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Abstract

This paper proposes a method to autonomously se-

lect stable visual landmarks from observed features

by stereo vision and a given 2D obstacle map. The

robot selects as stable landmarks vertical line segments

which are distinct and on a vertical plane, because

they are expected to be observed reliably from vari-

ous viewpoints. Due to the vision and motion error of

the robot, the observed feature positions include uncer-

tainty. This uncertainty can be reduced by matching

the detected vertical plane which includes the features

to a known plane in the map. The position of a se-

lected feature is modeled by a probabilistic distribution

on the known plane. The selection and modeling pro-

cess is performed on-line to adapt to an actual lighting

and background condition which varies depending on

viewpoints. When the robot moves, it uses several, less

uncertain landmarks to estimate its motion. Experi-

mental results in real scenes show the validity of the

proposed method.

1 Introduction

It is a fundamental function for a mobile robot to

estimate its current state such as postion and orien-

tation. When a robot moves by dead reckoning, the

positional uncertainty is increased by motion error.

Thus, it is a general method to use landmarks for lo-

calization. To perform reliable navigation, arti�cial

patterns are often used as landmarks[1]. However, it

is a reluctant work for us to arrange arti�cial land-

marks. Visual features such as vertical edges of door

or obstacle are used as landmarks[2, 3]. However, such

features may not be stable, that is, may not be observ-

able under various conditions of lighting and back-

ground scene changed by viewpoints[4]. Therefore, it

is desirable to determine stable landmarks based on

observed data.
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Many researcher used learning and execution

strategies with human assistance in order to select

landmarks from observed data[5, 6]. The robot tries

to construct a landmark map in the learning phase,

and then it executes a given mission while estimating

its own state based on the landmark map. But, these

approaches need such a human assistance.

Horn and Schmidt[7] utilized vertical planar sur-

faces as landmarks. Sensed planar data by 3D laser

range �nder are matched to a given 3D map. How-

ever, the robot needed much computational e�orts be-

cause the robot tried to detect planar information at

each observation. In order to reduce the computa-

tional time, Talluri and Aggarwal[8], and Arsenio and

Ribeiro[9] utilized boundary edges of obstacles instead

of planar surfaces as landmarks. Visibility region map

was constructed based on a given 3D map, and then

the robot matches observed features to the map for lo-

calization. However, the boundary edges of obstacles

may be unstable to the observation.

Since features which lie on a relatively planar sur-

face are distinct over a wide range of viewpoints, Little

et al.[10] utilized corner points on planar surfaces as

stable landmarks using stereo data and corners. How-

ever, the study did not cosider uncertainty of vision,

so matching results between frames should not be ro-

bust.

In this paper, we propose an on-line method of

modeling and selecting visual landmarks under un-

certainty of vision and motion, given a 2D obstacle

map. Since a line is more stable feature than a point,

the method selects vertical line segments on a planar

surface as stable features. By matching a planar re-

gion including a subset of observed line segments to

the corresponding reference plane on the given map,

the positional uncertainty of the segments can be re-

duced. Then, the segment positions are modeled by a

probabilistic distribution on the reference plane, and

the segments are registered as landmarks. When the

robot moves, it uses several, less uncertain landmarks

to estimate its motion. Since the segment positions
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Figure 1: Processing 
ow of landmark selection.

are modeled by a probabilistic distribution, we set the

state of the robot and landmarks to the system state

to estimate repeatedly. When the robot observes a

landmark, it can simultaneously estimate current own

state and landmark state by Extended Kalman Filter.

Fig. 1 shows the processing 
ow for modeling and

selecting stable visual landmarks. To extract sta-

ble vertical line segments, we use both segment- and

area-based stereo matching methods. First, we match

vertical line segments using the segment-based stereo

mathing, and then false matched segments are �ltered

out by comparing with the disparity image obtained

from the area-based stereo matching. Next, planar re-

gions corresponding to given reference planes are ex-

tracted from the disparity image by using a positional

constraint between the robot and the given plane, and

then we group the �ltered segments belonging to a

planar region. Lastly, we search for a boundary posi-

tion of the plane in the planar region. Then, relative

positions of segments in the plane are estimated by

matching the searched planar boundary to the given

plane edge.

In the next section, we deal with a selection of sta-

ble features based on stereo observations, and then

propose a method of modeling landmarks. Experi-

mental results in real scenes show the validity of the

proposed method. Lastly, we conclude the proposed

methods in this paper.

2 Extracting stable vertical line fea-

tures

2.1 Segment-based stereo matching

Vertical line segments are extracted from edges ob-

tained by applying a horizontal di�erential operator to

the input image. To match segments in the stereo im-

ages, we de�ne similarity which consists of overlapping

ratio, and orientation and length similarity, and then

dynamic programming method is applied to determine

the best matching by comparing the similarity[13].

In this paper, we represent the landmark state as

2D position on X � Y workspace and the lowest and

highest position on Z axis.

L = [x y llow lhigh]
T (1)

2.2 Area-based stereo matching

To extract planar surfaces, we use the area-based

stereo matching method of which SAD is utilized as

a criterion of matching. Since smaller value of SAD

means more reliable matching, a false matching can be

�ltered out by setting a relevant threshold. The fol-

lowing equations express SAD between a pair of stereo

images.

SADRL =
X

(i;j)2W

jIR(i; j)� IL(i+ d; j)j

SADLR =
X

(i;j)2W

jIL(i; j)� IR(i� d; j)j (2)

where IL(i; j) and IR(i; j) denote intensities of pixel

(i; j) in the stereo pair of images, and d denotes dis-

parity. With two SAD results calculated from Eq. (2),

we obtain a reliable matched disparity image by com-

paring disparity values between pixels in one disparity

image and corresponding pixels in the other disparity

image.

2.3 Planar surface extraction

Given a reference plane, we can predict a position

where the plane is projected in the image, and the

possible range of disparity of the plane. Then, we

search for the pixels beloging to the predicted plane

region in the disparity image. By applying a least

sqaures method to the extracted disparity pixels, the

plane is extracted.



2.3.1 Uncertainty of vertical line position on

image

When a point on the 3D coordinates is projected into

image, the projected position includes uncertainty due

to a quantization error, which can be expressed by a

random variable, and we model the error as Gaussian

distribution with �img = 0:5[pixel].

Assuming that an observed vertical line segment is

straight in the image and that each pixel to be com-

posed of the line are independent, the horizontal po-

sitional uncertainty of the segment is inversely pro-

portional to the number of pixels[11]. In this paper,

we set the standard deviation of the position of line

segment to �img.

2.3.2 Uncertainty of projection position in

stereo images

When the robot with state X observes a vertical line

L on the world coordinates, the projected position

I = [xl xr] in stero images can be obtained by the

stereo geometry[3], and it is expressed by a non-linear

equation as follows:

I = J(X;L) (3)

The covariance matrix of I is obtained by linearization

as follows:

�I =
@J

@X
�X

@J

@X

T

+
@J

@L
�L

@J

@L

T

(4)

If the line L has no uncertainty such as a known edge

of reference plane, the positional uncertainty only de-

pends on the robot uncertainty �X as follows:

�I =
@J

@X
�X

@J

@X

T

(5)

In this paper, as we de�ne that 3� is boundary of

uncertainty, a valid region for searching is set to the

following equation:

u� 3� � valid search region � u+ 3� (6)

where u denotes the mean value.

Then, the predicted position in images can be calu-

clated by Eqs. (3)(4)(6).

2.3.3 Uncertainty of disparity

Disparity is expressed by subtraction of a pair of stereo

projected positions xl and xr.

d = xl � xr + � (7)

where � denotes a pixel error with E[�] = 0 and ��
2 =

2�img
2. Since xl and xr can be obtained by stereo

geometry when a 3D point O = [cx cy] in camera

coordinates is given, we can rewrite Eq. (7) in the

following equation[3]:

d = F
cx + B

cy
� F

cx �B

cy
+ � = F

2B

cy
+ � (8)

where F and 2B denote focal length and baseline, re-

spectively. If we introduce the robot state X in order

to transform camera coordinates to world coordinates,

Eq. (8) can be expressed as the following non-linear

equation:

d = D(X) + � (9)

As Eq. (9) is linearized by the Taylor series expan-

sion around the mean X̂, the disparity uncertainty is

obtained as follows:

�d
2 =

@D

@X
�X

@D

@X

T

+ ��
2 (10)

2.3.4 Searching and �tting for planar region

Using the valid search region of Eq. (6) with the mean

d of Eq. (9) and the standard deviation �d obtained

from Eq. (10), we can pick up valid disparity pixels

corresponding to a given reference plane in valid search

position on the disparity image.

Since the reference plane is represented as a line

on the 2D map, it is expressed by the following line

model.

y = a+ bx (11)

where a and b are line parameters.

By applying a least squares method, we �t the dis-

parity data to the plane model of Eq. (11). As a

result, we obtain the line parameter and its covariace

matrix.

2.4 Selecting line segments on planar re-
gion

Using the planar region obtained above, we choose a

subset of segments from observed ones by investigating

pixel being in the planar region corresponding to the

position of pixels to be composed of each line segment.

The selected segments belonging to the planar region

regarded as stable features.

3 Modeling feature positions

Line segments belong to a planar region are mod-

eled as landmarks. By matching the boundary pos-

tition of the planar region to the boundary edge of



corresponding reference plane, we calculate the rela-

tive position of a selected segment with respect to the

edge position. As the segment is constrained on the

plane, its positional uncertainty can be reduced.

3.1 Combining two observations using
Extended Kalman Filter
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Figure 2: Combining two observation.

Two observations can be combined by using

Kalman Filter (see Fig.2)[12]. The robot obtains two

results which are a point obtained from segment-based

stereo matching and a planar model estimated by �t-

ting a set of disparity data. Since the point belongs

to the reference plane, we can express the following

constraint equation using Eq. (11).

cy � (a+ bcx) =G(Lt;Rt) = 0 (12)

where L = [cx cy] and R = [a b] denote a position

and the line parameter corresponding to the reference

plane, respectively. Linearizing Eq. (12) using Tay-

lor series expansion, we express a new linear equation

form as follows:

Y t =HtLt + V t (13)

where

Y t = �G(~Lt; ~Rt) +
@G

@Lt

~Lt

Ht =
@G

@Lt

V t =
@G

@Rt

(Rt �
~Rt)
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Figure 3: Searching for the boundary edge.

Based on the observation Yt and its uncertainty �Vt,

the position Lt corresponding to the point on the given

plane can be estimated and updated using the Kalman

Filter. �Vt is expressed as follows:

�Vt =
@G

@Rt

�R

@G

@Rt

T

(14)

where, �R denotes covariance matrix of the �tted line

obtained from section 2.3.4.

The Kalman Filter consists of the following equa-

tions:

L̂t = ~Lt +Kt[Y t �H t
~Lt]

�L̂t
= [I �KtHt]� ~Lt

Kt = � ~Lt
H

T
t[Ht� ~Lt

H
T
t +�V t]

�1

where L̂t and �L̂t
denote the estimated position and

covariance matrix. ~Lt is the predicted position ob-

tained by the stereo geometry, and � ~Lt
denote the

predicted position and its covariance matrix. Kt is

called the Kalman gain.

3.2 Searching for the boundary position

Assuming that the boundary edge is a vertical line,

we �rst determine a search region in the extracted

planar region obtained from section 2.3.2. Next, we

set a horizontal position in the search region to a vir-

tual mean (see Fig. 3). Then, we investigate di�er-

ences between the mean position and boundary pixels

in the planar region, and calculate a variance at the

mean position in order to obtain variance. We apply

the process to all of vaild horizontal positions in the



search region, and then search for the mean position

with the minimum variance. If the mean position is

placed inner than the outter segment of the planar

region, the boundary position is constrained to the

outter segment position. The uncertainty of of the

boundary position is obtained simultaneously. This

process is applied to the stereo pair images. With the

results, we can obatined the boundary position and its

uncertainy using the stereo geometry.

By combining the obtained boundary position with

the �tted plane by the method of section 3.1, the con-

strained boundary positionPb and its uncertainty�Pb

is estimated.

3.3 Modeling feature position

positional
uncertainty

dp

estimated segment
position

fitted plane

estimated boundary
position of plane

M

dp

d

reference plane

(x1,y1)PM1

(x2, y2)PM2

modeled landmark
position P

matching to given
reference model

Pb

Pf

Figure 4: Modeling relative feature position with re-

spect to the boundary position of the reference plane.

Given a reference plane with two edges PM1
=

[x1 y1]
T and PM2

= [x2 y2]
T , a feature position

P = [x y]T on the plane with relative distance dp with

respect to the boundary position PM1
is obtained as

follows:

P =

�
x1
y1

�
+

"
dp
dM

(x2 � x1)
dp
dM

(y2 � y1)

#
(15)

where dM denotes length of the given reference plane

(see Fig. 4), and dp denotes a relative distance be-

tween the estimated boundary position Pb and a fea-

ture position Pf .

Eq. (15) can be rewritten into the following non-

linear equation form:

P =M(PM1
;PM2

;Pb;Pf) (16)

Since the reference plane is already known, the po-

sitional uncertainty is zero. Then, the positional un-

certainty of the feature, �P , is obtained as follows:

�P =
@M

@Pb
�Pb

@M

@Pb

T

+
@M

@Pf
�Pf

@M

@Pf

T

(17)

where �Pb and �Pf denote the estimated uncertain-

ties of the boundary and feature position by using

EKF.

From Eq. (17), we can see that �P is composed of

uncertainties of the boundary and the feature position.

As the rank of Eq. (17) is 1, the position and its

uncertainty are constrained on the reference plane.

4 Stable landmark selection

To select stable landmarks from the modeled fea-

tures, we utilize the segment position and the length

similarity as selection criterions.

Since features on plane boundary are unstable, we

�srt �lter out a near segment from the boundary po-

sition. We de�ne the unstable boundary region as 3�

area and search for the stable landmarks whose the

mean positions do not belong to the unstable region.

Next, assuming that the low similarity of length be-

tween the pair of segments is unstable because the fea-

ture can be easily changed by viewpoints, the length

similarity can be utilize as the selection criterion. The

length similarity `s is expressed as follows:

`s =
minflen(l); len(r)g

maxflen(l); len(r)g
(18)

where len(i) denotes length of i segment. We �lter

out a feature pair with less similarity than a thresh-

old. When the robot moves, it uses a subset of stable

landmarks with less uncertainty for localization.

5 State estimate using Extended

Kalman Filter

As the robot repeatedly observes the same land-

mark, positional uncertainty of the landmark can be

estimated by using Kalman �lter.

To estimate the robot and landmark state we set

the robot and landmark state to the system state S.

Since the robot state is changed by a control input

U t, the system equation is expressed by a non-linear

form[3].

St+1 = F (St;U t) (19)



Figure 5: Matched segments by using the segment-

based stereo matching.

The constraint equation for the observation is ex-

pressed as follows:

G(St;Lt) = 0 (20)

In the same manner as section 3.1, the robot can es-

timate its own state and the landmark state simulta-

neously using EKF.

6 Experimental results

Figure 6: Matching results by the SAD-based stereo

matching and �tted boundary edges: Gray regions are

matched positions, and black vertical segments are se-

lected matched segments. The long vertical lines are

�tted boundary positions, and the positional uncer-

tainties are shown by horizontal lines on the top and

the bottom of the position.

We conducted an experiment in our lab scene shown

in Fig. 5. The partition at the right side and the white

board at the left side are located at the distance of 4[m]

and 6[m] from the robot, respectively. The bound-
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Figure 7: Positional uncertainty of the selected fea-

tures.

ary position of the partition and the white board are

(0; 4000)[mm] and (�550; 6000)[mm], respectively.

First, the segment-based stereo matching is per-

formed. In Fig. 5, several false matching are shown

under white board.

Next, the SAD-based stereo matching with 15 �

15 window is applied to searching for good matched

segments and the reference plane. Fig. 6 shows a

result of the SAD matching.

At the current viewpoint, the robot can observe the

partition and the white board as the reference plane.

To select stable features, the robot extracts the planar

region corresponding to the reference planes. From the

extracted region, a set of segments in the correspond-

ing plane is selected. To utilize the selected line seg-

ments as landmarks, the positional uncertainty of the

segments is estimated from the constraint that each

segment is on the reference plane.

Fig. 7 shows the positional uncertainty of the se-

lected features. By combining the semgent position

and the �tted plane using EKF, the positional uncer-

tainty can be reduced.

Table 1 shows the estimated position and standard



Figure 8: Matched segments by only using segment-

based stereo matching: the robot observes �ve land-

marks in the partition plane.

Figure 9: Matched segments: the robot observes two

landmarks in the partition plane.

deviation of the on-line selected landmarks. Unstable

features such as feature 1 and 2 in the partition plane

and feature 1, 2 and 3 in the white board plane are

not selected a landmark. Since the partition is nearer,

the landmarks on the plane have less positional uncer-

tainty than the ones on the white board. We can also

see that the positional uncertainty �y is zero because

the landmarks are constrained on the reference plane.

With the modeled landmarks, the robot moves

while observing landmarks for localizaition. Figs. 8

and 9 are input images when the robot moves 1[m]

and 2[m] on the target trajectory which is planned us-

ing the given 2D obstacle map[3]. The robot contols

its viewing direction to the midpoint of the boundary

edges of the partition and the white board. In these

two observation, the robot could observe all of the se-

lected landmarks which are in the viewing area. This

resuls show that the method actually selects stable

landmarks.

Fig. 10 shows the motion results. As the result,
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Figure 10: Motion result using on-line selected land-

marks.

we can see that the uncertainty of the robot position

can be reduced by observing the on-line modeled land-

marks with positional uncertainty, so it is possible to

execute motion without any knowledge about land-

marks in advance. From the experemental resutls, we

can see the proposed method is valid.

7 Conclusions and discussion

In this paper, we have proposed a method of se-

lecting stable visual landmarks considering both their

detectability from various viewpoints and the uncer-

tainty of vision and motion. Since we select vertical

line segments on a vertical plane as landmarks, the

plane information in a given 2-D map is utilized to

reduce the positional uncertainty of the selected land-

marks. The experimental results in real scenes show

the validity of the proposed method.

A future work is to integrate the proposed method

with our previously developed viewpoint selection

method[3] so that the robot can move safely and e�-

ciently without being given landmarks in advance.



Table 1: Modeled features on the partition and the white board. [mm]

plane index x y l �x �y `s selected as landmark reason

partition 1 0.1 4000.0 1309.0 28.3 0.0 0.5 No near boundary

partition 2 109.4 4000.0 487.0 35.0 0.0 1.0 No near boundary

partition 3 177.8 4000.0 270.0 35.0 0.0 0.9 Yes

partition 4 411.0 4000.0 258.0 35.0 0.0 1.0 Yes

partition 5 483.0 4000.0 490.0 35.0 0.0 1.0 Yes

partition 6 605.1 4000.0 1542.0 35.0 0.0 1.0 Yes

partition 7 643.7 4000.0 1557.0 35.8 0.0 1.0 Yes

white board 1 -550.2 6000.0 584.0 54.2 0.0 0.8 No near boundary

white board 2 -622.6 6000.0 279.0 46.4 0.0 0.9 No near boundary

white board 3 -698.3 6000.0 841.0 47.0 0.0 1.0 No near boundary

white board 4 -1004.3 6000.0 245.0 50.4 0.0 0.9 Yes

white board 5 -1076.0 6000.0 261.0 51.0 0.0 0.9 Yes

white board 6 -1309.9 6000.0 361.0 53.1 0.0 1.0 Yes

white board 7 -1380.9 6000.0 376.0 53.9 0.0 1.0 Yes
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