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Abstract

This paper proposes a novel concept of intelligent nav-
igator that can give the driver timely advice on safe and

e�cient driving. From both the current tra�c condi-

tion obtained from sensory data and the driver's goal and

preference in driving, it autonomously generates advice

and gives it to the driver. Not only operational level
advice, such as emergency braking due to an abrupt de-

celeration of the front vehicle, but also tactical level ad-
vice, such as lane changing due to the congested situation

ahead, can be generated. Two main components of the

intelligent navigator, the advice generation system and

the road scene recognition system, are explained. On-line

experiments using the prototype system show the poten-

tial feasibility of the proposed concept.

1 Introduction

In recent years, there have been growing interests in

ITS (intelligent transportation systems). One ultimate
goal of ITS research is to realize a fully autonomous ve-
hicle [8, 9]. It is, however, still di�cult to achieve this
goal because a very high reliability and safety will be re-
quired for deployment. Thus, as a practical step towards
the goal, we propose the intelligent navigator, that can,
in place of a human navigator sitting on the next seat,
give the driver appropriate advice on safe and e�cient
driving.

Tasks in driving can be divided into two levels: at the
higher level, maneuvers such as lane changing and over-
taking are determined to meet the objective of driving
(e.g., a target arrival time) under the constraints im-
posed by the actual tra�c condition; at the lower level,
the selected maneuver is translated into actual opera-
tions of steering, accelerating, and braking. These levels
are called as the tactical level and the operational level,
respectively [3, 7].

Operational level driving can be assisted relatively
easily using various sensing capabilities such as vision

for lane detection (e.g., [1]) and for detecting other ve-
hicles (e.g., [6]); if some dangerous situation arises, the
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driver can be warned. Such an assistance capability us-
ing on direct sensory data is one of necessary functions
of the intelligent navigator.

Sukthankar et al. [7] pointed out the importance of
tactical level driving in realizing safe and e�cient au-
tonomous driving. This is also true for driver assistance
systems. Since the quality of maneuver selection may
have considerable e�ects on safety and e�ciency, it is
important to generate advice on appropriate maneuvers
in a timely fashion.

In real tra�c, sensory data based on which the intel-
ligent navigator generates advice is uncertain (e.g., mea-
surement error or occlusion). In addition, the situation is
dynamic, i.e., the situation evolves as time elapses. Thus,
the tactical level advice generation should be based on
the prediction of the future tra�c condition with consid-
eration of uncertainty [2, 5, 7].

Recently, we proposed an architecture for autonomous
driving with three control levels [4]. This architecture
enables an on-line maneuver selection with a long-term
prediction under uncertainty. Based on the architecture,
we are now developing an intelligent navigator prototype
for the highway driving domain. This paper describes the

architecture of the intelligent navigator and the results
of on-line experiments.

2 Overview of the System

Fig. 1 schematically depicts the architecture of the
intelligent navigator system. The driver gives the sys-
tem the goal of driving (e.g., the target arrival time)
and his/her preference to speci�c driving styles (e.g., the
driver may want to avoid lane changing as much as pos-
sible). The road scene recognition subsystem recognizes
the current tra�c situation using vision. The advice gen-
eration subsystem generates appropriate advice and give
it to the driver. The driver may control the vehicle ac-
cording to the given advice.

Fig. 2 illustrates the internal architecture of the ad-
vice generation subsystem, which has three levels of rea-
soning to cope with a dynamic and uncertain tra�c en-
vironment.

The meta-tactical level continuously watches prede-
termined events on tra�c and, on occurrence of an event,
activates an appropriate tactical-level maneuver selec-
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Figure 2. Architecture of advice generation subsystem.

tion procedure. Then the tactical level determines the
best maneuver to suggest and give it to the driver.

The operational level mainly checks immediate dan-
gers, such as an abrupt deceleration of the front vehicle,
by watching near surrounding areas of the vehicle. This
level also lets the driver know an appropriate timing for
executing the determined action; for example, if the sys-
tem has advised the driver to move to the next lane, this
level watches the situation of that lane and tells a good
timing for lane changing.

3 Generating Tactical Level Advice

3.1 Information from the Driver

The intelligent navigator receives the driver's goal and
preference in driving to be used for advice generation.
Such information is given in the forms of loss function

and cost assignment, because a statistical decision theory
is used for advice generation.

Loss function L(t) is used to represent various require-
ments on the time of arrival at the destination exit. L(t)
is de�ned using the target arrival time ttarget and the es-
timated arrival time t. Fig. 3 shows some examples of
L(t). The loss function could be changed during driving
according to the change of the goal.

Cost C is used to represent the driver's degree of pref-
erence to each maneuver. For example, Cchange is the

L(t)

tttarget
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ttarget
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L(t)
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Figure 3. Examples of L(t):
(a) loose requirement on the arrival time;
(b) tight requirement on the arrival time;
(c) both late and early arrivals are undesirable.

(a) Vehicles are almost equally placed in the lane.

(b) Only a few (slow) vehicles are in the lane.

Figure 4. Estimated tra�c situations and overtaking
scenario.

cost related to the lane changing maneuver; if the driver
puts the largest importance on safety and very much
wants to avoid possible risks related to lane changing, a
high Cchange is given to the system.

3.2 Tactical Level Reasoning

We here present one example of actual tactical level
reasoning, which is for decision on overtaking with con-
sideration of an approaching exit. The road scene recog-
nition subsystem uses vision to estimate the position and
the velocity of other visible vehicles, as explained in Sec-
tion 4. For invisible (occluded) ones, it adopts a proba-
bilistic tra�c model of the placement of vehicles. Refer
to [4] for the details of the probabilistic tra�c modeling.

Consider the scenario shown in Fig. 41. The vehicle
with the intelligent navigator (called MyVehicle, drawn
as a painted rectangle in the �gure) on the left lane2

is approaching the exit to take. Since the speed in the
current lane is becoming a little bit slow, the driver starts
thinking of overtaking vehicles ahead. The overtaking
maneuver is generally faster, but there may be risks of
lane changing itself and of missing the exit. Such a trade-
o� is considered as follows.

The vehicle information in the current lane is usually
obtained for the vehicles just before and behind MyVe-

hicle, and other vehicles are not visible due to occlusion.

There are two possible situations of the invisible area:

� Congested: vehicles are almost equally placed in the
lane (Fig. 4(a))

1This was originally presented by Sukthankar et al. [7].
2Note that the slower lane is the left one in Japan.
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Figure 5. Maneuver evaluation and given advice.

� Not Congested: just a few (slow) vehicles are block-
ing our lane (Fig. 4(b)).

Since the system is not be able to judge which situation
is true, the maneuvers with and without overtaking in
each tra�c situation are evaluated and compared with
each other.

Basically, if one maneuver is better than the others in

any situations, the system simply provides the advice to
take the maneuver. Otherwise, the system cannot decide
which maneuver should be selected. In this case, the
driver may be able to observe the invisible area; thus the
system provides conditional advice that complementarily
uses the driver's recognition ability.

Let TA be the estimated arrival time of the maneuver
with overtaking in the congested situation, TB be that
of the same maneuver in the other situation, and TS be
that of the maneuver without overtaking (the result of
this maneuver is supposed to be equal in both situation).

In addition, the cost C = Cchange is considered for
the overtaking maneuvers. The result of comparison and
given advice is as follows:

� If L(tA) + C > L(tB) + C > L(tS), the maneuver
without overtaking is always better than the other;
the given advice is "Go Straight" (see Fig. 5(a)).

� If L(tS) > L(tA) + C > L(tB) + C, the maneu-
ver with overtaking is always better; the advice is
"Overtake" (Fig. 5(b)).

� Otherwise (L(tA)+C > L(tS) > L(tB)+C), the ma-
neuver with overtaking just in Not Congested situ-
ation is advisable; the conditional advice \Overtake
If Not Congested" is generated (Fig. 5(c)).

3.3 Tra�c Situation Estimation Using Ve-
locity Map

In some cases it is possible to estimate the situation
of the invisible area by the velocity di�erence of the two
lanes. For example, normally the velocity di�erence can
be supposed to be small at the position far from any
entrance or exit. If the velocity of our lane is slower than
the other, it is estimated that just a few slow vehicles are
blocking our lane and thus the tra�c situation is Not

Congested.

 : Congested
 : Not Congested

Figure 6. The result of simulation experiment for the
velocity map.
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Figure 7. An example of the velocity map.

We veri�ed that such an estimation is valid using a
highway driving simulator. Fig. 6 shows the result of the
experiment, where v1 and v2 axes respectively represent
the mean velocities of the slower and the faster lane. In
the velocity space each situation has own distribution.
The result indicates the Congested situation occurs when
the velocity di�erence is smaller (the area in the dotted
line), and the Not Congested situation appears when the
velocity di�erence is larger (the area in the solid line).

Then we constructed the velocity map (see Fig. 7)
that supports the e�cient evaluation at the tactical level.
This map is referred to for selecting possible situations.
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Figure 9. Lane and vehicle detection.
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3.4 Meta-Tactical Level Reasoning

The meta-tactical level (see Fig. 2) continuously
watches important events on tra�c. Examples of pos-
sible events are: the average speed of the current lane
slows down; the exit is approaching. It also periodically
updates the estimation of the arrival time.

Since it is ine�cient to always check all events, only
selected events are monitored which are considered to
be important in the current state. To realize such an
adaptive focus of attention, we construct a state transi-
tion graph. Fig. 8 shows a part of the transition graph.
For example, at state [Exit: Medium, Lane: Left]

(which means that the distance to the exit is medium
and the vehicle is on the left lane), possible events are:
(1) the speed becomes slower (Speed: Slower); (2) the
exit becomes near (Exit: Near).

4 Road Scene Recognition

This section describes the road scene recognition sub-
system (see Fig. 1). The recognition process is composed
of the following steps:

1. Detect lane boundaries and estimate the position of
MyVehicle.

2. Detect other vehicles and estimates their relative po-
sition and velocity.

3. Make correspondence between frames and integrate
data using Kalman �lter.

4. Track vehicles based on template matching.

4.1 Lane Boundary Detection and Vehicle
Position Estimation

First, the system extracts white regions correspond-
ing to the two white boundaries of the current lane by
thresholding the image and labeling. Then, a line is �t-
ted to each set of white regions. The region between the
two lines is considered as the current lane. Using the
width of the lane, the image regions of other lanes can
be extracted. Fig. 9(c) shows an example result.

4.2 Vehicle Detection

Once the lane regions are extracted, the system
searches them for vehicles. Since there is a shadow area
under a vehicle, we extract a dark region whose bright-
ness is less than a threshold, which is determined by the

mean and variance of the histogram derived from bright-
ness on the lane region (see Fig. 10). Fig. 9(d) shows
the extracted shadows for the image shown in Fig. 9(a),
which are the candidates of the vehicle positions.

Fig. 11 is the projection of shadows and the detected
vehicles (dotted rectangle) on the road surface. Since
the size of each vehicle is assumed to be some constant
value, the shadows of di�erent sizes are determined not
to be vehicles.

For each vehicles, we calculate the longitudinal posi-
tion zi and its uncertainty �2zi (see Fig. 12) by:

zi =
fh

yi
;

�2zi =

�
fh

y2i

�2

�2y =
z4i

(fh)2
�2y; (1)

where yi is the averaged vertical position of a dark region
and �2y is its variance.

4.3 Making Correspondence over Frames

We make correspondence of extracted vehicles over
frames for reliable recognition. A newly obtained vehi-
cles is matched with a previously detected vehicle if:
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Figure 12. Calculation of vehicle position and uncer-
tainty.

1. Both are on the same lane, and

2. The di�erence of positions is within a certain range
computed from the previous uncertainty estimate.

The data of a matched vehicles is integrated with the
previous data using Kalman �lter.

4.4 Tracking using Template Matching

When a vehicle is detected, the corresponding image

region of a certain size is registered as a template. Then
the vehicle is tracked by template matching based on the
normalized correlation, and the result of the tracking
is used for the check of lane changing motion of other
vehicles. The rectangles in Fig. 9(e) show the results of

template matching.

5 Experimental Results

Fig. 13 shows the overview of the system. Two cam-
eras are used to see the forward and the backward di-
rections. Another camera will be used for observing

Image merger

road scene
recognition

advice
generation

PC
Advice

Figure 13. Design of experimental system.

Table 1. Measured values and estimated time and
losses.

triggered time t 126.5 (sec.)

distance from the entrance 2783 (m)
average speed left 21.9 (m/sec.)

right 25.3 (m/sec.)

estimated keep lane 421.0 (sec.)
arrival time change lane 364.3 (sec.)
estimated loss keep lane 7638.8

change lane 3448.6

the driver's behavior (e.g., response to the advice); at
present, the system detects just the direction of the face,
and the information is not used for the assistance. Two
subsystem are working on one PC (Pentium-II 400MHz),
and the processing ability reaches 10 frames/sec.

We show the result of an on-road experiment. The
vehicle ran from Toyonaka entrance to Ibaraki exit of the
Meishin expressway; the travel distance is about 12 km.
We gave the system the loss function indicated by eq.
(2), target arrival time ttarget = 460(sec), and the cost
of lane changing Cchange = 25003. The actual arrival
time was 527 (sec.).

L(t) =

�
0 t � ttarget

(t� ttarget)
2 t > ttarget

(2)

5.1 Tactical Level Advice

Fig. 14 shows the situation where tactical level advice
\Change to Right Later" was issued due to a reduction
of the speed of the current lane. The upper-left and
the upper-right part of each image are respectively the
forward and the backward view. The lower-left part is
the observation of the driver, and the advice is displayed
on the lower-right part of the image.

In this case, by referring to the velocity map, only the
situation Congested was selected. Table 1 summarizes
the measured values of the road scene and the estimated
time of arrival at the goal and its losses. The maneu-
ver \Change Lane" was selected at the tactical reason-
ing module, but on the faster lane there was a passing
vehicle. The vehicle, which had been detected by the
backward camera (see Fig. 14 (a)), was tracked by �l-
tering although it was not detected by two cameras at

3it means that 50 seconds' loss is allowed in exchange for lane

changing
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Figure 14. The driver is advised to change lane later.

(a) Front vehicle is

approaching (t = 48:9)

(b) Brake advice is issued

(t = 50:2)

Figure 15. The driver is advised (warned) to brake.

the moment (Fig. 14 (b)). Then the operational reason-
ing module advised the driver to \Change Lane Later"
(Fig. 14 (b)). (Note that the bracketed advice means
that the action should be executed later.) Following the
advice, the driver checked the faster lane (Fig. 14 (c)),
and changed to the lane after the vehicle had passed (Fig.
14 (d)).

5.2 Local Level Advice

Fig. 15 shows the situation where a local level advice
\Brake" was issued due to the deceleration of the front
vehicle. At present, this advice is issued if the following
condition is satis�ed:

dcurr + vcurrTf < dthresh;

where dcurr (vcurr) is the current relative position (ve-
locity) of the front vehicle with respect to MyVehicle; Tf

is a constant time duration (currently 3 (sec.)); dthresh
is a threshold (currently 20 (m)). In the case of Fig.
15, dcurr and vcurr were estimated as 24.5 (m) and -2.0
(m/sec.); thus, the relative position after Tf (sec.) was
estimated as 18.5 (m), which is less than dthresh.

6 Conclusions and Discussion

This paper has proposed the concept of intelligent
navigator that can give the driver timely advice on driv-
ing in a dynamic and uncertain tra�c environment. The
intelligent navigator system is composed of the road
scene recognition and the advice generation subsystems.
We constructed a prototype system and conducted ex-
periments on the actual highway. The experimental re-
sults show the potential feasibility of the proposed sys-
tem.

One important future work is to connect the system
with tra�c information systems (many examples are de-
scribed in [10]). This will enhance the reliability of the
intelligent navigator's advice.
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