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Abstract—Pedestrian detection is one of the key technologies
for autonomous driving systems and driving assistance systems.
To predict the possibility of a future collision, these systems have
to accurately recognize pedestrians as far away as possible.
Moreover, the function to detect not only people walking but
also people who are standing near the road is also required. This
paper proposes a method for recognizing pedestrians by using
a high-definition LIDAR. Two novel features are introduced to
improve the classification performance. One is the slice feature,
which represents the profile of a human body by widths at
the different height levels. The other is the distribution of the
reflection intensities of points measured on the target. This
feature can contribute to the pedestrian identification because
each substance has its own unique reflection characteristics
in the near-infrared region of the laser beam. Our approach
applies a support vector machine (SVM) to train a classifier
from these features. The classifier discriminates the clusters
of the laser range data that are the pedestrian candidates,
generated by pre-processing. A quantitative evaluation in a road
environment confirms the effectiveness of the proposed method.

I. INTRODUCTION

Various driving assistance systems, such as collision avoid-
ance and pre-crash safety, have been developed recently to
improve the comfort and safety of drivers and cars. Research
on autonomous driving has also advanced. It is important for
these systems to recognize road environments that contain
moving objects, such as other vehicles and pedestrians. In
particular, pedestrian recognition is one of the key technolo-
gies for decreasing accidents between cars and people, which
cause heavy traffic casualties. To estimate a future collision
accurately, a system has to recognize pedestrians at a long
range.
A horizontally scanning laser scanner, known as a light

detection and ranging (LIDAR) system, is often used to
detect vehicles and pedestrians. LIDAR has the excellent
advantages of high spatial resolution and high range accuracy
compared with millimeter wave (MMW) radar, but also the
following disadvantages: it does not work robustly in bad
weather, such as rain and fog, and its detection range is
shorter than MMW radar. However, recent improvements
of LIDAR sensitivity have lead to higher performance in
bad weather except in fog. Moreover, high-definition LIDAR
which can obtain dense range data even in the vertical direc-
tion is produced these days. It is widely used as a powerful
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sensor for autonomous driving. And it is expected to be a
future on-vehicle sensor for environmental recognition.
A method for recognizing pedestrians from 3D range data

acquired by high-definition LIDAR is presented in this paper.
A technique for estimating the ego-motion and tracking
moving objects using LIDAR has been developed [1], and it
has been confirmed that cars, bicycles and pedestrians can be
distinguished based on their size and their velocity. However,
a risk assessment [2] for safety driving assistance requires
the detection of not only people walking, but also people
standing near roads and on sidewalks.
Our goal is to recognize even static pedestrians accurately

on the basis of the distribution of 3D range data. Our
approach does not require any motion cues. The proposed
method divides a measured 3D point cloud into clusters
corresponding to the objects in the surroundings. Then
the pedestrian candidates are extracted by the size of the
clusters [3], [4]. Several features are calculated from the 3D
point cloud contained in each candidate, and the classifier
distinguishes the pedestrians on the basis of the features.
Our approach applies a support vector machine (SVM) to
train the classifier. No tracking is considered in this work.
To improve the performance of pedestrian discrimination

at a long distance, two novel features are proposed: the
slice feature and the distribution of reflection intensities. The
slice feature is composed of the widths at different height
levels of the human body. This feature can represent a rough
profile of the human body from the head to the legs. The
latter feature is also effective for distinguishing pedestrians
from false positives. The wavelength of the laser beam of
LIDAR is in the near-infrared (NIR) region. In the field of
spectroscopy [5], it is widely known that NIR lights have
different reflection characteristics depending on the materials
of the target. So the reflection intensity is considered to be
effective for object recognition.
In this paper, a quantitative evaluation is carried out using

the range data collected from a moving vehicle in a real road
environment. The result demonstrates the effectiveness of the
proposed method.
This paper is structured as follows: Section II briefly

describes previous related work. Section III shows the spec-
ification of LIDAR used in this paper. In Section IV, the
details of the proposed method for recognizing pedestrians
are presented. Section V contains the experimental results
and Section VI concludes the paper.

II. RELATED WORK
Image-based approaches [6]-[13] are very popular in stud-

ies of pedestrian recognition. Numerous approaches have
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TABLE I
SPECIFICATIONS OF LIDAR

Item Specifications
Scanning rate 10 scans/s
Horizontal field of view 360◦

Horizontal angular resolution 0.23◦

Vertical field of view 26.8◦

Vertical angular resolution 0.4◦ (64 lines)
Detection range 40 m for pavement

120 m for cars and foliage
Range accuracy 0.02 m
Wavelength of laser beam 905 nm

been proposed to improve the detection performance and
the processing speed. However, little research has been
conducted on LIDAR-based pedestrian recognition in 3D
range data.
Arras et al. [14] detected people in 2D range data from LI-

DAR in a cluttered office environment. They used a LIDAR
sensor with one horizontally scanning line and applied the
AdaBoost algorithm to learn a robust classifier. The classifier,
learned from 14 features, such as the number of laser points
and the values indicating the linearity and the circularity in
the 2D plane, identified the groups of beams that correspond
to people’s legs. Premebida et al. [15] extended the method to
pedestrian detection in a road environment using multilayer
LIDAR. They applied a multiple classification method to
detect people within a range up to 35 m. Those methods
rely on the linearity and the circularity of the 2D range data
for the feature extraction. Extending the approach to 3D laser
range data increases the computational load.
Spinello et al. [16] expanded these approaches based on

a 2D point cloud into a 3D point cloud. They subdivided
the 3D point cloud of the target into several 2D point clouds
at different heights. The classifiers obtained by AdaBoost
estimated whether each 2D point cloud was a part of a human
body. The estimation results of all parts of the target were
integrated and the target with the correct combination of
parts was identified as the pedestrian. However, the detection
performance was very sensitive to the distance to the target.
For driving assistance systems, it is necessary to improve the
performance at a long distance.
Navarro-Serment et al. [17] also presented a method of

tracking people in 3D range data from high-definition LI-
DAR. The 3D point cloud in the target was divided into three
parts corresponding to the legs and the trunk of a pedestrian,
and the variances of the 3D points contained in each part
were utilized as a feature to discriminate the pedestrians.
In addition, they represented a 3D pedestrian shape by 2D
histograms on two principal planes. The approach has the
advantage of a low computational load because the feature
extraction is very simple. However, the performance at a long
range was also reduced in this approach.
The slice feature and the distribution of reflection inten-

sities are the two novel features proposed in this study to
achieve high performance even at a long range.

Fig. 1. Sample of 3D range data.

10 m 20 m 30 m 40 m 50 m10 m 20 m 30 m 40 m 50 m

Fig. 2. Sample of a pedestrian over a range of distances.

III. HIGH-DEFINITION LIDAR
A Velodyne HDL-64ES2 laser scanner is used as the high-

definition LIDAR in this paper. Its specifications are listed in
Table I. It has 64 scanning lines aligned at approximately 0.4
degree intervals in the vertical plane and can obtain dense 3D
range data by the horizontal scan of 360 degrees. The sensor
is mounted on the roof carrier of an experimental vehicle,
whose height is approximately 2 m. Fig. 1 shows a sample
of measured 3D range data that is composed of points with
3D positions and reflection intensities.
Fig. 2 shows pedestrian samples over a range of distance.

Only a few laser beams are irradiated on the pedestrian at
50 m ahead, although the vertical resolution of the sensor is
high.

IV. PROPOSED METHOD
The proposed method for pedestrian recognition is de-

scribed in this section. First, the processing flow from the
measurement to the classification is briefly introduced. Then
the details of the classification process, with a focus on
feature extraction, are explained.

A. Overview of Processing Flow
The processing flow at each scan is shown in Fig. 3. And

each process is explained in detail.
1) Data acquisition: A 3D point cloud is acquired from

LIDAR.
2) Segmentation: The acquired 3D point cloud is divided

into two classes, ground plane and objects, by using an
occupancy grid map [18]. All of the 3D points are projected
onto the 2D occupancy grid, which is parallel to the ground
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Fig. 3. Procedure of pedestrian recognition.

plane. The difference between the maximum height and the
minimum height in each cell is investigated. If the difference
is larger than a threshold, the points in the cell are segmented
as objects. The cell size of the occupancy grid is 0.1 m and
the threshold of the height for segmentation is 0.3 m.
3) Clustering: The clusters corresponding to vehicles and

pedestrians are generated by a distance-based clustering
algorithm. To reduce the computational burden, the clustering
process is carried out on the occupancy grid by using the
labeling technique for image processing. If the distance be-
tween two points is within 0.5 m, these points are integrated
into the same cluster. A rectangular parallelepiped is applied
to each cluster by the Rotating Calipers method [19]. Then
the pedestrian candidates are extracted on the basis of the
size of the clusters. The conditions are as follows:

0.8≤ h≤ 2.0, (1)
w≤ 1.2, (2)
l ≤ 1.2, (3)

where h, w and l denote the height, the width, and the length
of the cluster, respectively.
4) Classification: A feature vector is computed from the

3D point cloud of each candidate and evaluated to classify
the candidate into a pedestrian or not. The proposed method
applies SVM with a radial basis function (RBF) kernel to
learn the classifier.

B. Pedestrian Classification
Table II lists all nine features used in the proposed method.

The set of feature values of each candidate Cj forms a
vector f j = ( f1, ..., f9). Features f1 and f2 are introduced by
the Premebida method [15]. The features from f3 to f7 are
proposed by the Navarro-Serment method [17]. To improve
the classification performance, the proposed method adds the
following two features.

TABLE II
FEATURES FOR PEDESTRIAN CLASSIFICATION

No. Description Dim.1

f1 Number of points included the cluster 1
f2 The minimum distance to the cluster 1
f3 3D covariance matrix of the cluster 6
f4 The normalized moment of inertia tensor 6
f5 2D covariance matrix in 3 zones, which are the upper

half, and the left and right lower halves
9

f6 The normalized 2D histogram for the main plane.
14×7 bins

98

f7 The normalized 2D histogram for the secondary
plane. 9×5 bins

45

f8 Slice feature for the cluster 20
f9 Distribution of the reflection intensity, which is com-

posed of the mean, the standard deviation and the
normalized 1D histogram

27

1Dim. is Dimension.

1
s
t
e
ig

e
n

v
e
c
to

r

3rd eigenvector

2nd

eigenvector

0j
w

1j
w

Block j
1

s
t
e
ig

e
n

v
e
c
to

r

3rd eigenvector

2nd

eigenvector

0j
w

1j
w

Block j

Fig. 4. The slice feature.

1) Slice Feature for a Cluster: The pedestrian candidates
may contain false positives, such as trees and poles, signs,
and partially occluded objects. It is necessary to accurately
distinguish the false positives from the pedestrians. The
pattern of the legs and the profile from the head to the
shoulder are distinctive human shapes. It is, however, difficult
to extract these partial features at a long distance, where
the spatial resolution decreases. A rough profile from the
head to the legs is therefore utilized as the 3D shape of the
pedestrians.
Three principal axes for the pedestrian candidates are

calculated by principal component analysis (PCA). We as-
sume that most pedestrians are in an upright position, so the
principal eigenvector is expected to be vertically aligned with
the person’s body. 3D points in the cluster are divided into
N blocks of the same size along the principal eigenvector,
as shown in the left image of Fig. 4. As a result of the
division, a common feature can be extracted from pedestrians
of different heights, such as an adult and a child. Then, the
3D points in each block are projected onto a plane orthogonal
to the principal eigenvector, and two widths along the other
eigenvectors are computed as the feature. The number of
blocks is 10. The feature vector is represented as follows.
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Fig. 5. Reflection intensity profile of a pedestrian and a utility pole.

f8 = {w10,w11, · · · ,wj0,wj1, · · · ,wN0,wN1} (4)

This feature vector is called the ”slice feature” in this paper.
2) Distribution of Reflection Intensities in the Cluster:

As known in the field of spectroscopy, a substance has its
own unique reflectance characteristics. The reflection inten-
sities of a pedestrian might have large individual variability
because their clothing and their belongings are composed
of various materials. It is, however, expected that materials
leading to false positives, such as trees and utility poles,
are comparatively homogeneous. Therefore, the reflection
intensities of 3D points can contribute to the discrimination
of pedestrians and false positives. Examples of the reflection
intensities of a pedestrian and a utility pole are shown in Fig.
5.
The reflection intensity Pr is defined by the following

equation. It is in inverse proportion to the square of the
distance r:

Pr =
P0kσ
r2

, (5)

where P0 is the intensity of the emitted laser beam and k is
the coefficient defined by the LIDAR specifications, and σ
is the reflectance of the target.
Strictly speaking, the reflection intensity has to be normal-

ized by the square of the distance. We can directly use the
sensor output since LIDAR outputs an 8 bit value normalized
for the distance as the reflection intensity.
The following three values are computed from the reflec-

tion intensities of the 3D points contained in each candidate:
i) Mean intensity
ii) Standard deviation of the intensities
iii) Normalized histogram: the number of bins is 25

and the range of the intensities is divided at equal
intervals.

V. RESULTS
To confirm the effectiveness of the proposed method,

the quantitative evaluation is carried out using 3D range
data collected in a real road environment by high-definition
LIDAR. This section describes the experimental condition
and the evaluation results.

TABLE III
CONDITIONS FOR FUNDAMENTAL EVALUATION

(a) Condition of overall evaluation and feature evaluation

Description Total N pos. N neg.
Training data 7700 3700 4000
Evaluating data 8220 4165 4055

(b) Condition of evaluation at different ranges

Description Total N pos. N neg.
Training data 1452 726 726
Evaluating data 1452 726 726

TABLE IV
CONDITION FOR EVALUATION IN ROAD ENVIRONMENT

Description Total N pos. N neg.
Training data 7190 3190 4000
Evaluating data 78977 3190 75787

A. Experimental Condition
Two data sets are prepared for the evaluation. The samples

of positives and negatives are manually extracted from the
pedestrian candidates, generated by the procedure in Section
IV-A.
Data set I contains 11 people who walk around a parked

experimental vehicle. The total number of positive samples
is 7865. The measurement range is up to 50 m. Five people
have some belongings, such as a briefcase and a backpack.
Negative samples are extracted from the scenario without
pedestrians and their total number is 8055.
Data set II is composed of 75 scenarios in the real road

environment. The total number of frames is 16210. The
number of positive and negative clusters is 6380 and 79787,
respectively. This data set has 124 people with various
clothing and belongings. The measurement range is also up
to 50 m.

B. Fundamental Evaluation
The fundamental performance of the proposed method is

evaluated using data set I.
Fig. 6 shows the classification result for the overall sam-

ples within 50 m. This is the receiver operating characteristic
(ROC) curve. The vertical and the horizontal axes in the
graph represent the true positive rate and the false posi-
tive rate, respectively. Table III-(a) shows the condition for
training and evaluating. The result of the Navarro-Serment
method is shown as a reference. The true positive rate of
the proposed method is approximately 0.1 higher than that
of the Navarro-Serment method at the point where the false
positive rate is 0.01.
The classification ability of each feature is evaluated to

confirm the effectiveness of the proposed features. The result
is shown in Fig. 7. The two additional features, which
are the slice feature and the distribution of the reflection
intensities, are more discriminative for the pedestrians than
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Fig. 6. Recognition performance for overall samples in data set I.
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Fig. 7. Recognition performance for each feature.

the conventional features. The classification ability of the
2D histogram features for the pedestrian shape is not as
high. Note that the slice feature attains a high performance,
although it has a small dimension.
To evaluate the performance at different ranges, all sam-

ples are divided into four range classes: from 10 to 20 m,
from 20 to 30 m, from 30 to 40 m, and from 40 to 50 m.
The experimental condition is also listed in Table III-(b).
For training and evaluating, the same number of samples are
extracted from each range class. Fig. 8 shows the result of
the evaluation at different ranges. The proposed method gen-
erally shows higher performances than the Navarro-Serment
method, especially at the ranges between 30 to 50 m. The two
additional features work effectively at the long range, where
the spatial resolution of the measurement decreases. It is
considered that the shape representation by the 2D histogram
is sensitive to the number of 3D points on the targets.

C. Evaluation in Road Environment
The classification performance in dynamic road environ-

ments is evaluated using data set II. The numbers of training
and evaluating samples are listed in Table IV. Examples of
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(d) 40 - 50 m

Fig. 8. Results of evaluations at different ranges.

the recognition results are shown in Fig. 9. The ROC curve is
shown in Fig. 10. The horizontal axis indicates the number of
false positives per frame. Although data set II contains many
women wearing a skirt and putting up a parasol who are not
included in the training samples, the high true positive rate
of approximately 85% is achieved at 0.1 false positives per
frame.

VI. CONCLUSION
This paper presents a method for recognizing pedestrians

from 3D range data acquired by high-definition LIDAR. The
slice feature and the distribution of the reflection intensities
are proposed to improve the recognition performance at a
long range with low spatial resolution. The slice feature
can represent the rough profile of a pedestrian shape effi-
ciently and the distribution of the reflection intensities is
effective to discriminate the materials of the targets. The
quantitative evaluation using real 3D range data confirms that
the proposed method achieves higher performance than the
Navarro-Serment method. Moreover, the proposed features
can improve the classification ability at a range of more than
30 m.
However, further improvement of the performance at a

long range is required for driving assistance systems. To
achieve high accuracy, a fusion system using LIDAR and an
image sensor with high spatial resolution will be developed
in the future. Other future work is the development of robust

409



(a) Result for a pedestrian crossing the road. (b) Result for an oncoming pedestrian.

Fig. 9. Examples of the results of pedestrian recognition in the road environment. For (a) and (b), the upper-left image is the drawn range data as
seen from the driver’s viewpoint. The yellow box shows the recognized pedestrian. The lower-left image is the video image obtained at the same time as
the range data. The right image is the bird’s-eye-view image of the range scan. The magenta and green boxes show the recognized pedestrians and the
pedestrian candidates extracted by size, respectively. The red box represents the experimental vehicle. The blue lines are the boundary of the camera’s field
of view. The interval of the grid line is 10 m.

Fig. 10. Recognition performance in dynamic road environments.

features for occluded objects and the identification of other
objects, such as bicyclists and people with strollers or carts.
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