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Abstract. This paper describes a motion planning method for mobile robot which
considers the path ambiguity of moving obstacles. Each moving obstacle has a set
of paths and their probabilities. The robot selects the motion which minimizes the
expected time to reach its destination, by recursively predicting future states of each
obstacle and then selecting the best motion for them. To calculate the motion for
terminal nodes of the search tree, we use a randomized motion planner, which is an
improved version of a previous method. Simulation results show the effectiveness
of the proposed method.
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1. Introduction
Planning a path without collision with both static and dynamic obstacles is one of the
fundamental function of mobile robots. Most of past research on motion planning in
dynamic environments can be classified into two categories. One is reactive methods,
which do not predict the paths of moving obstacles [5]. In such a reactive method, not
an optimality but a safety is more important. The other is deliberative methods which
are based on the assumption that paths of the moving obstacles are completely known;
an optimal motion can be generated by employing a planning in space-time [3], or by
using the concept of velocity obstacle [6,10]. However, it is difficult to predict paths of
obstacles without uncertainty.

We divide the uncertainty of an obstacle motion into the path ambiguity (which path
to choose) and the error in following a path. The latter can be handled by considering the
range of uncertainty in motion planning [2]. A similar approach is, however, difficult to
apply to the former because a very inefficient motion may be planned when the possible
paths of an obstacle spread in a wide area. It is, therefore, necessary to cope with multiple
path candidates.

Bennewitz et al. [1] proposed a motion planning method which considers multiple
path candidates of obstacles. To avoid collision with an obstacle which has multiple path
candidates, they use a heuristic cost function which is defined in space-time; the cost
is set to be large near path candidates and proportional to the probability of each path
candidate. Using this cost function, motion planning is done by using theA∗ search
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algorithm. The method, however, does not consider the change of the environment to be
recognized by future observations.

Miura and Shirai [9] proposed to explicitly predict possible future states (i.e., which
path a moving obstacle actually takes) of the environment and their probabilities for mo-
tion planning. By recursively searching for the optimal motion for each predicted state,
they selected the optimal next motion minimizing the expected time to the destination.
The method was, however, tested only for the case where there is only one moving obsta-
cle with two path candidates and the possible motions of the robot are given in advance.

In this paper, we expand our previous method [9] so that it can handle multiple
moving obstacles with multiple path candidates and plan robot motions according to the
obstacle configuration and movements. We use a randomized motion planner, which is
an improved version of a previous method. We show the effectiveness of the proposed
method by simulation experiments.

2. Model of Moving Obstacles
In the environment, there are static and moving obstacles. Positions of static obstacles
are given in advance. Each moving obstacle has its own set of candidate destinations and
moves to one of them with avoiding collision with static obstacles. We represent a set of
possible paths by using a tangent graph [8].

The initial probability of each obstacle taking one of its paths is given. The robot pe-
riodically observes the position and the velocity of each moving obstacle, and updates the
probabilities of its path candidates. When a new observation is obtained, the probability
of thejth candidate path of theith obstacle is updated by

P (pathi
j | oi(t)) = αP (pathi

j)P (oi(t) | pathi
j), (1)

whereoi(t) is the observed position of the obstacle at timet, andα is a normalization
constant.P (pathi

j) is given byP (pathi
j | oi(t − 1)). P (oi(t) | pathi

j) is the likelihood
of the path calculated by using the Gaussian positional uncertainty.

3. Predicting the State of Moving Obstacles
We define a state of a moving obstacle as a set of possible obstacle path candidates.
The states can be classified into two cases. One is the case where only one candidate is
remaining. We call this case afixed state. The other is the case where multiple candidates
are still remaining. We call this case anambiguous state. An ambiguous state will be
changed into a fixed state by future observations; the probability of a fixed state thus
becomes large as time elapses.

3.1. Uncertainty of obstacle motion on a path

we assume that the error of a predicted position of an obstacle on a path is distributed
within the so-called 3σ region of a 2D Gaussian. Its mean is the position predicted by
assuming that the obstacle moves at the currently observed speed. The variance of the
Gaussian perpendicular to the path is constant by supposing that an obstacle tries to
follow the path as closely as possible. The variance along the path is proportional to a
moving distance of the obstacle.

3.2. Calculating the probability of a state

We first consider the case where there is one obstacle with two path candidates. Fig. 1
shows the relationship between the prediction of the positional uncertainty and the path
ambiguity in such a case. In the figure,path1 andpath2 are drawn as black arrows. Black
points are predicted positions on the path candidates at timet1 andt2. Let Ri(t) be the
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Figure 1. Prediction of the positional uncertainty
and the path ambiguity of a moving obstacle.

3σ region of the Gaussian onpathi at timet (i = 1, 2). If the obstacle is observed in the
overlapped region ofR1(t) andR2(t) (the hatched region in the figure), the state is an
ambiguous state. The probability of this ambiguous state is calculated by

P (path1)P (x1(t) ∈ R2(t)) + P (path2)P (x2(t) ∈ R1(t)), (2)

whereP (pathi) is the prior probability ofpathi, andxi(t) is the position at timet when
the obstacle is actually onpathi. The first term of Eq. (2) is the probability that the
obstacle onpath1 cannot be determined to be on either of the paths.P (x1(t) ∈ R2(t))
is calculated by integrating the probability density function ofx1(t) in R2(t). The state
is fixedif the obstacle is determined to be on eitherpath1 or path2. The probability that
the obstacle is onpath1 is given by There are twofixed state. One is the case where the
obstacle is determined to be onpath1, and the other is the case ofpath2. The probability
of the case ofpath1 is calculated by

P (path1)P (x1(t) /∈ R2(t)). (3)

Next, let us consider the case where there aren path candidates. The number of
states of the obstacle is2n − 1, that is, all combinations of paths. The probability of an
ambiguous state where there arem remaining path candidates is calculated as follows.
Let L = {l1, · · ·, lm} be a set of indices of the remaining path candidates. For the case
where the obstacle is onpathli

, the probability that them paths is still possible is equal
to the probability thatxli is inside regionsRlj (j =1, · · ·, i−1, i+1, · · ·,m) and is outside
the othern − m regions. The weighted sum of such a probability in remaining path
candidates becomes the probability of the ambiguous state with the abovem remaining
candidates as follows:

m∑

i=1

P (pathli
)P (xli(t) ∈ ∩j 6=iRlj (t), xli(t) /∈ ∪k/∈LRk(t)). (4)

Also, the probability of a fixed state where the obstacle is onpathi is given by

P (pathi)P (xi(t) /∈ ∪j 6=iRj(t)). (5)

When there are multiple moving obstacles, a state of the environment is represented
by a set of the states of all obstacles, and its probability is the product of the probabilities
of the states of the obstacles. A state of the environment is calledfixedif the paths of all
obstacles are uniquely determined. Otherwise, a state isambiguous.

4. Planning Method
The robot selects the motion which minimizes the expected cost. We use the time to
reach the destination as the cost. We first predict possible future states of the environment
and their probabilities. Then, by recursively searching for the optimal motion for each
predicted state, we select the optimal next motion which minimizes the expected cost.
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Figure 4. The path for calculating the lower bound.

This search process thus composes an AND/OR tree of robot motions and predicted
states of the environment, as shown in Fig. 2.

Once the next motion is determined by this search process, the robot executes it and
observes the environment to update the state. The robot plans the subsequent motion
based on the updated state.

4.1. Search of the Motion Minimizing the Expected Cost

We explain the search of the motion minimizing the expectation of the cost using Fig. 2.
We first pick a next motion and predict a set of states after the robot executes the motion.
If a state in the set isfixed, we calculate the cost of the state by using the motion planner
described in Sec. 4.3. If a state isambiguous, we recursively search for the optimal
motion (and thus the cost) for the state. We limit the search depth to avoid combinatorial
explosion. When the search reaches the depth limit, we calculate a feasible robot motion
which considers all possible obstacle paths, i.e., plan a robot motion by assuming that
every remaining path candidate is actually taken by some obstacle. The expectation of the
cost of the next motion is then obtained by calculating the sum of the expectation of the
costs of all possible states weighted by their probabilities. We calculate the expectation
of the cost for every candidate of the next motion, and select the one which has the
minimum expectation of the cost.

4.2. Pruning of the AND/OR Tree by Using Lower Bound

To reduce the computation cost of the search, we perform a pruning of the AND/OR
tree. Fig. 3 shows this pruning process, when searching for the motion minimizing the
expected cost for stateS.

Suppose that for motionmi in stateS, expected total costCi is calculated. This
cost is the sum of the cost from the initial state toS and that fromS to the goal state.



For another motionmj , if its lower boundCj is larger thanCi, mj can be pruned. This
lower bound changes as the total cost of a predicted state to be reached after executing
mj is obtained. LetSk

j (k = 1, · · · , n) be the predicted states. After the costsCk
j for

Sk
j (k=1, · · ·, l) are calculated, the lower bound is

Cj
l = Cj +

l∑

k=1

P (Sk
j )

(
Ck

j − Cj

)
. (6)

If Cj
l > Ci, we prune branchmj without calculating the costs of remainingn− l states.

Lower boundCj is calculated as follows. We consider a motion pair which is com-
posed of a turning motion and a straight motion to reach the goal from the current posi-
tion, with neglecting any collisions with obstacles, as shown in Fig. 4. We examine the
cost of such motion pair for a given set of turning radii and set the minimum cost toCj .

4.3. Calculating a Feasible Path

To calculate a feasible path for a fixed state (including the case where a robot has to
make a plan by considering all possible path candidates at the depth limit), we use an
improved version of the method proposed by Hsu et al. [4]. Their method is a random-
ized search method which considers non-holonomic constraints of the robot motion. The
method picks a robot motion at random and generates a probabilistic roadmap of sam-
pled state×time points, called milestones, connected by short admissible trajectories.
The probabilistic roadmap consists of a tree of milestones whose root is the initial robot
pose. This search process finishes by finding a milestone which is in theendgame region.

In the method, the completeness is an important issue, but the quality of planned
path is not discussed. Since the method finishes the search by finding only one path, a
found path may be much more inefficient than the optimal one. We improve their method
in the following points:

• Give weights to milestones so that a wide space is explored.
• Iterate the path search until a sufficiently good path is found.
In this paper, the endgame region is defined as the set of robot poses from which a

feasible path to the goal can be generated as the one shown in Fig. 4.

4.3.1. Weighting Milestones
In sampling milestones, if the weights of milestones are uniform, the tree may grow
under a set of limited milestones; this may make a path quality low.

To deal with this problem, Hsu et al. [4] give a weight to a milestone inversely pro-
portional to the number of other milestones which is in the neighborhood of the mile-
stone in the configuration space. However, the distance between milestones under a spe-
cific milestone is not necessarily small when their depths are largely different. Rapidly-
exploring Random Tree (RRT) [7], which uses the size of the Voronoi regions for weight-
ing, may have the same drawback.

To make the tree grow relatively uniformly, we give the same weight to subtrees if
their roots are at the same depth. Therefore the weight to milestonei with depthdi and
with bi motions which have not been expanded is given by(bi/B)(1/B)di , whereB is
the number of robot motions (i.e., branching factor).

However, searching by using these weights is probabilistically equal to the breadth-
first search; this may require much computation. So we put more weights on deeper
milestones. The weight of the milestone is modified as(bi/B)(a/B)di , wherea (> 1) is
a constant.
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Figure 7. Predicted path qualities.

4.3.2. Evaluating the Quality of a Path
We iterate the path search several times and select the best path among the generated
ones. We here consider the problem of determining when the path search is finished. To
solve this problem, we need to be able to evaluate how good the current best path is.
Therefore, we estimate the proportion of the number of paths whose costs are greater
than that of the current best path to the total number of all possible paths. After a feasible
path is found, if the lower bound of a milestone is larger than the cost of the path, no
paths passing the milestone are more efficient than the feasible path. To estimate the
proportion described above, we need to estimate the number of potential paths which
passes a milestone.

We assume that milestones at the same depth have the same number of potential
paths. Under this assumption, a deeper milestone has fewer potential paths; Fig. 5 illus-
trates this property. In the figure,D denotes the maximum depth of the tree, which is set
to that of the current best path. The total number of the potential paths isBD (B is the
branching factor).

Fig. 6 illustrates how to calculate the number of potential paths of a milestone. In the
figure, milestonei has a child milestonej. We consider that a potential path belongs to
the deepest milestone on the path. So potential path set 1 belongs to milestonei and set
2 belongs to milestonej. A milestone which is a child of milestonei and has not been
expanded hasBD−(di+1) potential paths. If milestonei hasbi such children, its number
of potential paths isbiB

D−(di+1).
If a milestone cannot be added to the tree due to collision, the potential paths passing

it can never be obtained as feasible paths. When milestonej cannot be added, the number
of potential paths passing it isBD−dj , and this number should be excluded from the total
number of the potental paths.
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Figure 8. Simulation result.

Let I be the set of the indices of milestones whose lower bounds are greater than the
cost of the current best path, andJ be the set of the indices of milestones which cannot
be added due to collision. The proportion of the number of potential paths whose costs
are greater than that of the current best path to the total number of potential paths is thus
estimated by ∑

i∈I biB
D−di−1

BD −∑
j∈J BD−dj

. (7)

If the estimated proportion becomes greater than1−α, the current best path is expected to
belong to the best100α% of the entire set of potential paths. If this condition is satisfied
with a smallα, we consider that a sufficient path is obtained. Currently, we use0.1 asα.

To validate Eq. (7), we performed the following experiment. First, we generated
5000 paths from a milestone tree. Next, for each path, we calculated the estimated pro-
portion given by Eq. (7) using the path as the current best path, and compared it with the
actual proportion. Fig. 7 shows the comparison result. The estimated proportion is al-
ways less than the actual one mainly because the estimation is based on the lower bound.
When the quality of a path is high enough, the estimated proportion is near to the actual;
this suggests that this estimated proportion is a good measure of path quality.

5. Experimental Results
Fig. 8 shows the results of a simulation experiment. In the figure, white regions are free
space, dark gray lines are path candidates of moving obstacles. Gray lines are planned



Figure 9. Probabilities of the paths of each obstacle.
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Figure 10. Result of motion planning
without considering ambiguity.

robot paths, among which a darker line indicates a path with a higher probability. On
paths of both the robot and the obstacles, circles are drawn with a fixed time interval.

In the experiment, the number of obstacles is two, the number of initial path candi-
dates of each obstacle is three, and the depth limit of search is two. A motion of the robot
is represented by a pair of the turning radius and the speed. The number of robot motions
is nineteen. The prior probability of each path candidates is set equally.

Obstacle 1 actually takes the right path, and obstacle 2 takes the middle. Fig. 9 shows
the change of the probabilities of paths for each obstacle. For obstacle 1, the probability
of taking the right path becomes dominant att = 1, but the ambiguity of paths remains
until t = 4. For obstacle 2, the probability of taking the middle path becomes dominant
at t = 1, but the ambiguity of paths remains untilt = 4.

At time t = 0, since all paths of the obstacles are equally probable, the robot selects
the motion to move a position where the robot can safely avoid collision with the obsta-
cles even if they will take any paths. At timet = 1, the situation is still highly ambiguous
and the robot selects a motion similar to the one selected at timet = 0. At time t = 2,
since the path of each obstacle is almost uniquely determined, only a few robot motions
in a generated plan have high probabilities. At timet = 3, the robot now knows that both
obstacles will not take their left paths and generates a plan in which the probability of
robot motions which will cross over the left paths. At timet = 4, there is no obstacle in
front of the robot. However, since the environment is not fixed, the robot generates two
slightly different paths due to the randomness of the planner. At timet = 5, the paths of
the obstacles are fixed, and the robot plans a single path towards the destination.

The computation time att = 0 is 140 [sec] using an Athlon 2200+ PC. Att = 1, the
time is9.5 [sec]. Aftert = 1, the time does not exceed0.5 [sec]. The computation time
is decreased with time elapses, because the ambiguity of the environment is decreased.

We also compared our method with the method which plans a robot motion to avoid
all possible path candidates of obstacles. Fig. 10 shows the planning result att = 0 by
this method in the same situation as the one shown in Fig. 8. In the plan, the robot moves
slowly until t = 2 to wait for the obstacles to go away. The expected cost of the plan is
12.90 [sec]. On the other hand, our method selects a faster motion in the same situation,
and the expected cost is 10.99 [sec]. This result shows the effectiveness of the proposed
method.



6. Conclusion
This paper has described a path planning method which considers path ambiguity of
moving obstacles. The method predicts possible future states and their probabilities, and
searches for a robot motion for each predicted state. This prediction and search are recur-
sively performed until every state becomesterminal (i.e., the ambiguity of a state is re-
solved or the search reaches the depth limit). The method finally selects the next motion
which minimizes the expected time to the destination.

The proposed method can deal with fairly general motion planning problems with
arbitrary static obstacle configurations and multiple moving obstacles with multiple path
candidates. The path planner which we use for calculating the costs of terminal nodes is
an improved version of a previous randomized method; it iteratively generates a set of
paths until a sufficiently good path is generated. The number of iteration is determined
based on the quality evaluation of the current best path.

The current method still needs too much calculation time to be used on-line. A future
work is to consider the trade-off between the quality of a planned path and the computa-
tional cost in order to appropriately control the planning time.
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