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Abstract— This paper describes an ego-motion estimation
method by integrating multiple scan matching results. The
method considers both the uncertainty of scan matching
results and that of estimated ego-motions, and not only
estimates the latest ego-motion but also updates previous ego-
motions. The estimation process is formulated as an iterative
one using Kalman filter. We implement the method by
using an omnidirectional stereo-based scan matching method.
Experimental results show the effectiveness of the proposed
method.

I. I NTRODUCTION

Reliable ego-motion estimation is indispensable for in-
tegrating sensing data which are obtained by a moving
observer. Since dead reckoning suffers from accumulated
errors, an ego-motion estimation method is needed which
is based on external sensors such as vision. Scan matching-
based methods (e.g., [9]), which do not need explicit
feature correspondence, have an advantage over feature-
based methods (e.g., [2], [3]), which may require much
computation in extracting stable features and in finding
correct matches.

Lu et al. [9] estimated the ego-motion by comparing 2D
contours obtained by a laser range finder at the current
and the previous position. Pfister et al. [11] extended their
method to consider the uncertainty of the estimated ego-
motion in order to integrate the scan matching-based ego-
motion with odometry information. Since these methods
use only a pair of laser scans, sensor noises may cause
wrong matches thereby degrading estimation results. Ki-
dono et al. [6] proposed a scan matching-based localization
method, which compares the current range scan with the
range scan predicted from the generated map; their method,
however, did not consider the uncertainty in localization.
Hähnel et. al. [4] considered the uncertainty in a similar
scan matching method; once a robot position is estimated,
however, it is not changed by subsequent observations.

Scans may sometimes include large uncertainties, es-
pecially when using low-precision range sensors such as
stereo, and an ego-motion or a robot position obtained
using these scans may thus be unreliable. We, therefore,
must be able to update previously-estimated ego-motions
or robot positions, if necessary. In simultaneously local-
ization and mapping (SLAM) problems, some research re-
estimates ego-motion to close loops (e.g., [1], [5]); but the
re-estimation is limited to the timing of closing the loop.

This paper deals with ego-motion estimation from mul-
tiple scan matching results. Fig. 1 shows an example
situation where a robot obtains three range scans at times
t − 2, t − 1, and t. Let X (t-1)

t be the ego-motion during

(t-1)X t

(t-2)X t

(t-2)X t-1
Fig. 1. Integrate tree scan matching results.

[t − 1, t]; it can be calculated by comparing two scans
at time t − 1 and t. Similarly, we obtainX (t-2)

t-1 . This is
basically what the previous methods are doing which use
only a pair of range scans for ego-motion estimation. We
can, however, use the other scan matching result,X (t-2)

t , to
improve the ego-motion estimation. This is the basic idea
of our method.

Our previous work [8] has already dealt with ego-motion
estimation using multiple scan matching results. Although
the method outperformed previous methods which use only
a pair of scans for estimating an ego-motion, it still had the
following two drawbacks. One is that at each time, only the
latest ego-motion is estimated with believing the previous
ego-motion estimates; so if some of previous estimates
are unreliable, the current estimate becomes inherently
unreliable too. The other drawback is that all scan matching
results are treated evenly; the estimation result may be
degraded by matching results with large uncertainties.

This paper improves our previous method so that we
can simultaneously estimate the current and the previous
ego-motions with considering the uncertainty of each scan
matching result. Estimatingk ego-motions from scratch
needs to examinek+1C2 pairs of range scans, and this
may be costly. We therefore develop a Kalman filter-based
iterative scheme which estimates the current ego-motion
and updates the previousk−1 ego-motions simultaneously
by using onlyk +1 newly obtained scan matching results.

The rest of this paper is organized as follows. Section
II describes the ego-motion estimation algorithm by using
multiple scan matching results. Section III describes an
implementation of the method using an omnidirectional
stereo. Section IV shows experimental results using a real
robot. Section V summarizes the paper.

II. PROPOSEDALGORITHM

This section describes a Kalman filter-based algorithm
of integrating multiple scan matching results for ego-
motion estimation. Basically we use the latestk + 1 range
scans for estimatingk ego-motions. Actually, our method
estimates the relative position of latestk observation points
(including the current one) with respect to the observation
point k steps before.

Let X
(t-k)
t-i = (x(t-k)

t-i , y
(t-k)
t-i , θ

(t-k)
t-i )T denote the relative

position at timet − i with respect to the position at time
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Fig. 2. State transition model.

t− k. The stateSt is represented by the vector:

St =
(

X
(t−k)
t−k+1

T
, X

(t−k)
t−k+2

T
, . . . , X

(t−k)
t

T
)T

. (1)

An observation is a set ofk scan matching results between
the current and the previousk range data. Letpt,t−i

denote the scan matching result (i.e., the observed relative
displacement) obtained by range scans at timet andt− i.
Then the observation is represented by the vector:

Pt =
(
pt,t-k

T , pt,t-k+1
T , . . . , pt,t-1

T
)T

. (2)

Fig. 2 illustrates the iteration process. Fig. 2(a) shows the
situation where the relative position at timest− k to t− 1
with respect to the position at timet− k− 1 are estimated
using the observations until timet − 1. Fig. 2(b) shows
the state transition fromSt-1 to St; the relative position at
time t with respect to a new basis (position at timet−k) is
calculated from the difference between a relative position,
X t-k-1

t-k , in St-1 and the scan matching result between range
data at timet andt−k−1. Fig. 2(c) indicates the estimation
of St by integrating newk scan matching results.

The state transition equation (see Fig. 2(b)) is given by:

St/t-1=




−I I . . . 0
...

...
.. .

...
−I 0 . . . I
0 0 . . . 0


St-1/t-1+




0
...
0

pt,t-k-1

−X (t-k-1)
t-k




+ vt (3)

vt =




0
...
0

δpt,t-k-1− δX (t-k-1)
t-k


 ,

whereδpt,t-k-1 andδX (t-k-1)
t-k are the errors of the observation

pt,t-k-1 and the relative position vectorX (t-k-1)
t-k respectively.

In this equation, the initial value ofX (t-k)
t is estimated

from pt,t-k-1 andX (t-k-1)
t-k ; this means that our Kalman filter

integrates only observations. It is a simple extension to
integrate odometry information into this formulation.

The observation equation (see Fig. 2(c)) is given by:

Pt =




0 . . . 0 I
−I . . . 0 I

...
. ..

...
...

0 . . . −I I


St + wt, (4)

wherewt is a noise vector,0 is 3 × 3 dimensional zero
matrix, andI is 3-dimensional unit matrix.

A scan is composed of a set of observed points. So
the error of a scan matching resultpt,t-i is caused by two
factors: the observation error of the points and false corre-
spondence between the points. Since every scan matching
result in eq. (2) uses the same observation at timet, the
errors of these scan matching results are not independent.
However, since the number of points in a scan is usually
large, the influence of an observation error to the scan
matching error is considered sufficiently smaller than that
of false correspondence, which depends on the shape of
the surrounding environment. Thus we assume that the
errors of scan matching results in eq. (2) are mutually
independent. Under this assumption, the covariance matrix
of wt is calculated by:

ΣPt =




Σpt,t-k 0 . . . 0
0 Σpt,t-k+1 . . . 0
...

. ..
...

0 . . . 0 Σpt,t-1


 , (5)

whereΣpt,t-i is calculated as the uncertainty of the corre-
sponding scan matching result (see Sec. III-D).

By applying Kalman filter to eqs. (3) and (4), we
iteratively update the stateSt and estimate its uncertainty.
At the initial position, the robot position and orientation
are considered to have no uncertainty. We use5 ask, and
if the number of observations is less thank +1, we set the
dimension of the state vector accordingly.

III. O MNIDIRECTIONAL STEREO-BASED SCAN

MATCHING

This section describes an implementation of the ego-
motion estimation method using an omnidirectional stereo.
To apply the ego-motion estimation method, we need a
scan matching method which not only calculate the relative
position between observation points but also its uncertainty.

The outline of the scan matching method is as follows.
We first compute the uncertainty of the current robot
position (with respect to some basis position) calculated
by dead reckoning to determine a set of possible robot
positions and orientations. Next, we calculate the differ-
ence between the views of the current and the previous
range data for each candidate pair of the position and the
orientation, and estimate the reliability of each candidate.
Finally, we determine the current position and orientation
with their uncertainties by a weighted least squares-based
estimation.



Fig. 3. An example of the original
input image.

Fig. 4. Panoramic image obtained from the input image shown in Fig. 3.

Fig. 5. Panoramic disparity image obtained from the images in Fig. 4. Brighter pixels are nearer.
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Fig. 6. Example range profile.

Fig. 7. Our mobile robot.

A. Omnidirectional Stereo

Our scan matching method uses the omnidirectional
stereo. The omnidirectional stereo vision system uses two
HyperOmni Vision [13] aligned vertically. Fig. 3 shows
an input image of the lower camera of our stereo system.
Each image can be converted to a panoramic image shown
in Fig. 4 by projecting on a cylindrical image plane whose
axis is aligned to an optical axis of the camera. By this
conversion, we can obtain a stereo image pair where all
epipolar lines become vertical. Therefore, we can apply
a conventional stereo matching algorithm for an ordinary
perspective stereo. We use an SAD-based stereo matching
algorithm. For the detail of this omnidirectional stereo,
refer to [7].

To adopt a visual ego-motion estimation method, we
first extract the nearest obstacle in each direction. Since
the horizontal axis of the panoramic image indicates the
horizontal direction, we extract the nearest obstacles in
every column, then we obtain a set of disparities of about
360 degrees. From this data set, a 2D contour (calledrange
profile (RP)) of the current free space centered at the robot
position is obtained. Fig. 6 shows the RP obtained from the
disparity image shown in Fig. 5. In Fig. 6, the horizontal
axis represents the viewing direction from the robot and
the vertical axis represents disparity of obstacles.
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Fig. 9. Problem caused by fixed angular resolution.

B. Select Candidate Positions and Orientations

Fig. 7 shows our mobile robot. The robot moves by
driving the two rear wheels. We define a state of the robot
as X = (x, y, θ), where (x, y) is a 2-dimensional robot
position centered at the omnidirectional stereo cameras,θ
is a orientation of the robot. The positional uncertainty
increases as the robot moves due to slippage of wheels or a
quantization error of odometry. We model the uncertainty
by a three-dimensional normal distribution; the so-called
3σ ellipsoid obtained from the covariance matrixΣXt rep-
resents the uncertainty region. The positional uncertainty
on (x, y) is calculated by projecting the ellipsoid on the
x-y plane and the orientational uncertainty is calculated as
its marginal distribution onθ.

We select candidates of robot position and orientation
in the region. Candidates of the position are set at lattice
points which are made by lines parallel with two principal
axes of the ellipse. The origin of the lattice is set at the
center of the ellipse. The number of lattice points along
each axis is selected as the minimum odd number greater
than3, by which the length of the principal axis divided is
smaller than50[mm]. For example, when the length of the
longer principal axis is200[mm] and that of the shorter is
140[mm], the number of the candidate positions becomes
5×3. Candidates for the robot orientation are generated by
discretizing the range of the orientational uncertainty with
the angular resolution of the RP.
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Fig. 10. Estimation of the positional distribution.

C. Comparing Two Range Profiles

To compare the current and a previous RP, we predict
the view of the previous RP for each candidate position and
orientation. Fig. 8 indicates the situation where the robot
at candidate position(x, y) is observing an object which
was observed at positionXt-i = (xt-i , yt-i , θt-i). We would
like to predict the direction and the disparity of the object
in order to predict the view of a previous RP. The obstacle
positionoDt-i(φ), which is observed at timet−i in direction
φ with disparityDt-i(φ), is represented by using the robot
positionXt-i :

oDt-i(φ) =

(
bf

Dt-i(φ) cos(θt-i + φ) + xt-i
bf

Dt-i(φ) sin(θt-i + φ) + yt-i

)
, (6)

where b represents the baseline of the omnidirectional
stereo, andf represents the focus length of panoramic
images. ΣoDt-i(φ) , which is the error covariance matrix
of oDt-i(φ), is calculated fromΣXt-i , which is the error
covariance matrix of the positionXt-i , andσ2

Dt-i(φ), which is
the error variance of disparityDt-i(φ), by error propagation.
We setσ2

Dt-i(φ) = σ2
D∗ = 1 as the quantization error of

panoramic images.
OnceoDt-i(φ) is calculated, we can determine the relative

position of oDt-i(φ) from a candidate position(x, y), and
then we can calculate the distancer and the directionφ′

to oDt-i(φ) from the candidate position. By converting the
distancer to the disparity by using the relationD = bf

r ,
we can calculateD(x,y)

t-i (φ′) which is the disparity of the
obstacleoDt-i(φ) viewed from a candidate position(x, y).
Also σ2

D
(x,y)
t-i (φ′)

, which is the error variance ofD(x,y)
t-i (φ′),

is calculated fromΣoDt-i(φ) by error propagation.
The prediction of the view of a previous RP is performed

by converting each observed disparity in the previous RP
to the disparity to be observed from a candidate posi-
tion. There is, however, a possibility that such converted
disparities are not obtained for several directions in the
predicted RP, due to the fixed angular resolution. Fig. 9
shows the situation where the disparity corresponding to
the jth direction has not been obtained in the previous
observation. In such cases, if the nearest disparities on the
both sides (e.g.,oj-1 andoj+1 in the figure) are close enough
to be regarded to belong to the same obstacle, the disparity
in the jth direction is calculated by linearly interpolating
the object surface from the disparities ofoj-1 andoj+1 .

We obtain the predicted view from candidate position
(x, y) of an RP obtained att − i by applying the above

calculation to all disparities in the RP. In a candidate
position and orientation(x, y, θ), the difference of the
disparities in directionφ of the current RP and the RP
observed at timet− i is calculated by:

d(x, y, θ, i, φ) =
(Dt(φ)−D

(x,y)
t-i (φ− θ))2

σ2
D∗ + σ2

D
(x,y)
t-i (φ−θ)

, (7)

whereDt(φ) represents the disparity in directionφ at time
t. d(x, y, θ, i, φ) represents the Mahalanobis distance; if the
two disparity values in eq. (7) are from the same obstacle,
d is assumed to follow aχ2 distribution. Therefore, when
d is larger than a certain threshold determined from3σ
value of theχ2 distribution,d is set as the threshold value.
Also, whenDt(φ) or D

(x,y)
t−i (φ− θ) is not obtained, we do

not calculate the difference in that direction. By limiting
the maximum difference by considering theχ2 distribution,
the effect of false matches in stereo and that of the moving
obstacles can be reduced.

The difference of RPs is then evaluated by:

Diff (x, y, θ, i) =
1

N(x, y, θ, i)

φmax∑

φ=φmin

d(x, y, θ, i, φ), (8)

where
[
φmin, φmax

]
represents the range of possible view-

ing directions (corresponding to the right and the left end
of panoramic image);N(x, y, θ, i) indicates the number of
data for which the difference of disparity is obtained.

D. Estimating Ego-Motion

Fig. 10(b) shows an example distribution of difference
values Diff around the predicted position in a corridor
shown in Fig. 10(a). From this figure, we can consider
that the correct robot position lies in the valley of the
distribution, and that the shape of this valley is related
to the probability distribution of the robot position. So we
would like to obtain the probability distribution of the robot
position and orientation from the difference distribution.

Nickels and Hutchinson [10] solved a similar problem
of estimating the uncertainty of the target localization in
a template-based tracking. They calculate the distribution
of the SSD values between a template image and an
image region around the predicted position. They consider
that the shape of the valley of this distribution represents
the uncertainty of the target localization, just like us.
Then, they convert the distribution of the SSD toresponse
distribution, which is defined by Singh and Allen [12].
The response distribution calculates the confidence of each
estimated position.
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In our method, the response distribution is represented
by the following:

r(x, y, θ, i) = exp(−κDiff (x, y, θ, i)), (9)

whereκ is used as a normalization factor. We setκ = 1
experimentally. Fig. 10(c) shows the response distribution
converted from Fig. 10(b).

Since the response distribution can be interpreted as a
probability distribution of the position and orientation, we
approximate the distribution by a 3D Gaussian. The mean
of the Gaussian is calculated by a weighted least squares
as:

x̂i=

∑
x,y,θ r(x, y, θ, i)x∑
x,y,θ r(x, y, θ, i)

, ŷi=

∑
x,y,θ r(x, y, θ, i)y∑
x,y,θ r(x, y, θ, i)

,

θ̂i=

∑
x,y,θ r(x, y, θ, i)θ∑
x,y,θ r(x, y, θ, i)

.

(10)

The covariance matrix can be calculated accordingly.
The ego-motion estimation method described in Sec. II

requires scan matching resultspt,t−i and their uncertainties
Σpt,t−i . We use(x̂i, ŷi, θ̂i) as pt,t−i and its covariance
matrix asΣpt,t−i .

IV. EXPERIMENTS

A. Effect of Estimating Uncertainty

The experiment was done in the corridor environment
shown in Fig. 10(a). In the experiment, the robot moved
straight, and we gave an error for odometry data inten-
tionally by making the robot go over the cord. Due to the
effect of the error, the final position of the robot was at
(140, 1600)[mm].

We compared the proposed method with one of our
previous methods [7], which selects the position and the
orientation minimizing the sum of the differences between
the current and the 5 previous RPs, dead reckoning by
odometry, and the correct trajectory obtained by measuring
the actual robot positions.

Fig. 11 shows the correct and the estimated robot trajec-
tories. In estimating the position numbered 2 in the figure,
our previous method (denoted as “without uncertainty”)
selected position(66, 571), where the minimum difference
is 1.02596, while at the lattice point(20, 568) which is
nearest to the correct position, the difference value is
1.14596. Since the difference distribution has a wide valley
around the correct position, this result was caused by a
small noise in range data. Since the previous method does

Fig. 12. Experimental environment of section IV-B.

TABLE I

ERROR OF THE EGO-MOTION ESTIMATION.
x [mm] y [mm] θ [rad]

proposed method 147.03 107.07 0.17
method in [8] 173.44 139.88 0.23
method in [7] 274.42 156.5 0.18

not have a mechanism to correct such errors in subsequent
estimations, the error grows relatively rapidly.

On the other hand, our proposed method estimated
almost correct position for thex axis. While for they
axis, since there were not enough features to determine the
roboty position, the error is relatively large, but the correct
position was inside the estimated uncertainty region.

B. Experiment in a Complex Environment

We conducted another experiment in a complex environ-
ment where many obstacles exist. For comparison, we show
results which are estimated by two other method. One is
the method which does not consider the uncertainty of the
estimation described in the previous section. The other is
the method proposed in [8], which estimates the position
and orientation and its uncertainty from the distribution
of the summation of differences between scan data, not
evaluating the uncertainty of each scan matching result.

Fig. 12 shows the environment of this experiment. Figs.
13-15 show the error of the estimated ego-motion along
thex, they, and theθ axes on the robot local coordinates,
respectively. In these figures, the estimated uncertainties
are also shown by error bars. Fig. 16 shows the correct
trajectory (indicated as “correct position”) of the robot, and
the trajectories which are calculated by accumulating the
estimated ego-motions for the proposed method (“proposed
method”), the method by [8] (“without Kalman filter”), and
the method by [7] (“without uncertainty”). Table I shows
the standard deviation of the error ofx, y, and θ on the
robot local coordinates shown in Figs. 13-15.

In these figures and the table, the estimations of the
robot orientation are almost correct for all methods. The
reason is probably that all methods use range data in
various directions obtained from the omnidirectional stereo.
About the estimation of the robot position, Fig. 16 and
Table I shows that the proposed method performs best.
Concerning the uncertainty estimates, Figs. 13-15 show
that the correct ego-motions are almost always within
the estimated uncertainties; this indicates the effectiveness
of the proposed uncertainty estimation method. Only the
last estimation of the orientation was not correct. This is
because the robot motion was out of the uncertainty model
of dead reckoning; this problem is expected to be solved
by refining the uncertainty model.
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Fig. 13. Error of ego-motion of robot (x).
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V. CONCLUSION

This paper has proposed an ego-motion estimation
method by integrating multiple scan matching results.
The method simultaneously estimates the current and the
previous ego-motions with considering the uncertainty of
each scan matching result. Since the estimation process is
formulated as an iterative one using Kalman filter, we can
estimate the current ego-motion and update the previous
k − 1 ego-motions simultaneously by using onlyk + 1
newly obtained scan matching results. We implement the
method by using omnidirectional stereo-based scan match-
ing method. Experimental result show the effectiveness of
the proposed method.

Since the proposed method identifies false matches be-
tween range measurements using the Mahalanobis distance,
it can be applied to dynamic environments where only
a few moving objects exist. If there are many moving
objects, however, the measurement from a moving object
may match with that from another, and thus the ego-motion
estimation may be degraded. A future work is, therefore,
to develop a method of finding correct matches between
the range measurements in a highly dynamic environment.
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