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Abstract

This paper describes a method of modeling the motion
uncertainty of moving obstacles and its application to mo-
bile robot motion planning. The method explicitly consid-
ers three sources of uncertainty: path ambiguity, velocity
uncertainty, and observation uncertainty. The uncertainty
model represents the position of an obstacle at a certain
time point by a probabilistic distribution over possible po-
sitions on each possible path of the moving obstacle. Using
this model, the best robot motion is selected in a decision-
theoretic way. By considering not the range but the dis-
tribution of the uncertainty, more efficient behaviors of the
robot are realized.

Keywords: Uncertainty model of obstacle motion,
Probabilistic uncertainty modeling, Robot motion plan-
ning, Mobile robot, Decision-theoretic planning.

1 Introduction

Motion planning is one of the fundamental functions of
mobile robots. As mobile robots extend their application
areas from factory to office or home, they have to cope with
moving obstacles such as human or other robots. There-
fore, mobile robot motion planning in dynamic environ-
ments has recently been studied extensively [1].

In the case where a robot cannot communicate with
moving obstacles, the robot needs to predict the future mo-
tion of them. Most of past research can be classified, in
terms of the knowledge of obstacle motion, into two cate-
gories. In one category, the obstacle motion is completely
unknown and, therefore, a reactive motion selection is only
reasonable way for a robot to cope with moving obstacles
[2]; not the optimality but the safety of robot motion is an
important issue there. In the other category, the obstacle
motion is completely known; thus, an optimal motion can
be generated by employing a planning in space-time[3].
In [4], for example, the robot predicts future motion of
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Fig. 1: An example case where considering the bias in the
motion uncertainty is effective.

obstacles by assuming that they will continue to move at
the current velocity, and plans the next best action in the
space-time. Such prediction and planning are repeatedly
performed. Fiorini and Shiller [5] proposed a local motion
planning method using the concept of velocity obstacles.

In between these categories, several works consider the
uncertainty in obstacle motion. Most of them, however,
consider only the range of uncertainty (e.g., [6][7]); the
robot generates a plan which is safe regardless of the ac-
tual obstacle motion. Such an uncertainty modeling may
result in an inefficient robot motion if the positional distri-
bution of an obstacle is not uniform within the range. Fig.
1 shows a typical case. In the figure, the robot is going to
the destination, which is currently behind the obstacle. In
case (a), the robot avoids all possible movements of the ob-
stacle, while in case (b), it takes a path which is relatively
short and has a small probability of meeting the obstacle.
Although in some cases, motion (b) is worse than motion
(a), such a situation is rare and, therefore, motion (b) is
better in terms of the expected efficiency. As shown in this
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example, the probabilistic modeling of motion uncertainty
is often effective in realizing efficient robot behaviors.

In order to model the motion uncertainty of obstacles,
we hierarchically decompose it into two levels: the ambi-
guity in path selection and the motion uncertainty on each
path. This is analogous to “path-velocity” decomposition
[8] in motion planning.

First, let us consider the path ambiguity. In a usual envi-
ronment where both static and moving obstacles exist, we
can predict the motion of moving obstacles to some extent.
They never move randomly; each has its own start and goal
points and the path connecting them should be generated
in some rational manner (e.g., by a minimum-length crite-
rion). In a typical office environment, for example, flow of
people is restricted by the placement of walls, doors, furni-
ture, and so on. To enumerate possible paths of a moving
obstacle, we use the tangent graph [9]. Using the given
knowledge of static obstacles, a tangent graph is generated.
Each path is represented as a set of consecutive segments
on the graph. Skeletonization of free spaces in the envi-
ronment, such as the one based on the Voronoi diagram
(e.g., [10]), is also suitable for path candidate generation,
especially for relatively narrow free spaces.

Concerning the motion uncertainty on a path, let us con-
sider the following simple example. Suppose you are going
to cross a street and a car is approaching you. You have to
decide when to begin crossing the street (i.e., before or af-
ter the car passes). When the car is far away, predicting
when the car will pass in front of you suffers from a large
uncertainty because it is a prediction of a far future, and
because the observation uncertainty is large for a far ob-
ject. As time advances, however, the situation will be more
certain and, at some time point, you will be able to make a
decision with confidence. As seen from this example, for
modeling motion uncertainty, we consider two sources of
uncertainty: the velocity uncertainty of an obstacle and the
observation uncertainty of the robot.

We apply the uncertainty model to robot motion plan-
ning. When the knowledge of obstacle motion is uncer-
tain, the robot may be better to defer the decision on path
selection until the situation is more certain. To realize such
a behavior, we adopt a decision-theoretic planning [11] in
motion planning.

2 Modeling Motion Uncertainty on a Path

2.1 Modeling Velocity Uncertainty

To model the velocity uncertainty, we assume the fol-
lowing on the motion of obstacles: each moving ob-
stacle has the possible range of its velocity, represented
as [vmin, vmax]; it changes the velocity at every time
step ∆T ; the velocity for a time step is constant, and
is randomly and independently selected within the above

p(D; i)
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v

i time
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D

0
Fig. 2: Prediction of arrival time.

range1 .
Under these assumptions, we can predict the future po-

sition of a moving obstacle as follows. Let x0 and σ2
0 be

the current position and the variance of an obstacle and vk

be the velocity at the kth time step. Then the position xi

after i steps is given by:

xi = x0 +
i∑

k=1

vk∆T. (1)

Since every vk follows the same but independent uniform
distribution within the above velocity range, the distribu-
tion of xi can be approximated by a normal distribution
(by central limit theorem [12]); the variance σ2

step of the
motion added by one step is calculated as that of uni-
form distribution of width vmax − vmin, which is (vmax −
vmin)2/12. The probability density function p(x; i) of the
obstacle being at x after moving for i steps is then given by

p(x; i) =
1√
2πσ2

i

exp

(
− (x− x̄i)2

2σ2
i

)
, (2)

x̄i = x0 + iv̄∆T,

σ2
i = σ2

0 + iσ2
step,

where v̄ = (vmax + vmin)/2 is the mean velocity of the
obstacle.

2.2 Predicting the Arrival Time of Moving Ob-
stacle at a Crossing

Motion of an obstacle affects that of the robot near the
crossings of their paths. Thus it is necessary for the robot
to calculate the distribution of the arrival time of the ob-
stacle at a crossing. Using the velocity uncertainty model
described above, the distribution is calculated as follows
(see Fig. 2).

In the figure, the vertical axis indicates the moving dis-
tance of the obstacle from the current position; the hori-
zontal axis indicates the time (or time step). Dcrossing is

1 More constraining knowledge could be used depending on the actual
environment and the problem settings.



the distance to a specific crossing on the path. Since the
positional distribution of the obstacle at some time point is
calculated by eq. (2), the probability P (i) of the obstacle
reaching the crossing at the ith time step can be approxi-
mated by:

P (i) = αp(Dcrossing; i), (3)

where α is a normalization constant.

2.3 Modeling Observation Uncertainty

The other source of uncertainty in predicting obstacle
motion on a path is the observation uncertainty. We sup-
pose a vision-based mobile robot which uses stereo vision
to detect obstacles and to measure their position and ve-
locity. We use the uncertainty model of stereo vision that
we have previously developed [13]. The model uses a nor-
mal distribution to represent the positional uncertainty of
an object due to vision uncertainty.

Every time the robot measures the position of an ob-
stacle, the position data is statistically integrated with the
previous data to reduce the uncertainty. Here we explain
how to estimate the positional uncertainty of an obstacle
after observation at the next step.

Let N(µ0, σ
2
0) be the predicted distribution of obstacle

position x before the next observation; this distribution is
calculated from the current distribution and the predicted
motion uncertainty added by the next step. Let xobs be the
position measured by the next observation. Assuming that
the variance σ2

obs of xobs is constant regardless of the true
value of x, xobs follows N(µ0, σ

2
0 + σ2

obs). From these
values, mean µ1 and variance σ2

1 of the distribution after
integrating the next observed data are estimated as follows;
σ2

1 is given by σ2
0σ

2
obs/(σ2

0 +σ2
obs). µ1 cannot be predicted

deterministically; instead, its distribution can be estimated
as N(µ0, σ

2
0/(σ2

0 +σ2
obs)). Refer to [13] for the details. We

use this distribution of µ1 to enumerate a set of possible
states after the next step.

2.4 Gradual Reduction of Prediction Uncer-
tainty

By combining the velocity and the observation uncer-
tainty, we can model the gradual reduction of prediction
uncertainty, which is described by an example in Sec. 1.
Fig. 3 shows the current probability distribution of an ob-
stacle arriving at a crossing, and a set of predicted proba-
bility distributions (weighted with their occurrence proba-
bilities) to be obtained after one time step passes and the
new observation result is integrated2 . The set of distribu-
tions covers all possible situation which is represented by
the current distribution. Only one of which, however, will

2 Note that the velocity range of the obstacle is discretized with some
granularity for a computational purpose.
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actually occur. The variance of each distribution in the set
is smaller than that of the current one, that is, the situation
will become more certain.

3 Motion Planning for Fixed Path Moving
Obstacle

3.1 Planning the Next Motion

The robot basically follows a path on the tangent graph
to minimize the moving distance to the destination as long
as there is no influence from moving obstacles.

If the robot has to consider avoidance of collision with
them, the robot selects a certain number of nodes as the
candidates of an intermediate goal and enumerates a set of
candidate motions which cover the directions to the can-
didate nodes (see Fig. 4). After each time step, the robot
observes obstacles, estimates their positional uncertainty,
and performs one-step look-ahead search for the next mo-
tion which minimizes the expected time to the destination.
If a node is known to be far superior to the others, the com-
mitment is made to the node.

The detailed planning algorithm is as follows (see Fig.
5). For each motion i (i = 1, . . . , N), the robot first pre-
dicts the set of possible states {Sij |j = 1, . . . , M} with
their probability Pij , which are to be obtained after the
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motion. Each state holds a set of the positional distribu-
tions of moving obstacles, which is calculated as described
in the previous section. Then for each state Sij , the robot
calculates the expected time T ij

k of reaching the destina-
tion when selecting candidate node k (k = 1, . . . , L)3 and
selects the best (minimum-time) candidate node k∗

ij as:

k∗
ij = arg

L
min
k=1

T ij
k . (4)

Then the expected time Ti of reaching the destination when
taking candidate motion i is given by

Ti =
M∑

j=1

PijT
ij
k∗

ij
. (5)

Finally the best motion i∗ is selected as:

i∗ = arg
N

min
i=1

Ti. (6)

3.2 Calculating Expected Time to Destination

Collision Avoidance by Stopping We set a safety dis-
tance Lsafe and controls the robot so as not to enter within
Lsafe from any obstacles. Basically the robot moves at a
constant speed on the shortest path. If the path of the robot
and that of an obstacle intersect, and if the robot knows
the obstacle will come to the distance less than Lsafe,
the robot stops before the intersection point (crossing) and
waits for the obstacle to pass by4 .
Calculating Waiting Time The period during which the
robot has to wait is calculated as follows. Let us consider
Fig. 6. The two paths intersect at pc with angle θ. The
robot waits at point p0 whose distance to the path of the
obstacle is Lsafe. Let t0 be the time at which the robot
reaches p0. To calculate the waiting period, we first cal-
culate two distances, Din

safe and Dout
safe. Din

safe indicates
3 The next subsection will explain how to calculate the expected time.
4 Other avoidance methods such as potential methods can be used in-

stead, if the corresponding procedure is available to calculate the expected
time to reach the destination.

the distance of the obstacle to the crossing pc such that the
robot can pass the crossing before the obstacle if the ob-
stacle is further than Din

safe at t0 (see Fig. 6(a)). Dout
safe is

the distance from the crossing such that the robot can pass
the crossing after the obstacle if the obstacle is further than
Dout

safe at t0 (see Fig. 6(b)). Assuming that near the cross-
ing, the obstacle and the robot moves at constant speed vo

and vr respectively, these two distances are given by:

Din
safe =

Lsafe

sin θ

{√
v2

r +v2
o−vrvo cos θ

v2
r

+
vo

vr

}
, (7)

Dout
safe =

Lsafe

sin θ

{√
v2

r +v2
o−vrvo cos θ

v2
r

− vo

vr

}
. (8)

If the obstacle is within the range [pc − Din
safe, pc +

Dout
safe] at t0, the robot has to wait for the obstacle exiting

from the range. From this condition, we can obtain the
following:

1. If the time of the obstacle arriving at the crossing is
within the range [t0 −Dout

safe/vo, t0 + Din
safe/vo], the

robot has to wait.

2. For arrival time t within the range, the robot has to
wait for the duration of t− (t0 −Dout

safe/vo) (see Fig.
7); this is explained as follows. If the obstacle arrives
at pc at t, we know that it was at the distance of vo(t−
t0) to pc at time t0. Thus the robot has to wait while
the obstacle moves by the distance Dout

safe+vo(t−t0).
Dividing this distance by vo leads to the above waiting
time.

Expected Time to Destination From the above result
and the probability distribution P (i) of the obstacle ar-
riving at the crossing (see eq. (3)), we can calculate the
expected time of the robot reaching the destination on a
certain path. The expectation of the extra time needed for
waiting, Twait, is calculated by:

Twait =
∑

t∈[tmin,tmax]

P (t)(t − (t0 − Dout
safe/vo)), (9)

tmin = t0 − Dout
safe/vo,

tmax = t0 + Din
safe/vo.

The expected time to the destination is then calculated as
the sum of Twait and the time needed in the case where the
robot encounters no obstacles.

The motion uncertainty of the robot is not considered in
the above discussion. However, if the uncertainty is rep-
resented by a probabilistic distribution, it can easily be in-
corporated by further calculating the expectation over the
possible range of robot uncertainty.
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3.3 Simulation Results

Fig. 8 shows a simulation result. There are a static ob-
stacle and a moving obstacle in the environment; the robot
considers two paths, among which the left one is shorter.
The figure shows the movements of the robot and the ob-
stacle until the robot reached the goal point. Since the left
path is shorter and the left and the right path are compara-
ble due to a large uncertainty of obstacle motion, the robot
started toward the left path; as the situation became more
certain, the evaluation of the right path went up, while that
of the left one fell down. So the robot gradually shifted
its direction towards the right path and, at time t = 16,
it committed to the right path and followed it to the goal
point. The parameters used in this simulation are: obsta-
cle velocity range is [4.2 ± 1.0][cm/s]; the robot velocity
is 7.5[cm/s]; the variance of the uncertainty in measuring
distance is 6.25e− 7 ·d4 (d is the distance to the obstacle);
the length of the left and the right path are 317.0[cm] and
332.0[cm], respectively. The number of candidate motions
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Fig. 9: Predicted distributions of the obstacle’s arrival time
at the crossing and the time range within which the robot
has to wait.

and that of predicted states are 5 and 9, respectively.

In Fig. 9, each set of distributions indicates the pre-
dicted distributions of the arrival time of the obstacle at the
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crossing at times t = 1 and t = 4 for the left and the right
path, respectively. A shaded area in the figure indicates the
time range [t0−Dout

safe/vo, t0+Din
safe/vo] of the obstacle’s

arrival, for which the robot has to wait (see Sec. 3.2). From
the figures, we can see that as the situation becomes more
certain, the evaluation of the right path is more improved
than that of the left one. This evaluation improvement of
the right path made the robot shift the moving direction to
the right in Fig. 8.

Fig. 10 shows another result for the case where the ob-
stacle increased the speed by about 5% at time t = 10. In
response to this speed change, the robot changed the direc-
tion to the left; however it had not committed to the left yet
due to the uncertainty of obstacle motion. At time t = 14,
the robot finally committed to the left path and followed it.
If the obstacle increases the speed more rapidly, the robot
will make a commitment immediately.

4 Modeling Path Ambiguity

This section deals with the case where there are multiple
possible paths for a moving obstacle. Suppose an ob-
stacle is moving on a segment towards a node (branch-
ing point) to which n possible paths are connected. Let
Ppathj (j = 1, . . . , n) is the probability of taking the jth
path; if the robot does not have any prior knowledge of
obstacle motion, Ppathj = 1/n.

To path ambiguity cases, we can also apply the motion
selection method described in Sec. 3.1 with a little modi-
fication. For each possible path, we can calculate the ex-
pected time Tij when taking candidate motion i using eq.

robot

obstacle obstacle

robot

(a) Left path is much better. (b) Both paths are comparable.

Fig. 11: Two cases of path ambiguity of obstacle.

(5). Then the expected time Ti of motion i is calculated by

Ti =
n∑

j=1

Ppathj Tij . (10)

Finally the best action is selected using eq. (6). But this
method may not be appropriate in some cases.

In the case of Fig. 11(a), for example, the action towards
the left path will be selected because this motion is appar-
ently better than the other regardless of the actual path of
the obstacle. In the case of Fig. 11(b), however, the above
selection method is not effective; that is, each motion of
the robot is good for one obstacle path but bad for the other.
Since the motion is selected by one-step look-ahead search
using the expected time to the destination, and since any
motion is not far superior to the others, the motion towards
directly one of the candidate nodes may be selected. But
such a motion is very inefficient when the obstacle happens
to take the path on the same side.

A reasonable strategy is, thus, to move towards some
midpoint of the paths and to defer the commitment to a
path until the obstacle takes one of the possible paths. The
problem is, however, that it cannot be deterministically de-
termined when the obstacle comes to the branching point.
To cope with this problem and to calculate the expected
time to the destination, we calculate and use the probabilis-
tic distribution of the obstacle reaching the point, just as in
the case of the obstacle reaching a crossing (see Sec. 2.2).

Let us examine the case where there is one moving ob-
stacle and where there are two possible paths (left or right)
from the next branching point for the obstacle. Let Pleft

and Pright be the prior knowledge of the probability of the
obstacle taking the left or the right path, respectively. Also
let P (i) be the probability that the obstacle arrives at the
branching point at time step i (see eq. (3)) and tmin and
tmax be the earliest and the latest time of arrival, respec-
tively. Assuming that the path of the obstacle is imme-
diately determined when the obstacle passes the branching
point, the probabilities P i

left and P i
right of the robot detect-

ing the obstacle on the left and the right path, respectively,
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at time step i are calculated as:

P i
left = PleftP (i), P i

right = PrightP (i). (11)

Fig. 12 illustrates how the situation gradually becomes cer-
tain as the time advances in this model.

The expected time of the robot reaching the destination
is calculated as follows. Let T i

left and T i
right be the time

of the robot reaching the destination when taking the best
action against the left and the right path of the obstacle,
respectively, after moving for the duration of i time steps
without making commitment to any path. Then the ex-
pected time T of this strategy is given by

T = tmin∆T +
tmax∑

i=tmin

(P i
leftT

i
left + P i

rightT
i
right). (12)

This expected time is compared with that of the action se-
lected by the previous, one-step look-ahead strategy (see
Sec. 3.1) and the better action is selected. This formula-
tion can be extended to a general, n-paths case.

Fig. 13 shows a simulation result for the case where the
robot considers the path ambiguity of a moving obstacle.
Until time t = 6, the robot moved toward the center of the
two candidate nodes and at time t = 7, it changed the di-
rection to the left path because it detected the obstacle took
the right path at that time. The parameters used in this sim-
ulation are: obstacle velocity range is [15.3 ± 1.0][cm/s];
the robot velocity is 7.5[cm/s]; the other parameters are
the same as in the previous simulation shown in Fig. 8.

The above strategy of simply deferring the decision
while moving at a constant speed may be inappropriate to
some cases. For example, if the static obstacle in Fig. 13 is
nearer to the start point of the robot, the robot has less time
before selecting one of the paths. In this case, the robot
could increase the time for collecting more information by
slowing down the speed. At the same time, however, the
robot would have to considering the tradeoff between the
merit of path selection based on more certain information
with the demerit of slowing down.

5 Conclusions and Discussion

We have proposed a method of modeling the motion un-
certainty of moving obstacles to be used for robot motion
planning. We consider three sources of the uncertainty,
path ambiguity, velocity uncertainty, and observation un-
certainty, to construct a probabilistic uncertainty model.
Using this model, we can represent the gradual reduction
of the uncertainty in motion prediction, which we usually
experience in many situations. Based on this probabilis-
tic model, the motion planner repeatedly selects the best
motion in a decision-theoretic manner.

Currently we assume that the robot can determine the
path of an obstacle at a branching point just after the ob-
stacle passes the point. However, this assumption may not
be effective in some cases, especially when the branching
point is far from the robot and the observation uncertainty
is large. An extension to the current modeling is to con-
sider the observation uncertainty in determining the path
of the obstacle.



In this paper, we have described simulation results
on a simple case where there is only one moving ob-
stacle. Another future work is to apply the method to
multiple-obstacle cases. Although, in principle, the pro-
posed method can be applied to multiple-obstacle cases,
several extensions would be necessary such as modeling
the interaction between obstacles.
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