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Abstract— Mapping is an activity of making a useful de-
scription of an environment. Not only geometric information
such as free space shape but also semantic information such
as object names are sometimes important. We call such a map
making environment information summarization because how to
summarize may change depending on the purpose of the map
and the context. One important aspect of such summarization
is the deadline, which imposes a time constraint on the robot’s
mapping activity. We therefore develop an observation planning
method for the summarization with deadlines. The method can
cope with various types of deadlines specified in the form of loss
function. Experimental results shows various robot behaviors
are generated by only changing the deadline specification.

Index Terms— Environment information summarization, ob-
servation planning, planning with deadline, mobile robots,
object appearance model.

I. INTRODUCTION

Environment modeling is one of the active research areas
in robotics. One important aspect of environment modeling
is geometric mapping [1], which generates free space maps
or landmark maps. Many successful mapping or SLAM
methods have been developed which use statistical tools such
as Kalman filter [2], [3] or particle filter [4], [5].

A recent trend in mapping is semantic mapping, which
generates maps describing not only geometric properties
but also semantic information such as object recognition
results and space segmentation and categorization [6], [7],
[8], [9], [10]. Such a semantic map is suitable as a medium
for human-robot communication; the user can easily give
location information to the robot using such semantic infor-
mation.

We have been using the term environment information
summarization to represent the activity of making such a
map (or a summary) because what kinds of information are
included in the summary depends on the purpose of the map
and the context (e.g., deadline). We have developed an envi-
ronment information summarization system that can generate
a map describing free spaces and placements of specified
objects. The system features an observation planning method
for efficient summarization [11].

This paper deals with an environment information sum-
marization with deadlines. It is often necessary to consider
deadlines in automatic mapping by mobile robots; only a
limited time may be granted to a mobile robot for surveying
an area or such a robot may has a limited working time with
batteries.

Observation planning problems appear in various con-
texts of mobile robotics such as exploration planning [12],
[13] and object search strategy planning [14], [15]. Some
combines these two types of planning [10]. Our previous
planner also dealt with both mapping and object search
[11]. It alternately repeats two kinds of viewpoint selection,
one is for observing unknown regions and the other is for
verifying object candidates found so far. The former planning
is performed by a heuristic greedy algorithm, while the latter
is formulated as an optimization problem of minimizing the
expected cost for the verification. Since the two planning
steps are independent of each other, however, it is difficult
to optimize the whole observation activity and/or to consider
deadlines.

In this paper, therefore, we develop a unified planner for
an environment information summarization. To this end, we
hierarchically decompose the observation planning problem
into two levels; the higher level determines the optimal order
of observation of groups, which is either an object candidate
(or a set of object candidates) or an unknown region, and
the lower level actually determines the optimal viewpoint
sequence for a group. Based on this decomposition, accom-
panied with a loss function representation of deadlines, our
planner can generate an efficient observation plan on-line
considering the deadline.

The rest of the paper is organized as follows. Section II
describes the problem treated in this paper and an overview
of the proposed method. Section III briefly explains the
object appearance models and object recognition. Section IV
describes the planning method in detail. Section V shows
experimental results using a humanoid robot. Section VI
concludes the paper and discusses future work.

II. OVERVIEW OF THE OBSERVATION PLANNING

A. Environment information summarization problem

The environment information summarization treated in this
paper is as follows [11]. The robot is required to (1) make
a free space map and (2) detect specified objects and record
their positions in the map. We use a humanoid robot that has
a laser range finder (LRF) to detect free spaces and vision
to detect objects.

As prior knowledge, the robot is given a set of appearance
models of objects to recognize and the shape of the room
to summarize. The deadline for summarization, which is an
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Fig. 1. Hierarchical decomposition of the planning problem.

important difference between the previous and the current
work, is also given to the robot.

There are two types of observation actions. One is to
observe an unknown region for updating a free space map
using the LRF and for detecting object candidates using color
information. The other is to verify object candidates using a
local feature-based matching.

B. Two-level observation planning

Every time new information is obtained by observation,
the robot updates the state, from which it knows the size
and the position of unknown regions and the locations of
object candidates; these are the target of observation and
an appropriate observation action is selected for each target.
Either of an unknown region or an object candidate (or a
group of neighboring object candidates) constitutes a group.

The whole observation planning is hierarchically decom-
posed into two levels (see Fig. 1): observation order planning
and object verification planning. In the observation order
planning, the robot determines the optimal observation order
of the groups, based on the value of observing each group
and the cost of observation, with consideration of the dead-
line. In the case where a group is composed of an object or a
set of objects, the object verification planning is performed
for calculating the value and the cost of verification, with
generating an optimal sequence of viewpoints.

The robot alternately repeats the planning and the exe-
cution step. Although the robot makes a full plan at each
planning step, only the observation of the first group is
performed because new information may will be obtained
which alters the remaining part of the plan.

At the initial position, which is usually at the entrance
of a room to summarize, the robot is set to observe several
directions in order to find all object candidates visible from
that position and make an initial free space map, thereby
determining the initial state.

III. OBJECT APPEARANCE MODEL FOR RECOGNITION

This section briefly explains object recognition using
object appearance models and the calculation of predicted

Fig. 2. Object recognition example: candidates (red) and recognized
(green).

object A object B object C

Fig. 3. Three objects used.

recognition probability used in observation planning. Refer
to [11] for more details.

A. Appearance model

Object recognition is done in two stages: object candidate
detection using color histogram and object verification using
SIFT feature [16]. Figure 2 shows an example of candidate
detection and verification for object A shown in Fig. 3.

SIFT is robust to scale changes to some extent. If the
distance from the robot to an object becomes large, however,
an enough number of SIFT matches may not be obtained. To
consider the trade-off between the cost of observation (i.e.,
the travel distance to approach an object) and the quality
of recognition, we examine this distance-dependency of the
SIFT-based matching. We also examine the effect of the
relative angle between an object surface and the camera
optical axis. Based on these examinations, we develop an
appearance model which is to predict the number of SIFT
matches for a given observation condition. An object has in
general different appearances for different surfaces, for each
of which an appearance model is constructed.

31



observation 1

observation 2

observation 3

0       1       2        3       4       5       6       7
0

0.2

0.4

0.6

pr
ob

ab
ili

ty

pose ID

initial 

after obs. 1

after obs. 2

after obs. 3

Fig. 4. Pose estimation example.

B. Object orientation estimation and predicted recognition
probability

The effective distance for recognizing an object depends
on what surface of the object is visible. So we on-line
estimate the object orientation using the appearance models.
Figure 4 shows an pose estimation experiment. We discretize
the orientation to eight. By observing the object while ap-
proaching it, the probability distribution gradually converges.

The number of SIFT matches could be calculated if we
knew the object orientation, but in reality, we can only
know its distribution. We thus predict the probability of
successful recognition Precog(Xc, Xobj) from the estimated
distribution. This probability is defined for viewpoint Xc

and object position Xobj and calculated as the one that the
number of SIFT matches exceeds a threshold. This value is
used for the verification planning described below.

IV. OBSERVATION PLANNING WITH DEADLINE

The observation planning treated in this paper has two
levels: the observation order planning and the object verifi-
cation planning (see Fig. 1). This decomposition is realized
by generating observation groups. This section describes the
group generation and the two kinds of planning.

A. Observation group generation

There are two kinds of the target of observation in the
current environment information summarization: unknown
regions and object candidates. The robot observes an un-
known region to update the free space map and to detect
object candidates, while it observes object candidates for
verifying them. We thus discriminate them and generate
observation groups as follows.

• An unknown region constitutes a group.
• An isolated object candidate or a set of neighbor-

ing object candidates constitutes a group. If multiple
candidates can be recognized from a viewpoint, by
considering the maximum recognizable ranges of the
candidates, then they are considered neighboring.

Examples of observation groups are shown in Fig. 7.
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object
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Fig. 5. One object verification.

B. Object verification planning

The algorithm for object verification planning basically
follows the one developed in our previous paper [11]. This
subsection explains the outline of the method.

Figure 5 shows the case where the robot at position Xc

makes a plan for verifying one object candidate and moving
to position Xg after verification. Let X be the position for
verification. We define the set Sobs of possible viewpoints
for verification as the 24 points on three co-centric circles,
the largest of which has the radius equal to the maximum
recognizable range.

The criterion used for object verification planning is to
minimize the expected time for observation and movement.
Let t∗(Xs, Xg, obj, Sobs) be the minimum expected time
for the verification action of object obj with the remaining
viewpoint set Sobs in the case where the robot is now at Xs

and the next subgoal is Xg. This minimum expected time is
defined by the following recurrence formula:

t∗(Xs, Xg, obj, Sobs)

= min
X∈Sobs

⎡
⎢⎢⎢⎢⎢⎣

dist(Xs, X)
vrobot

+ tverify

+Precog(X, Xobj)
dist(X, Xg)

vrobot
+(1 − Precog(X, Xobj))·

t∗(X , Xg, Sobs − {X})

⎤
⎥⎥⎥⎥⎥⎦ , (1)

where Precog(X, Xobj) is the predicted recognition proba-
bility (see Sec. III-B), tverify is the time for one verification
action, vrobot is the average speed of the robot.

A naive calculation of this equation is costly because t∗’s
are calculated for many times with similar X’s. We therefore
make look-up tables for several patterns of viewpoint set.
Each table is referred to by four parameters: start position,
goal position, viewpoint pattern, and the object orientation.

For the case of a group with multiple object candidates, we
consider two kinds of observation strategies. The sequential
strategy makes observations of the candidates sequentially,
while the parallel strategy uses viewpoints from where the
candidates can be observable. We compare the two strategies
and select the better one.

C. Observation order planning

The observation order planning determines the order of
observation considering the values of observing objects and
unknown regions and the cost imposed by the deadline.
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1) Utility for observation order: Suppose there are N
observation groups and G = {G1, G2, . . . , GN} be an order
of observations. The utility U(G) of G is defined by

U(G) = V (G) − L

(
tmov(G) +

N∑
i=1

tobs(Gi)

)
, (2)

where V is the value of observing groups, L is a loss function
imposed by violating the time limit, tmov is the time for
moving between groups, and tobs is the time for observing
a group.

2) Time for movement between groups: Each group has
a set of entry points. For an object (or an object set), entry
points are the viewpoint candidates on the outermost circle
for an object. For an unknown region, they are selected with
a regular interval on the boundary between the unknown and
the known region.

To calculate the time of moving from one group to another,
we first calculate the minimum-length path for every pair of
entry points from the two groups by a robot path planner,
and then select the shortest one. The time for movement is
given by dividing the minimum path length by the average
robot speed.

3) Time for observing a group: When a group is com-
posed of object candidates, the time for observing it is
calculated by the object verification planning (see eq. (1)).

When a group is an unknown region R, the time for
observing it is estimated as the sum of those for free space
map updating, tmap, and for verifying object candidates to
be detected in the region, t̂obj(A). The former is set to a
constant value because the size of the region has little effect
on the map updating process. The latter is given by

t̂obj(A) =
|R|
AU

⎧⎨
⎩

M∑
j=1

n̄jt
∗(Xs, Xg, objj , Sobjj )

+t̄mov(
M∑

j=1

n̄j − 1)

⎫⎬
⎭ , (3)

where t∗ is the estimated time for verifying an object (see
eq. (1)), |R| is the area of region R, AU is the total area
of currently unknown regions, M is the number of specified
objects to be modeled, n̄j is the expected number of objj per
room, t̄mov is the averaged time for moving between objects
for verification.

4) Deadlines: Environment information summarization
tasks usually have deadlines. For example, the robot used
for summarization have a limited amount of battery or
may be granted a limited time for summarization before
deployment; a typical task could be “make a summary of
this room within 30 minutes.” Such various deadlines are
roughly classified into two categories. One is hard deadline;
the loss of violating it is very large or sometimes infinity.
The other is soft deadline; the loss gradually increases as the
time passes beyond the deadline. Miura et al. [17] presented
several types of soft deadlines for the arrival time used by an
intelligent car navigation system. We take a similar approach
to represent soft constraints.

In this paper, we consider the following three types of loss
functions representing deadlines (see Fig. 6):

L1(t) = 0, (4)

L2(t) =
{

0 (t < tlimit)
klimit(t − tlimit)2 (otherwise) , (5)

L3(t) =
{

0 (t < tlimit)
∞ (otherwise) , (6)

where tlimit is the deadline and klimit is a constant.
5) Value of observing a group: The value of observing a

group is given by

V (G) =
N∑

i=1

Vobs(Gi), (7)

Vobs(Gi) =

⎧⎪⎪⎨
⎪⎪⎩

∑
Obj∈Gi

Vobj(Obj)
(Gi is a group of object candidates.)

Vunk(Gi)
(Gi is an unknown region.)

,(8)

Vunk(Gi) = karea|RGi | +
|RGi |
Au

M∑
j=1

n̄jVobj(objj), (9)

where Vobj(Obj) is the value of object Obj to be obtained
by verifying it and |RGi | is the area of the unknown regions
in Gi. The first term of Vunk is the value of observing an
unknown region and is estimated to be proportional to the
size of the unknown region. The second term is the expected
value of verifying specified objects to be found there.

6) Calculating the best order: The best order is currently
found by an exhaustive search because the number of groups
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to consider at a time is not large (usually two or three) in the
current experimental setting. Several approximate methods
can be adopted in a more complex environment.

V. EXPERIMENTAL RESULTS

We conducted experiments of summarizing a 7.0 [m] ×
5.5 [m] room. The specified objects to find are the ones
shown in Fig. 3. Table I indicates the values and the expected
numbers of the objects.

A. Simulation of observation order planning

Figure 7 shows two simulation settings. Figure 7(a) is
a simple environment with no unknown regions and two
object candidates. The white circle at the bottom indicates
the robot’s start and goal position. There are three distinct
plans depending on what object groups to observe (G1, G2,
and G1&G2). Their values, times needed, losses, and utilities
for the three loss functions are summarized in Table II.
Figure 8 compares three different plans generated for the
three loss functions for the same problem. For L1(t), a plan
for observing both objects is generated. For L2(t), a higher
utility is obtained by observing a more valuable Object A
than Object B at the cost of travelling a longer distance. For
L3(t), a plan for observing the nearer object is generated in
order to respect the hard deadline.

Figure 7(b) is a more complex environment with four
object candidates grouped into three (G1, G2, and G3)
and two unknown regions (G4 and G5). Figure 9 shows

TABLE I

THE VALUES AND THE EXPECTED NUMBERS OF OBJECTS.

Object A Object B Object C
Value V (obj) 100 50 10

Expected Number n̄obj 1.0 2.0 1.0

TABLE II

SIMULATION RESULTS FOR FIG. 7(A).

Plan Value Loss L Utility U
G V L1 L2 L3 L1 L2 L3

G1 50 0 0 0 50 50 50
G2 100 0 2.76 ∞ 100 97.24 −∞

G1 → G2 150 0 296.26 ∞ 150 -146.26 −∞

(a) L1(t) (b) L2(t) (c) L3(t)

Fig. 8. Results of observation order planning for Fig. 7(a) for the three
loss functions.

(a) L1(t) (b) L2(t) (c) L3(t)

Fig. 9. Results of observation order planning for Fig. 7(b) for the three
loss functions.

the results of observation order planning for respective loss
functions. The looser the deadline is, the more objects are
chosen in the observation plan. The total time for planning
for this setting is about 900 [ms]; this is reasonably fast for
on-line planning.

B. Environment information summarization experiments us-
ing a real robot

We conducted environment information summarization
experiments using a real robot. The robot uses a laser range
finder for free space mapping and a stereo vision for object
detection and verification. Figure 10 illustrates the setting
for the experiments and Table III indicates the values for the
three observation groups (Object B on the left, Objects A
and C on the right, the unknown region behind the partition).
Experimental scenes can be seen on an accompanying video.

1) Experiment without deadline: Figure 11 shows the
process of summarization without deadline (i.e., using
L1(t)). Snapshots, planned actions, and summarization re-
sults/verified objects during the experiments are shown in
the left, center, and the right column, respectively. In the
grid map, black, white, and gray cells indicate free space,
obstacles, and unknown regions, respectively. The robot
position is represented by a red circle. The green and the blue
circles indicate the object candidate positions and verified
object positions, respectively. It took about 150 [s] to make
a summary describing a complete free space map with the
description of all three objects.

TABLE III

VALUES FOR OBSERVATION GROUPS.

Object A & Object C Object B Unknown region
Value 110 50 950

34



(a) Experimental scene.

Object B

Object A

Object C

(b) Object placements.

Fig. 10. Experimental settings.

2) Experiment with soft deadline: Figure 12 shows the
process of summarization with soft deadline (i.e., using
L2(t)). tlimit is set to 60 [s]. The robot made a plan for
observing a group of two objects on the right and the
unknown region, at the cost of exceeding tlimit. It took about
102 [s] to make a summary describing a complete free space
map with the description on two objects and one candidate.

3) Experiment with hard deadline: Figure 13 shows the
process of summarization with hard deadline (i.e., using
L3(t)). tlimit is set to 60 [s]. Although the robot found
all object candidates, due to the limited time, it observed
only the unknown region. It took about 67 [s] to make a
summary describing a complete free space map and three
object candidates. The total execution time exceeded a little
the deadline due to an optimistic estimation of travel time.

VI. CONCLUSIONS AND FUTURE WORK

This paper has described an observation planning method
for environment information summarization with deadlines.
The summarization problem treated in this paper is to gen-
erate a free space map with placements of specified objects.
The whole planning problem is hierarchically decomposed
into two subproblems: an observation order planning which
considers the value and the cost of observation action and
deadlines and object verification planning which considers
the uncertainty of objects’ states. The proposed method has
been successfully applied to a real summarization problem
using a humanoid robot with vision and range sensors.
Various robot behaviors were generated using the same
planner only by changing the deadline specifications.

A future work is to add visual features and object mod-
els to cope with more complex environments with various
objects and rooms. Developing a more efficient planner
based approximate on-line algorithms is also future work.
We are currently pursuing on-line approximation algorithms
for observation order planning [18]. Introducing such algo-
rithms will enable the robot to summarize large environments
efficiently.
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step 1: The robot found three object candidates and one unknown region. The
two candidates on the left are grouped. The plan for observing all groups in a
counter-clockwise way was generated and the robot moved to the first group.

step 2: The robot observed the two objects at a viewpoint. Since one of them was
verified successfully, the robot made a plan to verify the other and executed it.

step 3: The other object was verified successfully. the robot then made a plan to
observe the unknown region and the other object in this order and executed it.

step 4: The robot observed the unknown region and updated the map. Since no
object candidates were found in this new region, the robot made a plan to verify
the remaining candidate and executed it.

step 5: The robot finished verifying all objects and made and executed a plan to
go back to the initial position.

step 5: The robot finished the summarization. The summary includes the free
space map and the description of all objects (blue circles).

Fig. 11. Summarization using L1(t).
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