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Abstract— Human-robot collaborative object search is a
problem where an appropriate sharing of search areas realizes
an efficient search. This paper describes a method of deter-
mining the robot’s search strategy based on observing human
search behavior. The behavior is estimated by matching the
estimated travel time for possible behaviors with the actual
elapsed time. We confirmed that the proposed method could
reduce the overlapped searched areas and the time to find the
target objects in the simulation experiments. Future directions
toward more dense interactions are also discussed.

I. INTRODUCTION

Mobile service robots have recently been gaining popular-
ity for supporting people in various scenarios such as delivery
and attending. In the context of lifestyle support, finding
and bringing a use-specified object is a common task for
mobile service robots. It has been used as a typical task in
many robotic competitions [1], [2]. Another aspect of service
robots is human-robot interaction. A human and a robot can
collaborate physically or virtually to achieve a task. This
paper deals with the problem where a human and a robot are
in the same environment and collaborate to find a specific
object.

One approach to collaboration is that the human takes
the lead by giving commands or suggestions to the robot.
There are systems with which humans can assist the robot’s
recognition or decision [3], [4], [5]. In this approach, a
human needs to know how the robot works to give appropri-
ate commands and suggestions. Another approach is robotic
support to human task execution [6], [7], where robots refer
to the model of the task or the human state and decide the
type and the timing of supportive actions. A robot and a
human share the task more equivalently in a collaborative
object search task.

Collaborative object search can also be considered a
distributed search problem. In the case of robot-robot col-
laboration, robots can easily share respective data through
the network (e.g., [8]). In the collaborative search context,
for example, one robot knows where the other robots have
searched and are going to search and can choose its search
area. However, in the case of human-robot collaboration,
humans cannot give their knowledge digitally to the robot,
and the robot must obtain it in other ways such as observation
and dialog, just as in the case of human-human collabo-
ration. This paper focuses on obtaining such information
by observation and proposes a new method for estimating

and predicting human behaviors. The use of dialog-based
interaction is also discussed.

We use the following problem settings. A robot and a
human jointly search for a specific object in a common
environment with several tables. The map of the environment
is given in advance. The target object is on one of the tables,
but its location is initially unknown. The robot can detect and
locate the human when he/she is visible.

II. OBSERVING AND ESTIMATING HUMAN BEHAVIOR

An efficient collaborative search can be realized by ap-
propriately sharing the robot and human search areas. To
this end, the robot observes human behavior and estimates
where the human has searched (estimation of searched area)
and will search (prediction of search area). The following
subsections explain how to carry them out.

A. Estimation of searched area

In the collaborative search, the robot and the human
examine different areas for an efficient search. Therefore,
the human is not always visible to the robot, and the robot
intermittently sees the human in various places. The valuable
information for the robot to determine its action is the
area where the human has searched during invisible periods.
Therefore, the robot estimates the area from a consecutive
pair of human locations and times.

As the object is assumed to be on a table, we set a
representative location for each table, and suppose the human
goes there for observing the tables. This makes it possible to
calculate the time for a sequence of human-visited tables and
the previous and the current human location and we choose
the best sequence whose total time is the closest to the actual
elapsed time (i.e., the time difference between the previous
and the current observation).

The time for traversing between two locations is calculated
using the Fast Marching Method (FMM) [9] on a grid map.
By applying FMM to a grid map with a single starting point
(source point), we have a distance map, the pixel value of
which indicates the distance from the starting point. As we
have a given map of the environment, we precalculate the
distance maps from all table locations.

We do a breadth-first search with the previous location as
the root. The time of a route from the root to an open node is
the summation of the time of movements between nodes, that
of movements from the open node to the current location,
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Fig. 1: Example of searched area estimation.

and that for observation at each node (set to 10[s]). We set
the allowable time range by the elapsed time with a margin
(set to 3[s]) and use the range for pruning branches. The
one with the smallest time difference is selected among the
sequences within the range. Finally, the estimated trajectory
and the searched area are calculated.

Fig. 1 shows an example of trajectory and searched area
estimation. Fig. 1(a) shows a scene where the human is
considered to visit three tables. Fig. 1(c) illustrates that using
three FMM distance maps from the three tables, we can
calculate the trajectory and the time of the whole sequence.
We then have a map of searched areas shown in Fig. 1(b).

B. Prediction of search area

Predicting where the human will search is crucial for
avoiding conflict in search areas between the human and
the robot. We thus predict the most probable motion of the
human until a fixed future time point for calculating the
human’s future search area.

In prediction, different from the case of estimating the
human’s past behavior explained above, we only have one
constraint on the human location, which is the location
obtained by the latest observation. Considering all possible
destinations may cause a combinatorial explosion, we take
a best-first search strategy in this paper. We put a set of
waypoint candidates and follow them from the latest ob-
served location by repeatedly choosing the nearest unvisited

(a) Predicted trajectory (in blue). (b) Predicted search area (in red).
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Fig. 2: Example of future search area prediction.

neighboring waypoint. Fig. 2 shows an example case. In Fig.
2(a), the green, the red, and the blue points indicate the hu-
man’s latest observed location, the waypoint candidates, and
the chosen waypoints, respectively. Based on the predicted
trajectory, the areas to be observed are calculated (red areas
in Fig. 2(b)).

III. ROBOT MOTION PLANNING

The robot takes a next best view (NBV) approach to
determine the robot motion. As the location of the target
object is initially unknown, we place a set of viewpoint
candidates around the tables, as in the case of human motion
prediction (see Fig. 2(a)), and choose the best one which
maximizes the following score function:

_ S
Tmot + Tobs ’

where S. is the size of the currently-unknown area to be
observed by a viewpoint, T,,, is the time cost to reach the
viewpoint from the current location, and 7, is the time cost
for observation there. This score evaluates the reduction of
unknown areas per time.

This viewpoint selection method was developed for a
single robot object search [10]. We apply this method to
the current collaborative search problem by excluding the
estimated and the predicted human search areas from the
unknown area of the robot’s map. As a result, the robot tends
to choose the motion toward the areas far from the human.

Fig. 3 shows the robot’s observation and motion planning
algorithm. We use move_base [11] for path planning and
YOLOV3 [12] for object and human detection.

score =

IV. EXPERIMENTS
A. Simulation environment

We implemented the experimental environment using SIG-
Verse [13] environment. In SIGVerse, we can enter a virtual
environment as an avatar and interact with robots and other
avatars. We use a model of Toyota’s HSR (Human Support
Robot) [14] as the simulated robot and control it from the
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Fig. 3: Diagram for robot motion planning.

Fig. 4: SIGVerse simulation environment. (left) Eviron-
ment setup. (top-right) avatar view. (bottomo-right) human-
shooting camera.

ROS environment. Fig. 4 shows the simulated environment.
In the experiment, the human subject searches the environ-
ment for the specified object freely. As we did not give
additional instructions and suggestions, the subject naturally
considers the robot’s motion in deciding on his/her future
motion.

B. Experimental procedure

We compare the following three methods:

(1) The method which does not consider human motions
(baseline).

(2) The method which estimates the human past behavior
but does not predict human future behavior.

(3) The method which carries out both the human behavior
estimation and prediction (proposed).

We tested the methods for six locations of the target object.
We calculate the time to find the object and the searched
areas by the human avatar and the robot. Since it is difficult
to know the area precisely a human subject searched, we
assume that the human avatar searched the areas within a
certain distance from its trajectory.

C. Results

Table I summarizes the experimental results. The proposed
method outperforms the others in both the search time and
the size of the overlapped search area. Fig. 5 compares the
robot and the human trajectories taken by each method for

TABLE I: Experimental results.

search time [s] overlapped

search area [%/min.]

(1) No estimation nor prediction 181 6.18
(2) Only estimation 139 3.34
(3) Estimation and prediction 123 1.46

(1) No estimation / prediction. (2) Only estimation.

(3) Estimation and prediction (proposed).
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Fig. 5: Comparison of the human and the robot behaviors.

one situation. In the figures, blue, red, and yellow areas
indicate the human-searched area, the robot researched area,
and the area searched by both the robot and the human,
respectively. The green and the red lines indicate the robot
and the human trajectories, respectively. From the figures,
we can see that by the proposed method, the robot and the
human shared the search areas most efficiently by taking
trajectories far from each other.



V. DISCUSSION

The experimental results show that the robot and the
human can efficiently share the search area by observing each
other but without explicit communication. This collaboration
was possible because they can frequently see each other in
the environment used. However, when the space is more
complex (many rooms, for example), or when the map is
initially unknown, the uncertainty of estimation and pre-
diction increases because the interval between observations
tends to be long and therefore, the decision based on such
uncertain information may lead to inefficient robot motion.
This problem also applies to the human; it is hard to decide
their action without knowing the robot behavior.

Since the robot and the human cannot directly share
their information, a promising approach is to use dialog to
exchange information among them. It may be sufficient to
prepare a set of simple questions for asking the respective
search areas. However, in object search in a vast space,
as they are sometimes too far from each other to talk, it
would also be necessary to choose the right dialog timing.
This further raises an interesting “To ask or not to Ask”
[15] problem, where uncertainty-driven dialog control [16]
becomes one of the necessary functions.

VI. SUMMARY

This paper deals with collaborative object search as a
typical problem for human-robot interaction research. We
have implemented a method to estimate and predict human
past and future behavior. With the method, the robot can
decide on its action such that the robot and the human
efficiently share the search area, thereby reducing the time to
find the target object. We also discussed introducing dialog
for further improving the collaboration.
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