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Abstract—This paper describes a method of generating a new
view sequence for view-based outdoor navigation. View-based
navigation approaches have been shown to be effective but have
a drawback that a view sequence for the route to be navigated is
needed beforehand. This will be an issue especially for navigation
in an open space where numerous potential routes exist; it is
almost impossible to take view sequences for all of the routes
by actually moving on them. We therefore develop a method
of generating a view sequence for arbitrary routes from an
omnidirectional view sequence taken at a limited movement. The
method is based on visual odometry-based map generation and an
image-to-image morphing using homography. The effectiveness of
the method is validated by view-based localization experiments.

I. INTRODUCTION

Navigation in outdoor environments has been an important
topic in mobile robotics and intelligent transportation systems.
Navigation of people has also been gaining a large interest
according to a rapid progress of mobile devices. GPS is the
most popular localization and navigation method in outdoor
but it is not always operational especially near tall buildings.
Vision-based localization and navigation is thus a promising
alternative or complement in outdoor navigation.

Among various visual navigation approaches, view-based
navigation has been shown to be effective [1], [2], [3], [4]. Its
typical approach is as follows. In a training phase, a vehicle
acquires image sequences along a route. In the subsequent
navigation phase, it compares input images with learned ones
to localize itself.

An advantage of view-based navigation is that the user
only has to take the robot along a route for image sequence
acquisition or just give it an image sequence taken at a
different time. No other information such as a map of the
environment is needed.

This advantage might be, however, a drawback; that is,
a view sequence for the route to be navigated is needed

Route for view generation

Route for image acquisition

Fig. 1. View sequence generation for a new route.

beforehand. This will be an issue especially for navigation
in an open space where numerous potential routes exist; it is
almost impossible to take view sequences for every possible
route by actually moving the robot or walking on it. We
therefore would like to develop a method of generating a
view sequence on a new route from view sequences taken
on different routes (see Fig. 1). Since we cannot know the
route for which a view sequence is required in advance
and any viewing direction is therefore possible, we use an
omnidirectional camera to take various views of objects from
a limited number of routes for view acquisition.

Many image-based rendering (IBR) methods have been
proposed in computer graphics and computer vision. They
can be characterized by the amount of geometry of the scene
required [5]. Levoy and Hanrahan [6] developed the light
field rendering method which represents the radiance as a
function of position and direction in a 4D space. Shum
and He [7] proposed a new view synthesis method using
concentric mosaics obtained by rotating off-centered cameras.
These approaches do not require any geometric information
but need many images. The view interpolation method [8]
generates novel views from two images with a large number of
point matches; this works when two images are taken at close
positions and few occluding boundaries exist in the scene.

Several IBR methods use geometric information, which are
especially effective for a scene with a wide depth range. 3D
warping methods [9] uses 3D point clouds to generate images
from arbitrary viewpoints. Sato et al. [10] proposed a method
of view generation using a deformable mesh estimated using
a dense depth map for an omnidirectional image sequence.
Zheng et al. [11] proposed the scanning scene tunnel for com-
pact representation of route scene rendering. These methods
require dense 3D information before rendering.

All of the above IBR approaches are intended for generating
high-quality images which are to be used for virtual reality
or mixed reality and usually require many images and/or
much computation for precise registration and adjustments.
In contrast, what we need here is a simple and fast method
which can provide an enough level of quality for view-based
navigation.

Our method uses geometric information but requires only
a set of sparse feature points in the scene and is based on a
window-wise morphing using homography, which has a nice
correspondence to the window-wise image classification of our
view-based navigation method [3]. We make a map of the
environment based on visual odometry and triangulation, and
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Fig. 2. Two-stage SVM-based localization.
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Fig. 3. Example input images and
matched model images.

utilize it for the image morphing.
In addition, considering the objective of view generation, we

do not evaluate the generated views by its degree of reality
but by the localization accuracy achieved.

The rest of the paper is organized as follows. Sec. II outlines
our view-based localization method. Sec. III explains our
mapping method. Sec. IV details the view generation method
using the map. Sec. V presents experimental results. Sec. VI
summarizes the paper and discusses future work.

II. VIEW-BASED NAVIGATION IN OUTDOOR
ENVIRONMENTS USING SUPPORT VECTOR LEARNING

This section briefly explains our view-based localization
method based on two-stage support vector machine (SVM)-
based classification [3] (see Fig. 2 for an overview).

At the first stage, each image region (i.e., window) is
classified into object categories (sky, tree, building, etc.) by
object recognition SVMs, each of which is trained for respec-
tive objects. A feature vector used for object classification is
composed of several image features such as r, g, b values
and edge density. We examined a large amount of image data
captured in various annual seasons, under various weather
conditions, at at various times, and manually labeled about
8,000 windows to be used for SVM learning.

At the second stage, recognition results are input to local-
ization SVMs, each of which is trained for discriminating one
specific location from the others. Each localization SVM is
trained by declaring the data taken near the location as positive
samples and the data at other locations as negative ones.

The output of localization SVMs is integrated over time
using a Markov localization framework [12] where not a single
location but a probabilistic distribution of possible locations
is estimated. Thanks to a rather rough description of the
scene, the method has been shown to be very reliable (almost
100% localization accuracy) under a large amount of view
changes [3]. Fig. 3 shows several pairs of images which were
determined to be taken at the same location.

III. MAPPING USING VISUAL ODOMETRY AND FEATURE
TRACKING

Correct view generation requires a consistent geometrical
relationship between objects in each image. Local structure of
the environment is more important than the global consistency
(i.e., loop closing). We therefore use a visual odometry to es-
timate the robot ego-motion during view sequence acquisition
and adopt triangulation based on the estimated ego-motion.

We use an omnidirectional camera (LadyBug2 by Point
Grey Research Inc.) for image acquisition. We extract Harris
corners [13] as image features and track them using Lucas-
Kanade method [14]. Feature correspondence between two
consecutive frames is supplied to the eight-point algorithm
[15] with RANSAC to calculate the fundamental matrix (F
matrix). From F matrix we can recover the robot motion up
to scale, which is given by the odometry. When the estimated
motion is largely different from the odometry, we use the
odometry value also for rotational motion.

We use only reliable features for mapping which are tracked
over a certain number of consecutive frames. To use a large
baseline, for each tracked feature, we use the first and the
last frame of the track for triangulation, where robot positions
taking those frames are obtained from the visual odometry.
Fig. 4 shows some results of feature tracking. It is shown a
sufficiently large number of features are extracted and tracked.

Fig. 5(a) shows a route in our campus used for mapping
and image sequence acquisition. Fig. 5(b) shows the mapping
and the trajectory estimation results. Since the map is used for
recovering geometric structure, as described later, each point
has its 3D position as the only property.

IV. GENERATING A VIEW SEQUENCE FOR A ROUTE

Generating a view of a scene from a new viewpoint may
not be difficult if we had complete 3D models with appearance
properties. In realty, however, we cannot have such models or
we need to pay a huge amount of cost to obtain even near-
complete models.
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Fig. 4. Feature detection and tracking examples.

(a) Route for mapping.
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(b) Mapping result.

Fig. 5. An example mapping result. The blue line and red points in (b) indicate the estimated
trajectory and 3D feature points, respectively. Two wall-shape structures in the map correspond
to two buildings in the upper part of (a).

View of an object depends on its geometric and photo-
metric property. To obtain precise geometric property (i.e.,
shape), high accuracy sensors such as a laser range finder
are necessary. In our case, since accurate 3D information
is not available from stereo-based measurements, and since
the localization is based on a window-wise placement of
objects in the image, approximate geometric reasoning is
enough. Concerning photometric property, colors of objects
may change according to viewpoint changes, but such view
changes can be handled by the first stage of our two-stage
SVM-based localization scheme (see Sec. II), and we therefore
do not do any special treatments.

A. Viewpoint selection on a route
The route for navigating the robot is described in the

map coordinates. On a given route, we select locations on
it for which localization SVMs are prepared. We usually use
a regular spacing (e.g., 10 [m]) between the locations. The
viewing direction at a location is set to align with the route
direction there.

B. View generation for a viewpoint
We generate a new view by a window-wise mapping be-

tween the new and the existing image (see Fig. 6).
For each window in the new image, we first construct a

quadrangular pyramidal volume; the feature points in this
volume are to be projected onto the window. We then calculate
a virtual plane patch on which all of those feature points are
assumed to lie. The virtual plane is set to be parallel to the
window and its depth is set to the average of the depths of the
feature points (see Fig. 6(a)).

Next, we project the virtual plane patch onto the existing
image (see Fig. 6(b)). If we have multiple images on which
the patch can be projected, we choose the one which is nearest
to the patch in the scene so that information in the projected
region is maximized.

Finally we calculate the mapping from the window in the
new image and the projected region in the existing image,
which is composed of the two mappings described above (see
Fig. 6(c)). This composed mapping becomes a homography
which is used for synthesizing a new view efficiently.

In order to speed up the above process, we first pick up
feature points which are possibly to be projected onto the new
image plane using a bucketing technique. That is, the whole
map is divided into fixed-sized buckets, to one of which each
feature point belongs, and visible buckets (and feature points
in them) are picked up by considering their visibility from
the new view under construction. The time for generating one
view is about 1.20 [s] in average.

It sometimes happens that no feature points exist in the

new viewpoint

existing viewpoint

feature points in the map

virtual plane patch 
in the scene

projecting the virtual 
plane patch on the image

(b) generate the corresponding patch in the existing image. 

new viewpoint

existing viewpoint

homography between images

(c) calculate the homography between the images. 

new viewpoint

existing viewpoint

feature points in the map

virtual plane patch 
in the scene

calculating quadrangular 
pyramidal volume

(a) determine the virtual plane patch for a window in the new image.

Fig. 6. Steps for generating the new view for a window.
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quadrangular pyramidal volume, as in the case where the
window under consideration is directing the sky region. Since
we cannot obtain any image-to-image mapping in this case,
we select an existing image which was taken at a viewpoint
with similar viewing direction to that of the new viewpoint
(< 5 [deg.]), and extract and copy the corresponding region of
the existing image to the new image.

V. EXPERIMENTAL RESULTS

Fig. 7 shows a test route. Compare Figs. 5 and 7 for the
geometric relationship between the route for image sequence
acquisition and that for view generation.

We set ten positions (white circles in the figure) on the
route and the twelve locations (position and orientation) for
which the localization SVMs are learned; each of two turns
in the route has two locations corresponding to the directions
of two lines meeting there. The map used for view generation
is shown in Fig. 5.

A. View generation results
We first examine the generated views on three selected lo-

cations, A, B, and C in Fig. 7. When no geometric information
of the scene is available, the only thing we can do for view
generation is to just apply scaling to source images according
to the distance to the selected positions. For the three locations,
we use the image taken at location A as the source image
for scaling. Fig. 8 compares three kinds of views: the actual
ones, the ones generated by the proposed method, and the
ones generated by scaling. The results of object recognition
are also shown. Note that the similarity in recognition results
is important for our view-based localization.

At location A, since the source image is obtained at this
position, the scaling view is exactly the same as the actual
view. The generated view is similar enough to the actual one.
At location B, since the distances to objects (buildings and
trees) are large, both the views generated by the proposed
method and by the scaling are still similar to the actual one.
At location C, however, our method can generate views with
correct occlusion relationships, while the scaling method failed
to generate an acceptable view. Note that the intensity levels
are different for the views by the proposed method. This comes
from the difference of characteristics of the LadyBug2 camera
and the normal camera, but it does not have any effect on the
results of object classification.

Fig. 9 shows view generation results at two different scenes.
As shown in Fig. 8, actual, generated, and scaled images are
compared for several locations. These results also show that
the proposed method can generated correct views in spite of
objects in various distances.

B. Localization performance comparison
We then compare the view sequences shown in Fig. 8 in

terms of localization accuracy. We trained localization SVMs
for the twelve locations for three types of view sequences
(actual, proposed, and scaling). At each location, we used
five consecutive views (generated or acquired), covering about

location A

location C

location B

Fig. 7. Route for localization experiments. Arrows indicate the orientation
of the robot.

(a) location A

actual proposed scaling

actual proposed scaling

actual proposed scaling

(b) location B

(c) location C

Fig. 8. Comparison of generated views for three locations. For each location,
the upper and the lower row show views and object recognition results. Green,
pink, and blue markers indicate tree regions, building regions, and uniform
regions, respectively.

1.5 [m], centered at the location under consideration as positive
samples. We use another actual view sequence as inputs to the
SVMs for evaluation.

For comparison, we use the following two criteria [3]:
• Recognition rate: the ratio of the numbers of locations

that are correctly recognized by the SVMs in charge of
the locations versus the total number of locations. In the

978-1-4577-0121-4/11/$26.00 ©2011 IEEE 142



actual proposed scaling

(a) Scene 1

actual proposed scaling

(b) Scene 2

Fig. 9. Comparison of generated views at two scenes.

Markov localization scheme, we consider that a location
is correctly recognized if that location is in a set of
locations with non-zero probability. This applies to the
case where the robot verifies whether it is on a predicted
location (i.e., position tracking).

• Highest-score rate: the ratio of the number of locations at
which the highest probabilities are obtained by the SVMs
in charge for the locations versus the total number of
locations. This applies to the case where the robot has to
localize itself without any prior knowledge (i.e., global
localization).

Table I summarizes the performance comparison in the two
criteria. The table shows that the proposed method can gen-
erate view sequences with a satisfactory level of quality for
view-based localization.

VI. CONCLUSIONS

This paper has described a method of generating view
sequences for view-based navigation in outdoor environments.

TABLE I
COMPARISON OF VIEW SEQUENCES IN TERMS OF LOCALIZATION

ACCURACY.

actual proposed scaling
Recognition rate 100.0 100.0 71.3

Highest-score rate 95.0 88.3 63.3

For a route on which the robot has never moved, a view se-
quence is generated using a 3D feature map of the environment
and a homography estimation between new views and existing
views. We have compared the views generated by our method
with the ones generated by a simple scaling and have shown
that our method can generate more correct views in terms of
occlusion relationship between objects. We also evaluated the
generated view sequence in our view-based localization and
confirmed that the robot was able to be localized reliably on
a route where the robot had never been before.
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