
Proc. IEEE Conf. on Intelligent Transportation Systems
pp. 706-711, Boston, MA, Nov. 1997.

A THREE-LEVEL CONTROL ARCHITECTURE FOR AUTONOMOUS

VEHICLE DRIVING IN A DYNAMIC AND UNCERTAIN TRAFFIC

ENVIRONMENT

Jun Miura, Motokuni Ito, and Yoshiaki Shirai

Department of Computer-Controlled Mechanical Systems, Osaka University

Suita, Osaka 565, Japan

Keywords Road vehicle control, Arti�cial intelligence, Planning

ABSTRACT

This paper proposes a novel control architecture

for autonomous vehicle driving in a dynamic

and uncertain tra�c environment. The archi-

tecture is composed of three levels: (1) the op-

erational level deals with a reactive control of

a vehicle in a short time cycle; (2) the tactical

level decides proper maneuvers based on pre-

diction of future states using probabilistic traf-

�c models; (3) the meta-tactical level, which is

the feature of the architecture, timely activates

an appropriate tactical-level planning procedure

according to both the history of maneuvers and
the current tra�c condition. A utility-based

maneuver evaluation method is also described.

The proposed architecture was tested on a high-

way driving simulator in various tra�c scenar-

ios; simulation results show the feasibility of the

architecture.

INTRODUCTION

In recent years, there have been growing inter-

ests in ITS (intelligent transportation systems).

Autonomous driving is one of the research ar-

eas of ITS. Tasks in driving can be divided into

two levels: at the higher level, maneuvers such

as lane changing and overtaking are determined

to meet the objective of driving (e.g., a target

arrival time) under the constraints imposed by

an actual tra�c condition; at the lower level, a

selected maneuver is translated into actual con-

trol operations. These levels are called as the

tactical level and the operational level, respec-

tively [4, 7]. Although past research has been

mainly focused on the operational level (e.g.,

[2, 6]), the tactical level should be investigated

more actively for realizing intelligent vehicles

that can maneuver safely and e�ciently in a dy-

namic and uncertain tra�c environment[7].

This paper is concerned with the tactical level

planning of an autonomous vehicle. In real

tra�c, sensory information on which an au-

tonomous vehicle makes decisions is uncertain

(e.g., measurement error or occlusion). In addi-

tion, the situation is dynamic, i.e., the situation

evolves as time elapses. Thus, the tactical level

planning should be based on the prediction of

the future tra�c condition with consideration
of uncertainty.

Niehaus and Stengel [5] modeled the move-

ment of a nearby vehicle using a probabilistic
distribution, which is continuously updated us-

ing the Kalman �ltering, and generated a safe

plan considering the probable worst-case scenar-

ios. Only a local and short-time prediction is

performed in planning. Forbes et al. [3] pro-

posed to model all levels of planning for an au-

tomated vehicle using a �xed probabilistic net-

work. Although they proposed an e�cient com-

putation method for the network, extending the

approach to more complicated scenarios may

still be di�cult because of increasing compu-

tational cost. Sukthankar et al. [7] proposed

a distributed reasoning scheme for the tactical

level planning. Independently operating plan-

ning modules with di�erent algorithms vote for

the desirable action, and the high-scored ac-

tion is selected and executed. The parameters

and the relative weight of each planning mod-

ule are tuned through an evolutionary learning

method. The proposed scheme seems �tted to

the tactical level planning that requires a rela-

tively short-term prediction.

To make a plan with a long look-ahead tends

to be computationally expensive if all alterna-

tives are considered in every situation. More-

over, it may be ine�cient to always carry out

such a planning. Therefore, we propose to in-

troduce a meta-level planning (called the meta-

tactical level) to control the tactical level, i.e., to



adaptively limit the search space of the tactical

level and to activate the tactical level only when

it is necessary, according to both the history

of maneuvers and the current tra�c condition.

The resultant control architecture is composed

of three levels: meta-tactical level, tactical level,

and operational level.

We apply this architecture to automated

highway driving of a vision-based vehicle. We

tested the architecture on a highway driving

simulator. In the simulator, the autonomous ve-

hicle is assumed to have a vision system to mea-

sure the position and the velocity of other ve-

hicles which are not completely occluded. The

uncertainty in these measurements is calculated

using a probabilistic model of vision uncer-

tainty.

THREE-LEVEL CONTROL ARCHITEC-
TURE

Figure 1 schematically depicts the proposed

three-level control architecture. The meta-

tactical level continuously watches predeter-

mined events on tra�c and, on occurrence of
an event, activates an appropriate tactical-level

maneuver selection procedure. Then the tacti-

cal level determines the best maneuver to per-

form and send it to the operational level.

The operational level translates the maneu-

ver into the vehicle control primitives for execu-

tion. Example primitives are: keeping constant

distance to the front vehicle and lane changing.

In addition, the operational level occasionally

handles emergency situations such as an abrupt

deceleration of the front vehicle. This level is

realized as a reactive system.

We suppose that two independent processes

are running in parallel; one deals with the meta-

tactical and tactical level; the other deals with

the operational level. These two processes cor-

respond to the control 
ows drawn by dotted

arrows in Figure 1.

TACTICAL LEVEL

The tactical level selects the best maneuver

among alternatives given by the meta-tactical

level. Since the tra�c condition includes vari-

ous uncertainty factors, this level of planning is

based on a statistical decision theory [1].
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Figure 1: The three-level control architecture.
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Figure 2: Examples of L(t):
(a) loose requirement on the arrival time;

(b) tight requirement on the arrival time;

(c) both late and early arrivals are not desirable.

Utility-Based Evaluation of Maneuvers

The purpose of automated driving on a highway

is to reach the planned exit safely and e�ciently.

There may be various requirements on safety

and e�ciency; for example:

� reach the exit as early as possible;
� reach the exit before the target arrival time;
� safety is the only concern.

In order to evaluate each maneuver based on

such various requirements, we de�ne (1) a loss

function of the arrival time and (2) an extra cost

required for each maneuver.

Let t be the estimated arrival time. The loss

function L(t) is de�ned according to the require-

ments on t with the target arrival time ttarget.

Figure 2 shows some examples of L(t).
Using the loss function L(t), the best maneu-

ver is selected as follows. Let us consider the
case that the planner compares two maneuvers
A and B; A is a maneuver with lane changing;
B is one without lane changing. Suppose the
arrival times are estimated as tA and tB for ma-
neuvers A and B, respectively. Also let C be
the extra cost required for lane changing, which
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Figure 3: Maneuver selection.

represents the cost of possible risk. The condi-
tion that maneuver A is selected is given by

L(tB) > L(tA) + C: (1)

With the loss function shown in Figure 3,

since inequality (1) holds, maneuver B is se-

lected. However, if the estimated arrival time

becomes later (i.e., time pressure is higher) due

to an unexpected tra�c congestion (for exam-

ple, tA0 and tB0 in Figure 3), maneuver A may

be selected. Such an e�ect of time pressure on

maneuver selection seems to coincide with our

intuition on lane changing.

It can be viewed that cost C represents a kind

of the vehicle's character; a low C means that

the vehicle tends to change lane whenever pos-

sible; a high C means that the vehicle puts high

priority on safety.

Example of Tactical Level Planning
We here present one example of actual planning

procedure, which is for decision on overtaking

with consideration of approaching exit.

Consider the scenario shown in Figure 4 1.

The autonomous vehicle (called MyVehicle,

drawn as a bold rectangle in the �gure) on the

right lane is approaching the exit to take. Since

the speed in the current lane is becoming a little

bit slow, MyVehicle starts thinking if it should

overtake vehicles ahead. If MyVehicle moves to

the left lane and successfully comes back to the

original lane after overtaking, it will reach the
exit earlier than keeping the current lane until

reaching the exit. In overtaking, however, there

may be risks of lane changing itself and of miss-

ing the exit. We model this situation and derive

1This scenario was originally presented by Suk-

thankar et al. [7].
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Figure 4: Overtaking with consideration of ap-

proaching exit.

an equation to calculate the expectation of the

arrival time for the lane changing maneuver.

Suppose that the average vehicle speeds on

the right and the left lanes are v1 and v2, re-

spectively. Regarding the position and the ve-

locity of other vehicles, MyVehicle uses vision

information if it is available; if not, MyVehicle

supposes that invisible (occluded) vehicles are

almost equally placed within an occluded area.

Here we consider the case that only the front ve-

hicle is visible. For occluded vehicles, we model

their placements such that the distance between

vehicles is given by a normal distribution.
The mean � and the variance �2 of the normal

distribution are estimated from the relationship
between their values and the average speed; this
relationship has been empirically obtained [8].
Given � and �2, the current position xk(0) of
the kth car ahead at time t = 0 is speci�ed by
the following mean uk and variance �2

k
:

�k = d1 + (k � 1)�; (2)

�2k = (k � 1)�2: (3)

Let us consider the condition that MyVehicle

can enter the space between the kth and the
k+1th vehicles. The probability Pik that this
condition holds is given by

Pik = P (2s � d); (4)

where s is the safety margin for entering as

shown in Figure 5(a).
Let us consider another condition that MyVe-

hicle does not miss the exit after overtaking k
vehicles. This condition is restated as the con-
dition that the position of MyVehicle when it
overtakes the kth vehicle is su�ciently before
the exit (see Figure 5(b)). The probability Pek
that this condition holds is calculated as

Pek = P (xk(tk) + s � xe � tcv1); (5)
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Figure 5: Conditions for overtaking.

where tc is the necessary time for lane chang-
ing; xe is the position of the exit; tk is the time
for overtaking k vehicles. Since tk satis�es the
following equation:

xk(tk) = xk(0) + v1tk = v2tk � s; (6)

tk is given by

tk =
xk(0) + s

v2 � v1
: (7)

From equations (5)(6)(7), we obtain

Pek = P

�
xk(0) + s �

(xe�tcv1)(v2�v1)

v2

�
: (8)

Assuming that above two conditions are mu-
tually independent, the probability Pk of over-
taking k vehicles and then successfully taking
the exit is Pk = PikPek . In addition, the elapsed
time tek until MyVehicle reaches the exit after
overtaking k vehicles is given by

tek = (xe � �k � s)=v1: (9)

Using the above equations, the expectation of
the arrival time te is given by

te = Tn;

Tk = Pktek + (1 � Pk)Tek�1 ; (k = 1; � � � ; n)(10)

T0 = tf ;

where n is the index of the farthest vehicle that

MyVehicle possibly overtakes (i.e., Pin > 0 and

Pin+1 = 0); tf is the expectation of the arrival

time in case that MyVehicle cannot overtake

any vehicles ahead, and can be calculated simi-

larly to the case of te.
The expectation of the arrival time t0e when

MyVehicle keeps the current lane is given by

t0e = xe=v1: (11)

From te and t0e, whether MyVehicle should

change the lane for overtaking is decided by us-

ing equation (1).
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Figure 6: Comparison of expected arrival times for

maneuvers with and without lane changing.

For the case that v1 = 80(km=h) and v2 =

100(km=h), we calculated and compared te and

t0e for several combination of �'s (the mean of

distance between vehicles) and xe's (the dis-

tance to the exit). The result is summarized

in Figure 6. From the �gure, we see that the

larger � is, or the larger xe is, the more MyVe-

hicle tends to change lanes.

META-TACTICAL LEVEL

The meta-tactical level planner continuously

watches important events on tra�c. Examples

of possible events are: the average speed of the

current lane slows down; the exit is approach-

ing. The planner also runs with a periodical

updating of the estimated arrival time.

Since it is ine�cient to always check all

events, the planner determines which events are

important (or meaningful) according to the cur-

rent situation. To realize such an adaptive fo-

cus of attention, we construct a state transition

graph shown in Figure 7. For each state, pos-

sible events and their corresponding procedures

at the tactical level can be retrieved from the

graph. For example, at state [Exit: Medium,

Lane: Right] (which means that the distance

to the exit is medium and the vehicle is on

the right lane), possible events are: (1) the

speed becomes slower (Speed: Slower); (2)

the estimate of the arrival time is updated

(Estimate arrival time); and (3) the exit be-

comes near (Exit: Near). For the �rst two

events, the tactical level planning overtaking

with approaching exit is executed. For the

last event, only the state is updated. The cur-
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Figure 7: State transition graph for meta-tactical level planning. The meaning of each �gure such as an

ellipse is explained on the right.

rent transition graph is based on the following

assumptions: there are only two lanes and no

branches; the left lane is always faster than the

right. It is, however, not di�cult to extend the

graph to remove such assumptions.

Currently the meta-tactical level only deals

with selecting an appropriate tactical-level plan-

ning procedure. The meta-tactical level, how-

ever, can also be used for controlling the range

of time and space of tra�c condition to be

considered in the tactical level. For example,

in overtaking vehicles ahead, if MyVehicle has

enough margin to the target arrival time, it may

observe a broad area around it with prediction

of a relatively far future state in order to select a

su�ciently wide space to enter; if MyVehicle is
in a hurry, it may search only a nearby area for

the nearest space to enter. Such a usage of the

meta-tactical level is now under investigation.

SIMULATION RESULTS

We tested the proposed control architecture on
a highway driving simulator.
We �rst compare MyVehicle with other types

of automated vehicles (called Aggressive and
Defensive); Aggressive always changes lanes if
the front car is slower than it and an adjacent
lane is faster than the current lane; Defensive
keeps the rightmost lane even if the front car
slows down. For MyVehicle, we used the follow-
ing loss function:

L(t) =

�
0 t � ttarget

(t� ttarget)
2 t > ttarget

(12)

where ttarget is the target arrival time. Other

vehicles for composing an experimental tra�c

scene, which are not necessarily considered to

be automated, are randomly generated under

the following conditions: (1) the target speed

is within 70 � 100 (km/h); (2) the distance to

the front vehicle is within 40 � 65 (m); (3) the

behavior is like Aggressive .

Figure 8 shows the con�guration of the high-

way used for comparison. In this comparison,

MyVehicle performs two types of tactical-level

planning, overtaking with consideration of ap-

proaching exit, which was explained before, and

lane change for exiting. The target arrival time

was set to ttarget = 135 (s) and the cost for lane

change was set to C = 225:0.

We performed 20 runs for each type of auto-
mated vehicle, and recorded the number of lane

changes and the elapsed time from the entrance

to the exit. The averaged values are summa-

rized in Table 1. With appropriate decision-

making on the lane change, MyVehicle behaved

best in terms of given L(t) and C.

Next, we show in Figure 9 a simulation re-

sult when MyVehicle traveled a little long dis-

tance. The con�guration of the highway, tra�c

conditions during driving, perceived events for

the meta-tactical level, tactical level procedures

actually performed and selected maneuvers, ex-
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Figure 8: A highway con�guration.
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Table 1: Comparison results.

elapsed number of loss

time (s) lane changes

MyVehicle 130.5 1.6 240.0

Aggressive 121.9 2.6 293.8

Defensive 158.0 0 522.1

ecuted vehicle control primitives, and the trace

of MyVehicle are indicated in the �gure. MyVe-

hicle succeeded in adaptively changing the lane
and the speed in a dynamic and uncertain tra�c

environment.

CONCLUSION

This paper has proposed a novel control archi-

tecture for autonomous vehicle driving. The ar-

chitecture is composed of three levels of plan-

ning: the operational level for executing prim-

itives for vehicle position/velocity control, the

tactical level for selecting appropriate maneu-

vers, and the meta-tactical level for timely ac-
tivating an appropriate tactical-level planning

procedure according to the current state. The

proposed architecture has a potential applica-

bility to an assistance system for human drivers.

A future work is to extend the repertoire of

planning procedures in order to cope with more

complex situations including urban tra�c. An-

other future work is to verify the proposed archi-

tecture using real images taken from an actual

vehicle on a highway.
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