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Abstract — A new framework of a hierarchical
vision-motion planning for a mobile robot under uncer-
tainty is proposed. An optimal plan is generated by two-
level planning: global route selection and local path plan-
ning. In global route selection, a sequence of observation
points to acquire sufficient information to reach a destina-
tion is determined. Both the cost and the uncertainty of
vision are considered in this planning. In local path plan-
ning, given two successive observation points, trajectories,
moving speeds, and reference points for robot localization
are determined so that a robot can reach the second point
safely with a minimum cost. Both the error in localization
and that in motion control are considered in this planning.
A local path planner is repeatedly invoked in global route
selection to determine an actual path between observation
points. Our hierarchical planner can generate an optimal
plan for a mobile robot planning problem.

I. INTRODUCTION

A mobile robot with vision moving to a destination in a
cluttered environment needs two kinds of planning. One is to
plan a route (a sequence of free areas that the robot passes
through) to the destination and the other is to plan actual
paths that the robot follows. Since the cost of taking a wrong
route and turning back is usually high, a robot should have
enough information about the environment to select a correct
route. Visual recognition for obtaining such information re-
quires much time in general. Thus, it is important to select
efficient views. On the other hand, when a robot follows a
path, avoiding collision with obstacles is the most important
problem. It is, therefore, necessary to take the uncertainty of
motion control into consideration in generating an actual path.

There have been many works on path planning of mobile
robots (ex. [2][7][10]). The goal of most researches is devel-
opment of algorithms for generating a minimum cost (or fea-
sible) path in a cluttered environment. To cope with a complex

environment, several assumptions are made: a robot has com-
plete information about the environment in advance; a robot
can move without uncertainty. Clearly, such assumptions are
inappropriate in a real world. Some works [8] treat path plan-
ning in an unknown environment, while the uncertainty and
the cost of sensing is not yet considered. Shekhar et al. [12]
proposed a motion planning strategy based on the preimage
approach [3] considering uncertainties in control and sensing,
while their model of uncertainty is too simple and is not con-
structed for actual robots or sensors.

Visual guidance of a mobile robot is also one of the recent
topics. Pollard et al. [11] describes a vehicle control method
using predictive feed-forward stereo. Blake et al. [1] proposed
an approach to path-planning around smooth obstacles. Kub-
ota et al. [6] described a method of generating heuristically an
obstacle-avoiding path using image data.

There are also many works on the error analysis of mobile
robot localization [5] [14]. The results of the analyses, how-
ever, have been rarely used for generating an actual path. Error
in trajectory-following control [4] [13] should also be consid-
ered in path planning.

In a previous paper [9], we proposed a framework of a
vision-motion planning for a mobile robot under uncertainty.
In that framework, an optimal sequence of vision and motion
operations is generated considering the cost and the uncer-
tainty of visual recognition. It was assumed that an actual path
is a straight line connecting neighboring observation points,
and that a robot can move on it without uncertainty. These
assumptions are unsuitable for a real robot. For example, a
behavior such that a robot changes its speed according to the
width of a route cannot be expressed. In this paper, therefore,
we improve our framework in the following two points: first,
an actual path is generated considering both the uncertainty in
localization and that in motion control; second, a total plan is
generated by two-level planning, where the previous planner
works as a higher level planner.

In order to concentrate the argument on structure of a plan-
ning system, we simplify a planning problem by assuming that
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a robot moves in a static environment, and that a graph of pos-
sible routes is given in advance. In such situation, the object
of a higher level planner is to determine a sequence of ob-
servation points to acquire enough information for selecting a
correct route at each branch.

Section II explains how a vision-motion planning problem
is hierarchically decomposed into two subproblems. Section
III briefly reviews a global vision-motion planning framework
we have already proposed. Section IV describes models of un-
certainty in localization and control and explains an algorithm
of generating a local path using such models. In section V, we
show a simulation result. In the final section, we summarize
this paper and describe future works.

II. HIERARCHICAL DECOMPOSITION OF

VISION-MOTION PLANNING

Planning of a mobile robot moving to a destination among
obstacles can be decomposed into two problems: the selection
of a route (a sequence of free areas) to pass; and the determina-
tion of actual paths. We call the former global route selection
and the latter local path planning (Fig.1).

In order to determine an optimal route, a robot needs
enough information about the environment such as types,
sizes, and positions of obstacles. Especially the passability
of a space between obstacles is important information. The
cost of obtaining such information is generally high because
not merely a measurement but recognition of a complex scene
is often necessary. We assume, therefore, that a robot stops at
each time to recognize the environment. Under this assump-
tion, the object of global route planning is to determine an op-
timal sequence of observation points and directions. A route is
determined by connecting successive observation points, from
a start point to a goal point. We have formulated this problem
by using statistical decision theory in [9].

If a robot is given two successive observation points, it must
determine an actual path to follow. In local path planning, tra-
jectories, moving speeds and reference points for robot local-
ization are determined. The position of a robot relative to an
obstacle is used for describing trajectories because it is more
useful for obstacle avoidance than the absolute positions. Note
that the cost of visual processing during trajectory-following
control is rather low. This is because recognition of the scene
has been already finished in global route selection and merely
measurement is carried out. Therefore visual processing is per-
formed simultaneously with the robot motion control.

We employ a two-level cost minimization in order to con-
struct an optimal (minimum time) plan. In global route se-
lection, the total cost of vision and motion operations is mini-
mized. A local path planner is invoked whenever a minimum
cost of each motion is needed in global route selection. Since
possible routes are compared in terms of the cost which has
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Fig. 1: Two-level planning.

been minimized within each route, a generated plan is glob-
ally optimal.

III. GLOBAL ROUTE SELECTION

In global route selection, a robot determines a sequence of
observation points to acquire enough information to select a
correct route. The cost and the uncertainty of visual recogni-
tion is considered. This section briefly describes the algorithm
of global route selection [9].

Here, we define that the optimal route is a route which min-
imizes the expectation of the total cost. We assume that the
state of the environment is represented by a multivariate dis-
tribution, each variable of which is a property of the environ-
ment. We call such multivariate distribution distribution infor-
mation and describe it by D. We derive a recurrence formula
which relates the current observation point xi and distribution
information Di with the optimal next observation point xi+1

and observation oi+1.
Since an observed data is a vector of properties, the uncer-

tainty of an observed data becomes a multivariate distribution.
Let Pobsd(s;Di,xi+1,oi+1) denote the probability of getting
an observed vector s. Also, let fuse(D, s,x,o) be a function
which computes a new distribution information from D, s, x,
and o using statistical data integration. A robot can predict that
a distribution information fuse(Di, s,xi+1,oi+1) will be ac-
quired with the probability Pobsd(s; Di,xi+1,oi+1) after an
observation oi+1 at xi+1.

Because sensor data are integrated statistically (by Bayes
rule), the integration result of them can be considered to in-
cludes all information acquired in the past recognition process.
Therefore the optimal plan based on some specific position and



distribution information is independent of how such informa-
tion has been acquired. Thus, the minimum cost at xi with
distribution information Di is given by the minimum of the
sum of the following (Fig.2):

1. the cost of motion to the next observation point xi+1.

2. the cost of the next observation oi+1.

3. the minimum cost from xi+1 to the goal point. This is a
weighted sum of minimum expectations of the cost, each
of which depends on each possible sensor information s
obtained by oi+1 and weighted with the probability of s.

Therefore the problem of global route selection is formulated
as follows:

Co(xi,Di) = min
xi+1∈X
oi+1∈O

(Cm(xi,xi+1) + Cv(oi+1)+
min cost(xi+1, goal)

)
,

min cost(xi+1, goal) =∫
Pobsd(s;Di,xi+1,oi+1) ·

Co(xi+1, fuse(Di, s,xi+1,oi+1))ds

(1)

Co(x,D): The optimal cost with D at x.
Cm(x,y): The cost of motion from x to y,

computed by a local path planner.
Cv(o): The cost of observation o.
X : A possible range of xi+1.
O: A possible range of oi+1.
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Fig. 2: Calculating the cost to the goal point

Since a planning problem is represented by a recurrence
formula, a robot can get an optimal solution using dynamic
programming (DP). When a robot can decide the final motion
to the goal point with the current information, since no further
observation is necessary, the cost to the goal point can be com-
puted without using (1). Recursive computation terminates at
that time. In order to compute the minimum cost of each local
path, a local path planner is repeatedly invoked in global route
selection.

IV. LOCAL PATH PLANNING

In local path planning, given two successive observation
points, a robot determines the minimum cost, collision-free
path connecting them. Generally speaking, a robot can move
fast in an environment with few obstacles, while in a clut-
tered environment, a robot must slow down. In this section,
we model such behavior considering the two kinds of errors:
the error in localization and that in control.

A. Error in Localization and Selection of a Reference Point

When a robot follows a local path among obstacles, geometri-
cal relationship between the robot and obstacles provides im-
portant information for collision avoidance. Thus, we assume
that a path is represented with respect to the positions of ob-
stacles, and that a robot continuously selects a reference point
(RP) for localization in the scene. We also assume that a robot
can control the vision system so that the viewing direction is
always toward a selected reference point as shown in Fig.3.

If a robot follows a two dimensional path on a flat floor, the
localization error in the direction perpendicular to the trajec-
tory is most important for avoiding collision. Thus, we con-
sider only this error as the localization error and represent it
by el.

Using a model of uncertainty of stereo vision system de-
scribed in [9], in which only quantization error of digital im-
ages is considered, we can represent the relative positional er-
ror of the robot to an RP by a normal distribution. If we set
the x axis and the z axis so that the z axis is aligned with the
viewing direction (Fig.4), the covariance matrix Cpos of the
normal distribution becomes a function of the distance d to the
RP and is represented by

Cpos =
(
σx(d)2 0

0 σz(d)
2

)
, (2)

Letting φ be the angle between the z-axis and the trajectory,
we can define el as

el(d, φ) = kmax(σz(d) sinφ, σx(d) cosφ), (3)

where k is a constant.
Given a set of candidates of reference points in the scene,

the robot continuously chooses one with the minimum el. For
example in Fig.5, from start to b the first RP is used, while the
second RP (same as goal) is used from b to goal. Fig.6 is a
graph of the localization errors for both RPs for the circular
part of the path. At point b, both RPs have the same localiza-
tion error. The robot changes the RP at that point. Note that
the time for rotating cameras is currently neglected.
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B. Error in Control

If positional information is obtained by vision, and if the time
for acquiring such information once is constant and not neg-
ligible, the faster a robot moves, the larger the control error
becomes because that the distance that a robot moves during
visual data processing is proportional to the speed. As same as
the localization error, we consider only the control error in the
perpendicular direction to the trajectory.

We assume a car-like mobile robot (Fig.7). The front wheel
is steered and actuated. The position of the robot is represented
by the midpoint of two rear wheels. As a cause of the control
error of the robot, we currently consider only the error of the
steering angle.

First, we examine the case the robot follows a straight line
(Fig.7). Letting ∆ψ be the maximum error of the steering an-
gle, the rotation radius R in the worst case is given by

R =
L

tan∆ψ
(4)

where L is the wheelbase of the robot. If tv is the cycle time
of visual feedback, the maximum control error ec(v) when the
robot moves at speed v is given by

estraight
c (v) = R

(
1 − cos(v ·tv/R)

)
. (5)

Next, we examine the case that the robot follows a curved
trajectory (Fig.8). If the desired steering angle is ψ and the
maximum error of it is ∆ψ, the desired rotation radius (R∗)
and the actual rotation radius (R) are given by

R∗ =
L

tanψ
, (6)

R =
L

tan(ψ + ∆ψ)
. (7)
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Fig. 7: Control error on a straight trajectory.
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Fig. 8: Control error on a curved trajectory.

Using these radii, the maximum control error for a curved tra-
jectory is represented by

ecurved
c (v) = R∗ −

√
R∗2 − 2R(R∗−R)·(

1−cos(v ·tv/R)
) . (8)

C. Generating an Optimal Local Path

This subsection describes an algorithm of generating an opti-
mal local path. We currently assume that a trajectory consists
of straight lines and circular ones, and that the speed of a robot
is limited to discrete predetermined values vi (i = 1 ∼ n, vi <
vi+1). We also assume for simplicity that the robot does not
collide with an obstacle if the distance to it is larger than a
given value R0, although the shape of the robot is not a circle.

Suppose a trajectory is already given. By choosing refer-
ence points along the trajectory, the robot can calculate the
localization error using (3). By choosing the speeds along the
trajectory, the robot can calculate the control error using (5)
and (8). The sum of these errors is considered to be the total
error. Since the total error shows how near the robot can be to
obstacles, we can decide whether the current trajectory is safe
(collision free) or not. However it is generally difficult to gen-
erate an optimal (minimum time) path because the localization
error depends on the relative position of the robot to obstacles,
that is, a trajectory itself. In order to make the path genera-
tion problem easier, we make more assumptions as follows:
there are only polyhedral obstacles in the environment; only
vertices of obstacles are candidates of RPs (reference points);
the robot tries to avoid no more than two obstacles at a time; a
local path is composed of five parts (approach, turn1, interme-
diate, turn2 and departure) as shown in Fig.9; turn1 and turn2
have the same radius; the robot moves on turn1, turn2 and in-
termediate at the same speed. Of course, some parts of the
path can be omitted according to the placement of obstacles.

The procedure of generating a local path is as follows. First,



the robot selects a turning speed vt, and consequently the con-
trol error becomes ec(vt). Since a vertex of the front obstacle
is the reference point at the former part of a turn as shown
in Fig.5, the localization error for a turning radius r becomes
el(r, π/2). To make this turn safe, the following unequality
must be satisfied (Fig.10).

r > R0 + ec(vt) + el(r, π/2). (9)

The minimum radius which satisfies this inequality is selected.
The selected radius is common to both turn1 and turn2. Once
a turning radius has been determined, the geometry of five
parts is completely determined so that approach, intermedi-
ate and departure become tangent lines of turn1 and turn2,
where approach and departure pass through Start and Goal,
respectively (see Fig.9).

Then, we determine speeds on approach. When a robot ap-
proaches an obstacle from a distant point, it can move at the
highest speed at first. As the robot comes near to the obstacle,
it must slow down. To make the total time minimum, there-
fore, the robot needs to know the nearest point to the obstacle
to which the robot can move at some speed vi. Let us consider
Fig.11. A point p1 is on approach, and d is the distance from
p1 to the endpoint of approach. We calculate the localization
error el and the control error ec at p1 and set a point p2 so that
the distance from p2 to approach is el + ec. We decide the
speed vi at point p1 is safe if the distance D from p2 to the
reference point is larger than R0. By calculating the minimum
value of d for each speed, from the highest speed to the turn-
ing speed vt, the positions for slowing down are determined.
For departure, the similar calculation is carried out, while the
speed increases as the robot goes away from the obstacles.

By using the above procedure and by selecting reference
points as described in A, the robot can generate the complete
path (trajectories, speeds, and reference points) for some se-
lected turning speed vt and can calculate the time to follow the
path. By repeating this procedure for possible vt’s, the mini-
mum time path is finally determined. The flow of local path
planning is summarized in Fig.12. Fig.13 shows a result of
local path planning. The speed and the required time for each
path are indicated. Viewing directions to three RPs are also
indicated. In actual, parts with very small required time will
be eliminated.
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proach speed.



Calculate turn radius r

repeat for possible v ’st

turn1, turn2         intermediate
Select turn speed     
for 

vt

and

Determine points for changing speed
for approach departureand

Finally select     which minimizes the total costvt

Select reference points
along the trajectory

Fig. 12: Flow of local path planning.

Start

Goal

viewing direction

Fig. 13: An example of planned local path

V. SIMULATION RESULTS

This section describes a simulation result of hierarchical
vision-motion planning. Fig.14 shows the problem and the op-
timal solution. There are two routes to reach the goal point (its
position is given) from the initial position. One route passes
through between obstacles and the other one passes the out-
side of the right obstacle. The former route is shorter than the
latter. To take the former route, the robot needs to estimate
the width of the space between obstacles. As the robot cannot
decide whether the shorter route is passable or not by the ini-
tial observation at the start point, it needs to generate a plan by
the recursive search of observation points. In this problem, we
made the following assumptions: the cost of taking a detour
is known in advance; possible observation points are limited
to predetermined discrete positions; discrete distributions are
actually used to represent positional uncertainties.

Since the positions of the obstacle vertices are discretely
distributed, for each combination of the possible positions of
the left and the right vertices, an optimal local path to the goal
was determined. Using the expectation of the cost of local
paths, an optimal sequence of observation points was deter-
mined in global route selection. In this problem, enough infor-
mation for construct the final plan was acquired by the second
observation.

Goal

Start

detour
(cost is known)

(the initial observation point)

planned local paths

the optimal 
next observation point

obstacle

obstacle

possible positions
of the vertices

Fig. 14: Simulation result



VI. CONCLUSIONS AND DISCUSSION

We have proposed a new framework of a hierarchical
vision-motion planning under uncertainty. The planning prob-
lem has been hierarchically decomposed into two subprob-
lems: global route selection and local path planning. In global
route selection, an optimal sequence of observation positions
is determined by considering both the cost and the uncertainty
of vision. In local path planning, given two successive ob-
servation positions, collision-free trajectories, moving speeds,
and reference points for robot localization are determined by
considering both the error in localization and that in control.

Planning of a local path by taking the localization error and
the control error into consideration is an important feature of
this paper. However we need the test and the refinement of
the error models through experiments by a real robot. Espe-
cially, when visual data are integrated with the data acquired
by dead reckoning, the localization error and the strategy of
selecting reference points must be modified. It is also neces-
sary to improve our local path planning algorithm to cope with
more general situation.
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