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Abstract

This paper deals with planning of visual navigation

strategies for a mobile robot under uncertainty of both

visual data and dead reckoning data. When a robot

passes through a narrow space, it has to move slowly

while carefully observing surrounding objects and esti-

mating the distances to the objects precisely. On the

other hand, the robot can move fast in a widely open

space. A novel method is proposed which can adap-

tively determine the speed of the robot and the visual

landmarks, thereby realizing an e�cient navigation of

the robot. Experimental results show the feasibility of

the method.

1 Introduction

Visual information is useful for navigation of mobile

robots. If a robot moves only by dead reckoning, the

positional uncertainty grows monotonically. Thus, vi-

sual information (or information from other external

sensors) is utilized to reduce the error for safe and ef-

�cient navigation.

Many realtime visual navigation systems have been

developed (e.g., [1, 2, 3, 4]). In these systems, a fast

image processing and a robot control are iterated in a

�xed time cycle. If the time for visual recognition is

not negligible, a robot has to be controlled by consid-

ering the delay in obtaining a recognition result from

the time of image input. In addition, these systems

usually deal with situations where precise localization

of robot is not necessary. In a cluttered environment,

however, a robot often needs precise position control

for passing through narrow spaces.

In order to obtain an enough accuracy in localiza-

tion, much visual information is necessary; this means

that a robot needs to get images after every short

movement. However such a strategy slows down the

robot; it is ine�cient to always move slowly. Thus, it

is desirable to adaptively change the speed depending

on the clutteredness of the nearby environment.

This paper proposes a novel method to plan e�-

cient visual navigation strategies for a mobile robot

under uncertainty. By considering the uncertainty of

vision, that of motion, and time for visual recognition,

a sequence of viewpoints and visual landmarks (called

reference points or RPs) is generated.

The situation treated in this paper is as follows:

a complete (no-uncertainty) map of the environment,

the route (a sequence of free spaces that the robot

passes through one after another), and the candidates

for reference points are given in advance; the mobile

robot has a stereo vision system to detect reference

points; both vision data and dead reckoning data in-

clude uncertainty. The objective of the planner is to

generate o�-line the navigation strategy which leads

the robot to the destination in the minimum time with-

out colliding with obstacles.

2 Continuous Motion with Vi-

sual Feedback

Since visual processing time is not negligible in usual

cases, visual data are obtained with some delay from

the image input. By performing a visual processing

while the robot is moving, we can integrate visual and

dead reckoning data without stopping the robot [5, 6].

Fig. 1 illustrates the relationship between uncer-

tainty estimates obtained in the process of integrating

visual and dead reckoning data. In the �gure, the un-

certainty in a 2-D position, which is represented as

an ellipse, is indicated. The order of obtaining uncer-

tainty estimates is also indicated with numbers with

circles.

Assuming that the time for processing one image is

constant, the interval of viewpoints is determined only

by the speed of the robot. For continuously processing

images, the robot controls the speed so that it reaches

the next planned observation point just at the end of

the processing of the current image.

3 Basic Planning Strategy

3.1 Determining Interval of View-

points

When a mobile robot follows a given trajectory with

visual feedback, it always deviates to some extent from
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Fig. 1: Uncertainty estimates in non-stop movement.

the planned trajectory because of the uncertainty of

motion and vision. If the space around the robot is

widely open, the robot can safely recover to the tra-

jectory even in case of a large deviation. If the space is

cluttered, however, only a small deviation is allowed.

Thus, the allowable positional uncertainty of the robot

depends on the clutteredness of the space around the

robot. We formulate this dependency to determine an

appropriate interval of viewpoints.

We use a three-wheeled mobile robot moving on a 2-

D 
at 
oor. The con�guration of the robot position is

speci�ed by a 3-D vector, whose elements are the 2-D

position of the front wheel and the orientation of the

robot. The orientation is that of the line connecting

the front wheel and the midpoint of the rear wheels.

Hereafter we use the word position to refer to a con-

�guration. The positional uncertainty of the robot is

represented by a probabilistic distribution in the 3-D

vector space.

To explain our strategy for determining viewpoint

intervals, we de�ne the worst position. The worst posi-

tion at some time point is the position among possible

ones which has the largest distance to the trajectory1

(see Fig. 2). We assume that, if the robot can recover

to the trajectory from the worst position, it can also

recover from any other possible positions.

Using the notion of the worst position, we choose

viewpoints as follows. Let us consider Fig. 1. Suppose

that the robot starts following the trajectory at posi-

tion x1 and moves towards position x2. At time t1, we

can predict the uncertainty at x2 ( 2
 in Fig. 1). If the

robot can recover from the worst position at x2, this

movement from x1 to x2 is safe. We would like to min-

imize the total time to reach the destination as long

1Although this position may not be the true worst point, we

use this position as an approximation.
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Fig. 2: Worst position.

as no collision occurs. Thus, we choose as the next

viewpoint (x2) the farthest position from whose worst

position the robot can recover to the trajectory with-

out collision. The planner repeatedly selects the next

viewpoints using the the latest estimate of uncertainty

at the current position.

The planner generates a plan before the robot actu-

ally moves. Thus, it is necessary to predict the posi-

tional uncertainty at each position; this entails predic-

tion of the observation result. As a predicted obser-

vation result (observed position of reference points),

we use the one which will be obtained at the mean

position of the positional distribution. This is based

on the assumption that the positional deviation from

the planned trajectory is small enough. Using such a

predicted observation result, we can calculate the esti-

mates of the robot position and its uncertainty at each

position.

3.2 Trajectory Generation and Colli-

sion Detection

A trajectory is represented by the movement of the

midpoint of the rear wheels, and is generated by con-

sidering the robot size and the possible deviation of

the robot from the trajectory in vision-based trajec-

tory following control.

The size of the robot is considered by setting a mar-

gin around each obstacle and by modeling the robot

as a line connecting the front wheel and the midpoint

of the rear wheels. The size of the margin is set to the

half of the robot width plus some predetermined value.

If the line touches an enlarged obstacle (or, an obsta-

cle region), the robot is considered to collide with the

obstacle. The maximum deviation, called the safety

margin, is the deviation during the robot moves at its

highest speed and is estimated from the models of the

motion and the vision uncertainty.

Using the obstacle region and the safety margin, a

trajectory is generated as follows (see Fig. 3). If a part

of the route is covered by an enlarged obstacle region,

that part is classi�ed as a narrow space; otherwise,

the part is open. In a narrow space, the robot moves

so that the distances to the obstacles on both sides

are roughly equal. In an open space, the robot moves

on the minimum-length trajectory with consideration

of the safety margin. Trajectories are composed of
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Fig. 4: Four categories: (1) straight movement be-

tween obstacles; (2) curved movement between obsta-

cles; (3) entering a narrow space; (4) movement in an

open space.

straight-line and circular segments. Segments are con-

nected smoothly.

4 Planning Procedures

We classify the possible situation into the following

four categories (see Fig. 4) and prepare a planning

procedure for each category:

(1) straight movement between obstacles,

(2) curved movement between obstacles,

(3) entering a narrow space, and

(4) movement in an open space.

4.1 Straight Movement between Ob-

stacles

In this case, the trajectory is set so that the distances

to obstacles on both sides are equal. When the robot's

front wheel touches the obstacle region, the robot can

recover to the trajectory by steering to the opposite

direction to the obstacle (see Fig. 5). Thus, the next

viewpoint is set at the position where the worst posi-

tion �rst touches the obstacle regions. For this move-

ment, two reference points (RPs), one from each side,

are selected which are observable (even at the worst

position) and the nearest to the robot.
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Fig. 5: Straight movement between obstacles.
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4.2 Curved Movement between Obsta-

cles

When the robot moves on a curved trajectory among

obstacles, there are three possible collision points (see

Fig. 6): (1) collision of the front wheel with the outer

obstacle when the robot enters the curved trajectory;

(2) collision of a rear wheel with the inner obstacle

while the robot is turning; (3) collision of the front

wheel with the outer obstacle when the robot exits

from the curved trajectory.

We use a single circular trajectory when the robot

changes its orientation; the radius of the circle is de-

termined empirically from the distance between the

inner and the outer obstacles. For each possible col-

lision point mentioned above, we can calculate a set

of the centers of the circular trajectory for which the

robot does not collide at that point. Then, the feasible

(no-collision) set of centers is calculated as the inter-

section of three such sets. The triangle-like region in

Fig. 6 indicates the set. The center of mass of the set

is selected as the center of the circular trajectory.

On a circular trajectory, the next viewpoint is de-

termined at the position where the worst position of

the robot �rst touches an obstacle region. When the

robot enters the curved trajectory or exits from the

trajectory, two reference points, one from the inner-

most point of the inner obstacle and the other from the



outer obstacle, are selected. During the movement on

the trajectory, two reference points are selected from

the outer obstacle which are observable and the near-

est to the robot.

The movement of entering the curved trajectory is

treated as the entering movement (see Sec. 4.3) into a

narrow space whose width is equal to that of the region

of possible circle centers in the direction perpendicular

to the robot movement.

4.3 Entering Narrow Space

When the robot enters from an open space into a nar-

row space, we consider the following two conditions:

(1) the front wheel can enter the narrow space; (2)

when entering the narrow space, the angle between

the trajectory and the robot orientation is less than a

certain value, which depends on the width of the nar-

row space, so that the robot can safely recover to the

trajectory in the narrow space.

These conditions are illustrated in Fig. 7. We con-

sider two circles drawn by the midpoint of the rear

wheels: one, which is indicated by the left smaller cir-

cle in the �gure, is drawn when the robot proceeds

with the maximum steering angle from the worst posi-

tion; the other, which is indicated by the right smaller

circle in the �gure, is drawn when the robot enters the

narrow space with the maximum steering angle and

with the maximum allowable orientation of the robot.

If we can draw a tangent line between these circles,

the robot is considered to be able to enter the space.

The farthest point at which the above entering con-

ditions are satis�ed is selected as the next viewpoints.

The reference points used are the inner-most points of

the two obstacles forming the entrance of the narrow

space.

4.4 Movement in Open Space

For the movement in an open space, the farthest point

the robot can reach during one cycle of visual data
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Fig. 7: Entering a narrow space.

processing is selected as the next viewpoint. Two ref-

erence points are selected which are observable and the

nearest to the robot.

5 Position Estimation of the

Robot

The robot estimates its position using both dead reck-

oning data and visual data. In dead reckoning, the

movement of the robot is estimated from the steering

input and the odometer reading. These two values are

considered to be the sources of uncertainty in the dead

reckoning data. In visual recognition, the robot uses a

stereo vision system, in which the uncertainty caused

by the quantization error is considered [7].

The above measurements with errors are integrated

into the estimate of the robot position by using the

Extended Kalman Filter [8].

6 Image Processing for Detect-

ing Reference Points

We suppose that the robot is in a typical o�ce envi-

ronment. Since there are many arti�cial objects which

have vertical straight segments, we use such vertical

segments as reference points. If a group of vertical

segments coexists in a small scene region, as in the

case of thin objects such as the leg of a table, we use

such a group as a single reference point.

Since the robot has the estimate of its positional

uncertainty, it can predict the possible 3-D scene re-

gion within which a reference point exists. This region

information can be backprojected onto the stereo im-

ages to limit the possible image region within which

the edge segments corresponding to the reference point

exists.

Then, vertical edge segments are extracted in that

image region in the left and the right image. After ex-

tracting and grouping segments, we searches for possi-

ble matches between images. For each segment in the

left image, corresponding segments in the right image

are detected based on the epipolar and the similarity

constraint; a pair of segment can be matched if their

vertical positions overlap each other to a certain extent

and they have similar directions and contrast values.

From the matched pair of segments, the candidates of

reference points are obtained.

If there are still multiple candidates of reference

points after matching between images, we further use

the constraint on the relative displacement in the scene

between reference points to disambiguate them among

the possible candidates.

Fig. 8 shows an example of reference point extrac-

tion. This image was taken during the entering move-

ment (see Section 4.3). In the �gure, the possible im-

age region and the detected pairs of vertical segments
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Fig. 8: Detection of reference points.

for the two planned reference point are indicated.

Although our stereo matching method is relatively

simple, it performs well in most cases because only

a small number of candidate segments are extracted

using the position information and the map.

7 Experimental Result

We conducted experiments using a real mobile robot

in our laboratory. The route given to the robot is

composed of a sequence of the following movements:

(1) movement in an open region; (2) movement to en-

ter a narrow region; (3) movement between obstacles

(straight); (4) movement between obstacles (curved).

Fig. 9 shows the map of the environment and the

planned viewpoints and reference points. Small el-

lipses indicate the planned viewpoints and the pre-

dicted uncertainty at those positions. Small �lled cir-

cles indicate the planned reference points.

At each viewpoint, the robot obtains the current po-

sition estimate. Using the estimate, the robot calcu-

lates the positional deviation from the planned trajec-

tory, and then generates a recovery trajectory. Cur-

rently the recovery trajectory is simply generated to

lead the robot towards the next planned viewpoint on

a single circular trajectory.

Fig. 10 shows the result of a trial. In the �gure,

the actual movement of the robot, the predicted un-

certainty, and the estimated uncertainty are indicated.

In this trial, the robot succeeded in entering the curved

trajectory starting at the side of the tables. Fig. 11

shows the sequence of the left images and the extracted

reference points. Fig. 12 is the snapshots of the trial.

8 Conclusions and Discussion

We have proposed a method to plan e�cient naviga-

tion strategies for a mobile robot under uncertainty.

By considering both the predicted positional uncer-

tainty and the con�guration of obstacles, the interval

of viewpoints, which is equivalent to the speed of the

robot in our case, is adaptively determined according

to the clutteredness of the nearby environment. Ex-

periments using a real mobile robot show the feasibility

of the method.

The planner currently selects two reference points at

each position by only considering their visibility and

distance from the robot. Using more reference points

and/or considering other factors such as the detectabil-

ity of reference points would enhance the robustness of

the robot localization.

Another future work is to use the active mechanisms

of the stereo camera head. Currently the camera direc-

tion is �xed to direct forward. By using these mecha-

nisms, the robot will select reference points more 
ex-

ibly among those which exist in various directions.
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Fig. 12: Snapshots of the mobile robot moving with the planned visual navigation strategy.


