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Abstract. It is necessary for a robot to have environmental information
in order to move autonomously. Although we can usually give a map
to the robot, making such a map is quite a tedious work for the user.
So we propose a navigation strategy which requires the minimum user
assistance. In the method, we first guide a mobile robot to a destination
by a remote control. During this movement, the robot observes the
surrounding environment to make a map. Once the map is generated,
the robot computes and follows the shortest path to the destination.
To realize this navigation strategy, we develop: (1) a method of map
generation by integrating multiple observation results considering the
uncertainties in observation and motion, (2) a fast robot localization
method which does not use explicit feature correspondence, and (3)
a method of planning effective viewing directions using the history of
observation during the guided movement. Experimental results using a
real robot show the feasibility of the proposed strategy.

1 Introduction

Recently, many studies have been conducted on autonomous mobile robots. It is nec-
essary for a mobile robot to know environmental information in order to move au-
tonomously. There are methods [1][2] for planning the navigation using a given map
and landmarks. In these methods, the robot position is estimated by observing known
landmarks in order to reach the destination safely. But it costs too much for users to
give a map and specify landmarks.

We propose a navigation strategy which requires the minimum user assistance. Our
approach is composed of two-phase: map making and autonomous navigation. In the
map making phase, we guide a mobile robot to a destination. During this movement,
the robot observes the surrounding environment to make a map. Once the map is
generated, the robot computes and follows the shortest path to the destination.

Kanbara et al. [3] proposed a similar two-phase approach. They considered only
one dimensional movement in a linear corridor. Since we make a two dimensional map,
our method can be applied to more general navigation problem. Matsumoto et al. [4]
propose to use a sequence of images which is obtained during a human-guided movement
to guide the autonomous movement. Since the robot is navigated to generate the same
image sequence, the robot has to follow the original path even if it is inefficient.

In this paper, we propose the following two-phase strategy. In the map making
phase, a mobile robot is guided by a remote control. During this movement, the robot
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observes the surroundings with stereo vision and makes a map by integrating multiple
observations. In the autonomous navigation phase, the robot computes the shortest
path to reach the destination quickly because the human-guided path is not always the
best. Taking advantage of the human-guided experiment, the robot makes an obser-
vation plan in order to estimate the robot position more accurately, thereby reducing
the number of observations. Then the robot moves along the computed path with
estimating its position by matching observed information with the map.

The proposed method assumes a static environment; that is, the environment in the
autonomous navigation phase is assumed to be the same as that in the map-making
phase. If an unknown obstacle appears in the autonomous navigation phase, it is
assumed to be detected using ultrasonic sensors.

2 Map Generation

In this phase, we make a map considering observation uncertainty and motion uncer-
tainty. The following subsections describe the method for making the map from stereo
images.

2.1 Stereo Vision

We use a stereo vision to obtain range data of the surroundings. The left and the right
cameras are set on a camera head and their optical axes horizontal and in parallel with
each other. So for each feature point (edge with a high contrast) in the right image, the
matched feature point is searched for along the horizontal epipolar line. The degree of
matching is evaluated by the sum of absolute difference (SAD) of the intensity values
in 5 x 5 window W around a feature point as follows:
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where fr(x,y) and fr(z,y) indicate the intensity values of the point (x,y) in the left
and the right images respectively and d represents the disparity. A pair of points is
considered to match if the SAD value is small enough and minimum among all SAD
values computed within the possible disparity range.

(a) Original stereo image (b) Disparity image
Fig. 1: The process of calculating a disparity image
Fig. 1(a) shows an example stereo images and Fig. 1(b) is the disparity image

calculated from the stereo image. The darker points indicate larger disparities (nearer
points).



2.2 Object Boundary Extraction

Once a set of matched points are ob-
tained, their three dimensional positions are
computed by triangulation. We make a 2D 16.00
map which represents object boundaries. So
we extract points on the object boundaries oo
(called object points) from the 3D information
of matched points.

Since the observation direction is specified
by the column of the disparity image, we com-
pute the histogram of the disparity in each col- 400
umn and select the largest disparity whose fre-
quency is higher than a certain threshold (see 000
Fig. 2). The disparity with low frequency is 00 1000 2000 3000 400 5000
not selected because it is likely to be caused
by false correspondence.

To estimate the robot position, we use the distance profile which represents the
object boundaries observed from a specific position. The distance profile is computed
by the set of disparities selected in each column of the disparity image. In subsection
2.6, we explain the method of estimating the robot position.
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Fig. 2: Histogram of disparity

2.3 Observation Uncertainty

We model the uncertainty of object points by two dimensional normal distribution [1].
The mean position & of each object point is calculated from the disparity by triangu-
lation. The disparities of object points include an error caused by image quantization.
Using the Taylor series expansion, we calculate the 2D positional uncertainty A of object
points. In the map, a set of @ and A is recorded.

In this paper, we consider the so-called 3o ellipse obtained from A as the range of
uncertainty, called an uncertainty ellipse.

2.4 Finding Correspondence between Observation and Map

We integrate observed object points in or-

der to reduce the uncertainty of their position. Previous
So we must find the correspondence between observed p
object points in observed data and ones in the "
map. Corresponding point

First, for each observed point, we search \c{
for the corresponding point in the map. We Uncertiny o ~
consider the point which satisfies the following Stereo vison
equation as the corresponding point.
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where indices n and m represent the new ob-
served point and the point in the map, respec-  Fig. 3: Estimation of corresponding point

tively.

It the corresponding point is not found, we consider the following two situations.
One is the situation where the observed object points are a part of an unknown object
boundary. In this situation, the object point is simply added to the map. The other is



the situation where the observed object points belong to the known object boundaries as
shown in Fig. 3. In this situation, the corresponding point is computed by the following
procedure.

As shown in Fig. 3, we first search for two object points near the current observed
point. Assuming that the object boundary between the two object points is linear,
we consider the point on the linear boundary which is the nearest, in terms of the
Mahalanobis distance, from the observed point as the corresponding point. Since the
corresponding point has not been observed actually, the mean position  and the co-
variance matrix A are estimated by:

r = (1l —w)e +we,, (3)
A = (1 —w)Ay + WA, (4)
where w indicates the ratio of interpolation.

2.5 Integration of Observed Points

The observed object points for which the corresponding points are found are integrated
into the map by Kalman filter [5].
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where indices ¢ and p indicate the current and the previous observation, respectively.

During the human-guided movement, the robot repeatedly observes the surrounding
environment without stopping. The robot swings the camera head to observe a wide
area. To integrate observation results at different viewpoints, we estimate the motion
between the viewpoints. The method for estimating the robot position will be described
in next subsection. In order to exclude the object points caused by false correspondence
of stereo image, the object points which have never been integrated are deleted from
the map.

2.6 FEstimation of Robot Position

In the calculation of the robot position by dead reckoning, the positional uncertainty
is accumulated due to the uncertainty of the robot motion. So we estimate the robot
position by additionally using visual information as follows.

First a predicted uncertainty of a robot position can be computed by considering the
error of the odometer and the steering angle [1]. We divide the predicted uncertainty
region into 3 X 3 regions and consider the center of each divided region as a candidate
for the robot position. If the robot orientation is given in each candidate position, a
distance profile is computed from the map. The distance profile is also computed from
the observation. The candidate position is evaluated by the similarity between the two
distance profiles.

The similarity S(z, ¢) is calculated by

ema.r
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where D,(0) and D,,(#) indicate the profile based on the observation and the map,
respectively; and ¢ and ¢ indicate the candidate position and orientation of the robot,



respectively. First, we determine the best robot orientation in each candidate position

by

#(i) = axgmin (i, 0). )
Then we select the best candidate position in all candidates by
i* = arg min S(i, 6°(7)) )

2.7  FErperimental Result of Human-Guided Movement

We conducted an experiment in our laboratory as shown in Fig. 4(a). Fig. 4(b) show the
map made by the robot. The map represents the uncertainty ellipses of the integrated
object points. The black line is the estimated robot movement.

] | "
Desk Desk Board
(a) Envirnment D

Obstacle Shelf
=S )
e
= &
4 —
(b) Map V P _ —
_‘- _
=
-
T \.\"ﬁ?“
Fig. 4: The experimental result of map making
3 Autonomous Navigation
In this phase, our goal is to reach the des-
tination quickly and safely. After making the Enlarged region
map, we detect the shortest path to reach the Goal
destination quickly. To move safely, we need
to estimate the robot position in the map.
3.1  Detection of Shortest Path
We represent the map by the grids. We ‘
regard the grids which include parts of uncer- Lot Object boundary
tainty ellipses as the object boundaries. In
path detection, the object boundary are en- Fig. 5: Shortest path

larged by a certain width in order to consider

the motion uncertainty and the robot size. We compute the shortest path outside the
enlarged regions. As shown in Fig. 5, the path is made from the straight line segments
and the circular segments which are defined by the minimum turning radius of the
robot.



3.2 Observation Planning

By planning viewpoints and viewing directions, the robot could estimate its position
more accurately, thereby reducing the number of observations and being able to reach
to the destination. We [1] have already developed a method for planning viewpoints.
In this paper, therefore, we propose a method of planning the viewing direction for the
case where the robot observes the environment at constant intervals. Once we guided
the robot to a destination, the robot knows at which viewpoint each object point was
observed. This knowledge is useful in planning an effective observation strategy.

First, we want to know which object points are observable from a viewpoint. We
estimate the region where each object point in the map is able to be observed. If the
robot is located on the line connecting an object point and the viewpoint where the
robot observed the object point on the guided path, the robot is assumed to be able to
observe the object point. In addition, an object point is observed at two consecutive
viewpoints on the guided path, the robot is assumed to be able to observe the object
point between these viewpoints. Based on these assumptions, for each object point,
we can calculate the region within which the object point is observable as shown in

Fig. 6(a). Using such regions, we can obtain the set of object points observable for a
viewpoint.
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Fig. 6: Our ideas on the autonomous navigation

Next, we determine the viewing direction at each viewpoint. The shortest path

consists of straight line segments and circular segments. Since the shape of a circular
segment is determined by its nearby object points, it is important for the robot to
observe such points before entering the circular segment. Therefore the robot directs
the camera head so that such object points are located at the center of the observed
images, whenever it is possible.

If such object points are not observable from the current viewpoint, we select the
viewing direction as follows. For each viewing direction, we can predict a set of object
points to be observed. Then we can predict the positional uncertainty of the robot to
be obtained by observing the set by considering the uncertainty of the position of each
object point and that of the observation. Finally, we select the best viewing direction
which gives the minimum positional uncertainty of the robot.



The predicted uncertainty of the robot position is calculated as follows. For each
viewing direction ¢, a set of observable object points O(¢) is determined. Suppose that
the robot observes an object point j in O(¢) whose uncertainty is A,,; in the map. The
positional uncertainty A;;(¢) of the robot is computed by the following equation (see
Fig. 6(b)).

Aij(9) = Amj + Acj(9), (10)

where A.;(¢) is the observation uncertainty of object point j calculated by the vision
uncertainty model [1]. The positional error of the robot is computed from all observable
object points by the following equation based on the maximum likelihood estimate [6]

as follows:
U™o)= > Nj(9). (11)
JEVR(¢)
We finally select the best viewing direction ¢* which minimizes the positional uncer-
tainty of the robot as follows:

6" = argmin [U(6)] (12)
3.3  Experimental Result of Autonomous Navigation

We performed experiments on autonomous navigation using a real robot. An experi-
mental result is shown in Fig. 7. In the experiment, the map shown in Fig. 4(b) was
used. In Fig. 7, a light line indicates the shortest path and dots around the path
represent the estimated viewpoint. The arrow on each dot represents the viewing direc-
tion which the robot observed in this experiment. Fig. 8 shows snapshots of the robot
autonomously moving.

Fig. 8: Scene of autonomous navigation

In order to show the effectiveness of our view planning method, we compare our
method with the method which always directs the camera head to the right front. The
results are shown in Table 1 and in Table 2. The positional uncertainty |U(¢)| of the



robot is shown in Table 1. The smaller values indicate higher accuracy. The values in
Table 2 are calculated by the following expression:

{S(7,67(7) = 5, 6"(i))} o, (13)

where S is the value calculated by equation (7) and S and o is the average and the
standard deviation of the similarity. This value indicates the distinctiveness of the
best position estimate. The larger values indicate more accurate estimation. These
results shows that the viewing direction calculated by the equation (12) is effective for
accurately estimating the robot position.

Table 1: The comparison of the estimated positional Table 2: The difference of the estimation of

uncertainty the robot position
No. || Front | Our Method (qﬁ*[deg]) No. || Front | Our Method
5 4.77 4.23 (—1.04) 5 0.542 0.895
8 1.14 0.665 (—8.49) 8 0.331 0.343
11 2.18 1.61 (—9.76) 11 | 0.295 0.371

4 Conclusion

We have proposed a navigation method of a mobile robot based on the map which
is autonomously generated by the robot. During human-guided movement, the robot
makes the map which represents object boundaries by integrating the observed object
points. After making the map, the robot detects the shortest path and plans viewing
directions at each viewpoint. The robot can reach to the destination safely and effi-
ciently using the plan. The feature of our approach is that user have only to guide
the robot to a destination for once. A future work is to cope with the case where the
environment changes between the map-making and the autonomous navigation phase.
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