe
an ego-motion estimation method, which is necessary for
integration of sensor data obtained at different positions.
We have implemented the method on a mobile robot (see
Fig. 1). The robot can move in unknown environments
autonomously.

2 Two Range Sensors

2.1 Real-time Omnidirectional Stereo [6]

The stereo system uses a pair of vertically-aligned om-
nidirectional cameras (see Fig. 1). The input images
are converted to panoramic images, in which epipolar
lines become vertical and in parallel; thus, efficient stereo
matching algorithms for the conventional stereo configu-
ration can be applied. In [6], we used a PC cluster to
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(a) Input omnidirectional image
(lower camera).

(b) Panoramic image converted from (a).

(c) panoramic disparity image obtained from (b).

Figure 2: Omnidirectional stereo generates a panoramic disparity image.

Figure 3: An example LRF measurement. The black triangle
indicates the position and the direction of the robot.

realize a real-time range calculation for a relatively large
image size (720x100); the working area of the robot was
thus limited due to the wired connection between the
robot and the PC cluster. In this paper, we use an on-
board PC; to keep the processing speed within the same
level, we reduce the size of the input image. The current
implementation generates the disparity image of 360x50
in size and 40 in disparity range. The processing time
is about 0.18[s] per frame. Fig. 2 shows the panoramic
conversion and disparity calculation. In the disparity im-
age (bottom right), larger disparities (nearer points) are
drawn in brighter color.

Since the objective of mapping is to recognize the free
space, we extract the nearest obstacle in each direction.
In the panoramic image, the horizontal axis indicates the
direction. So we examine each column of the panoramic
disparity image and extract the connected interval in
which the disparity difference between (vertically) adja-
cent pixels is less than or equal to one and which is near-
est among such intervals in the same column.

2.2 Laser Range Finder (LRF)

We use a SICK laser range finder (LRF), which is set at
the front of the robot so that it scans the horizontal plane
at the height of 35 [cm] from the floor (see Fig. 1). The
resolution used is 1.0 [deg] per point (i.e., 181 measure-
ments for 180 degrees). The accuracy of each measure-
ment is ±5 [cm]. Fig. 3 shows the line of measurements
corresponding to the scene shown in Fig. 2.

3 Map Generation by Integrating Two Sen-
sors

3.1 Strategy for integrating two sensors

One strategy for integrating range data (with uncertainty)
from the two sensors is to treat both data similarly except
the uncertainty model to be used. In this case, whenever
an observation result is obtained by one of the sensors,
the result is integrated into a probabilistic (or certainty)
map. This unified approach is appropriate for the case
where the sensors obtain basically the same information
but with different accuracies and reliabilities.

When the sensors occasionally recognizes the same ob-
ject differently, however, the above strategy may lead to
a problematic situation. A simple but typical example is
as follows. Suppose the robot observes a table ahead; the
stereo observes the table top and the (visible) legs, while
the LRF observes only the legs. Let us focus on a position
under the table. Since the stereo insists that an obstacle
exists at the position while the LRF does not, the inte-
gration result for the position will be something between
an obstacle and a free space; that is, the probability of an
obstacle existing there will be around, say, 0.5. This re-
sult is apparently erroneous; or, if the data from the LRF
are more reliable than those from the stereo, the position
may be determined as a free space. In this example, the
stereo strongly insists the existence of an obstacle; this
fact should be treated importantly, even if the LRF also
strongly insists that the position is free.

To realize such sensor integration, we take the following
strategy. We first treat the data from the sensors sepa-
rately, i.e., generate a separate probabilistic map for each
sensor by temporal integration of data from the sensor.
We then determine the type of every position in each map,
and finally integrate the type information in the two maps
into the final free space map. The final integration step
is done by a logical integration rule, which is devised
by considering the characteristics of sensors and environ-
ments.



3.2 Temporal integration of sensor data

Certainty grids proposed by Elfes [4] are often used
for temporal integration of sensor data with uncertainty.
Each grid has the probability (or certainty) of an obsta-
cle being there and the statistical integration procedure
is used to update the probability after each observation.
The update of a grid is usually carried out independently
of other grids (independence assumption).

Thrun [13] proposed to use a forward sensor model, as
opposed to an inverse model in [4], to overcome the in-
dependence assumption in mapping using ultrasonic sen-
sors. A forward model describes the physics of the en-
vironment, from causes (occupancy) to effects (measure-
ments) and more natural than inverse models. We have
also proposed to use a forward model in stereo-based en-
vironment recognition [12] but made the independence
assumption.

Probabilistic map learning using forward models with-
out the independence assumption requires a search in a
high-dimensional space (e.g., the EM algorithm in [13]),
which is usually computationally expensive. So we adopt
forward sensor models under the independence assump-
tion, which seems reasonable when the range sensor has
a fairly fine angular resolution as in the case of our omni-
directional stereo and the LRF.

3.3 Interpretation of range data and integration
formula

From one observation, we determine the attribute of each
grid; possible attributes are: occupied, free, and unknown
(see Fig. 4). The figure shows the attribute determina-
tion for a region within one angular resolution. R is the
observed distance (by omnidirectional stereo or LRF) to
the nearest obstacle, and Rmin and Rmax indicate the
uncertainty in range measurement1 . The region between
Rmin and Rmax is labeled as occupied. The region be-
fore the occupied region is labeled as free. The region
behind the occupied region is labeled as unknown. In the
case of stereo, all regions corresponding to the directions
in which any obstacles are not detected (possibly due to
the failure of stereo matching) are labeled as unknown.

Let O be the event that an obstacle is detected. O occurs
at occupied grids; the inverse event O occurs at free grids.
For such grids, the update of the probability is carried
out. For unknown grids, no update is carried out because
no information on obstacles is obtained this time. The
update procedure is as follows.

Let E be the event that an obstacle exist, and let P (E)
be the probability that an obstacle exist (at a grid). The
new probability map to be obtained by integrating a
new observation is given by the conditional probabilities:

1 Refer to [6] for the uncertainty estimate of omnidirectional stereo.
The uncertainty in LRF measurement is constant regardless of the mea-
sured value.
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Figure 4: Determination of grid attributes.

P (E|O) and P (E|O). These probabilities are calculated
by the Bayes’ theorem as follows:

P (E|O) =
P (O|E)P (E)

P (O|E)P (E) + P (O|E)P (E)
, (1)

P (E|O) =
P (O|E)P (E)

P (O|E)P (E) + P (O|E)P (E)
, (2)

where P (E) is the prior probability and E is the propo-
sition that an obstacle does not exist. Among the terms in
the above equations, P (O|E) and P (O|E) are observa-
tion models described below; P (O|E) = 1 − P (O|E);
P (O|E) = 1−P (O|E); P (E) = 1−P (E). Integration
for each grid is performed independently of the others
(the independence assumption).

3.4 Probabilistic models of sensor uncertainty

Two probabilistic models of observation, P (O|E) and
P (O|E), are determined by considering the reliability of
the sensors as follows.

3.4.1 Stereo uncertainty model

P (O|E) is the probability that an obstacle is observed
when it actually exists. In the case of stereo, there is al-
ways the possibility that the correct match is not obtained
depending on, for example, the textures on obstacle sur-
faces and the lighting condition; this possibility usually
rises as an obstacle becomes distant and its size in the
image decreases. Since the size is inversely proportional
to the distance, we assume that P (O|E) is also inversely
proportional to the distance. The minimum measurable
distance of an object on the floor is 1.3 [m] by our omni-
directional stereo. So the probability at the distance is set
to 0.8. For each grid which is nearer than that distance,
the probability update is carried out only when an obsta-
cle is detected there (i.e., labeled as occupied); since this
detected obstacle may not actually be the nearest obstacle
due to the limitation of field of view, P (O|E) is set to 0.5
within 1.3 [m]. Fig. 5 shows the definition of P (O|E) for
stereo. P (O|E) corresponds to the case where a false ob-
ject is detected due to a false stereo matching, and is set
to 0.05.
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Figure 5: Stereo uncertainty model, P (O|E).

Table 1: The integration rule.

stereo
obstacle undecided free space

L obstacle obstacle obstacle obstacle
R undecided obstacle obstacle free space
F free space obstacle free space free space

3.4.2 LRF uncertainty model

The measurement of the LRF is fairly reliable and the
reliability does not depend on the distance to obstacles.
Therefore we set P (O|E) to 0.9 and P (O|E) to 0.05.

3.5 Integration of two maps

The two probabilistic grid maps are integrated as follows.
A direct integration of probability values is not appropri-
ate because, as explained before, a high existence proba-
bility of an obstacle strongly supported by a sensor may
be unnecessarily lowered by the data from the other sen-
sor. We therefore first classify each grid of a map into
one of the following three types, obstacle, free space, and
undecided, using two thresholds. If the probability of a
grid is larger than the higher threshold (currently, 0.7),
the grid is classified as obstacle; if the probability is less
than the lower threshold (currently, 0.3), the grid is clas-
sified as free space; otherwise, classified as undecided.
These thresholds have been empirically selected.

After the classification, we finally integrate the two maps
into the free space map using the rule shown in Table 1.
This rule basically says the following:

• Classification obstacle is reliable and believable. In
other words, it is assumed that any obstacle is de-
tectable by at least one of the sensors.

• If none of the sensors is confident with the detection
of an obstacle or a free space for a grid, the grid is
temporarily considered as an obstacle. This is for a
safe navigation.

The classification and integration processes are carried
out every frame, after updating both probabilistic maps.
The resultant free space map is used for the path planning
of the mobile robot.

table door

Figure 6: An example scene.
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LRF
probabilistic map
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Figure 7: Probabilistic maps and a free space map. Black and
white triangles indicate the robot position and orientation.

This integration process is similar to fuzzy logic-based
ones (e.g., [10]), although each source of information
(i.e., two probabilistic grid maps) is obtained based on
the probability theory in our case.

3.6 Map generation example

Fig. 6 shows an example scene where the robot moved
along the arrow. Fig. 7 shows the maps generated after
the movement. In the probabilistic maps, brightness in-
dicates the probability. The maps are drawn in the robot
coordinates. The table in front of the robot was correctly
recognized by the stereo, while the LRF only detected its
legs. On the other hand, the recognition by the stereo of
the region near the door on the right failed at many po-
sitions because features are scarce on the door, while the
LRF correctly recognized the region. In spite of recog-
nition failures by one of the sensors at several positions,
the integrated map reasonably represents the free space.

4 Ego-motion estimation using LRF data

To integrate multiple observations obtained at different
robot positions, ego-motion of the robot is necessary.
Data from internal sensors such as an odometry-based
dead reckoning may be used, but the error in such data
is accumulated as the robot moves. Ego-motion estima-
tion using external sensors (vision or LRF) is, therefore,
necessary. Among the two sensors we use, the LRF is
better for ego-motion estimation thanks to its reliability
and accuracy, as long as an enough number of features
are obtained.



Figure 8: Extracted feature points in LRF data.
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Figure 9: Ego-motion estimation using point features.

4.1 Feature extraction and matching

Line segments, which come from flat walls, are often
used as features for range sensor-based ego-motion es-
timation [3]. Lu and Milios [8] proposed a localization
method which allows arbitrarily-shaped walls; but the
method seems to be applicable only to relatively smooth
surfaces. In indoor environments, there are plenty of pro-
truded parts in LRF data, which correspond to legs of ta-
bles and chairs. So we use such features for localization.

The width of the legs in our rooms are mostly 5 to 6 [cm];
so we extract, as protruded parts, ranges in the line of
LRF measurements which are nearer than the data on
the both sides by more than 40 [cm], and which have the
width less than 10 [cm]. To avoid false correspondence,
we currently do not use a feature if it is within 30 [cm]
distant from another. Fig. 8 shows an example line of
LRF measurements and extracted features.

Extracted features in two consecutive frames are matched
based on the distance between features; if the distance
between two features is less than a certain threshold (cur-
rently, 20 [cm]), they are considered to match and used
for the ego-motion estimation described below.

4.2 Ego-motion estimation

The ego-motion (∆x,∆y, ∆θ) between two consecutive
frames is estimated as follows. Let (Xi, Yi) and (X ′

i, Y
′
i )

be the ith matched pair of features (i = 1, . . . , N ). If
there is no error, the following equation must hold (see
Fig. 9):

(
cos ∆θ sin ∆θ
− sin∆θ cos ∆θ

) (
X ′

i

Y ′
i

)
+

(
∆x
∆y

)
=

(
Xi

Yi

)
.

So we calculate the best ego-motion which minimizes the
following sum S of the squared distances:

S =
N∑

i=1

{
[Xi − (X ′

i cos ∆θ + Y ′
i sin ∆θ + ∆x)]2

+ [Yi − (−X ′
i sin ∆θ + Y ′

i cos ∆θ + ∆y)]2
}

. (3)

The ego-motion which minimizes S is given by solving
the following equations:

∂S

∂∆x
= 0,

∂S

∂∆y
= 0,

∂S

∂∆θ
= 0. (4)

From eqs. (3) and (4), we obtain the following analytical
solution:

∆θ = tan−1 N [XiY
′
i ]−N [X ′

iYi]−[Xi] [Y ′
i ]+[Yi] [X ′

i]
N [XiX ′

i]+N [YiY ′
i ]−[Xi] [X ′

i]−[Yi] [Y ′
i ]

,

∆x=
[Xi] − [X ′

i] cos ∆θ − [Y ′
i ] sin ∆θ

N
,

∆y =
[Yi] + [X ′

i] sin ∆θ − [Y ′
i ] cos ∆θ

N
,

where [·] indicates the summation from 1 to N .

5 Navigation Experiment

The proposed method has been implemented on our mo-
bile robot shown in Fig. 1. The total processing time of
omnidirectional stereo, LRF data acquisition, feature ex-
traction and localization using LRF data, and the update
of the probabilistic maps and the free space map is cur-
rently about 0.55 [s] per frame. Although the time of data
acquisition is slightly different for two kinds of sensors,
this difference is not significant for the current, relatively
slow speed of the robot.

Fig. 10 shows the result of an autonomous navigation. At
the initial position, the robot assumed to be completely in
a free space. Every time the robot obtained a new pair of
observations by the two sensors, it updated the two prob-
abilistic maps and the free space map, and planned the
safe movement to follow. The robot successfully moved
around a complex indoor environment.

6 Conclusion

We have described a free space map generation method
using an omnidirectional stereo and a laser range finder.
Since the two sensors may detect different parts of an ob-
ject, instead of integrating two kinds of sensor data into
one probabilistic map, the method maintains a separate
probabilistic map for each sensor and integrates them into
a free space map using a logical integration rule. Using
the generated map, the robot was successfully navigated
in unknown environments.
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Figure 10: A navigation result. Note that in the maps, the direction of the robot is now right downward, which is different from the
maps in Fig, 7, so that the maps match well with the photos on the left. Black and white triangles indicate the robot position and
orientation.

Currently, the proposed method assumes static environ-
ments. A future work is to extend the method to cope
with dynamic obstacles by, for example, adopting obsta-
cle detection method such as [6].
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