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Abstract—This paper describes an ego-motion estimation t-2)
method by integrating multiple scan matching results. The X S (1)
method considers both the uncertainty of scan matching t
results and that of estimated ego-motions, and not only Xg'lz)
estimates the latest ego-motion but also updates previous ego- Fig. 1. Integrate tree scan matching results.

motions. The estimation process is formulated as an iterative . . ;
one using Kalman filter. We implement the method by [t — 1, & it can be calculated by comparing two scans

. L . (t-2) .
using an omnidirectional stereo-based scan matching method. at time ¢ — 1 and¢. Similarly, we obtainX,,”. This is

Experimental results show the effectiveness of the proposed basically what the previous methods are doing which use
method. only a pair of range scans for ego-motion estimation. We

I. INTRODUCTION can, however, use the other scan matching resﬂfff,z), to
Reliable ego-motion estimation is indispensable for inimprove the ego-motion estimation. This is the basic idea

tegrating sensing data which are obtained by a movingf our method. _ _
observer. Since dead reckoning suffers from accumulated OUr Previous work [8] has already dealt with ego-motion
errors, an ego-motion estimation method is needed whicgstimation using multiple scan matching results. Although
is based on external sensors such as vision. Scan matchiffge Method outperformed previous methods which use only
based methods (e.g., [9]), which do not need explici® pair of scans for estimating an ego-motion, it still had the
feature correspondence, have an advantage over featuf@llowing two drawbacks. One is that at each time, only the
based methods (e.g., [2], [3]), which may require muchatest ego-motion is estimated with believing the previous

computation in extracting stable features and in finding90-motion estimates; so if some of previous estimates
correct matches. are unreliable, the current estimate becomes inherently

Lu et al. [9] estimated the ego-motion by comparing opunreliable too. The other drawback i§ tha't all scan matching
contours obtained by a laser range finder at the currefgSults are treated evenly; the estimation result may be
and the previous position. Pfister et al. [11] extended thefl€graded by matching results with large uncertainties.
method to consider the uncertainty of the estimated ego- 1HiS Paper improves our previous method so that we
motion in order to integrate the scan matching-based egG@n Simultaneously estimate the current and the previous
motion with odometry information. Since these method§€90-motions with considering the uncertainty of each scan
use only a pair of laser scans, sensor noises may cad@@iching result. Estimating ego-motions from scratch
wrong matches thereby degrading estimation results. KP€€ds to examing.,C pairs of range scans, and this
dono et al. [6] proposed a scan matching-based localizatighdy be costly. We therefore develop a Kalman filter-based
method, which compares the current range scan with tHerative scheme which estimates the current ego-motion

range scan predicted from the generated map; their methdd{!d updates the previods-1 ego-motions simultaneously

however, did not consider the uncertainty in localizationPy USing onlyk + 1 newly obtained scan matching results.
The rest of this paper is organized as follows. Section

Hahnel et. al. [4] considered the uncertainty in a similar

scan matching method; once a robot position is estimatel], describes the ego-motion estimation algorithm by using

however, it is not changed by subsequent observations. multiple scan matching results. Section Il describes an

Scans may sometimes include large uncertainties, e§hPlementation of the method using an omnidirectional
pecially when using low-precision range sensors such Sereo. Segtlon v shows.experlmental results using a real
stereo, and an ego-motion or a robot position obtainefPPOt Section V summarizes the paper.
using these scans may thus be unreliable. We, therefore, Il. PROPOSEDALGORITHM
must be able to update previously-estimated ego-motions This section describes a Kalman filter-based algorithm
or robot positions, if necessary. In simultaneously localof integrating multiple scan matching results for ego-
ization and mapping (SLAM) problems, some research remotion estimation. Basically we use the latést 1 range
estimates ego-motion to close loops (e.g., [1], [5]); but thecans for estimating ego-motions. Actually, our method
re-estimation is limited to the timing of closing the loop. estimates the relative position of latésbbservation points

This paper deals with ego-motion estimation from mul{including the current one) with respect to the observation
tiple scan matching results. Fig. 1 shows an examplpoint k& steps before.
situation where a robot obtains three range scans at timesLet X = (20, 5™ 9T genote the relative
t—2,t—1, andt. Let Xt(t'l) be the ego-motion during position at timet — ¢ with respect to the position at time
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@ The observation equation (see Fig. 2(c)) is given by:
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tkl tk tk+l t-1 _ where w; is a noise vectorQ is 3 x 3 dimensional zero
/ Observation matrix, andI is 3-dimensional unit matrix.

st initid A scan is composed of a set of observed points. So

state of t . .

© the error of a scan matching resplf:; is caused by two
. factors: the observation error of the points and false corre-

\ basm State spondence between the points. Since every scan matching
tkl tk tk+l t result in eq. (2) uses the same observation at tmthe

v} observation errors of these scan matching results are not independent.
Fig. 2. State transition model. However, since the number of points in a scan is usually

large, the influence of an observation error to the scan
matching error is considered sufficiently smaller than that
T . T of false correspondence, which depends on the shape of
S, = (Xt(tk’i)1 XR L x ) . (1) the surrounding environment. Thus we assume that the
errors of scan matching results in eq. (2) are mutually
An observation is a set df scan matching results betweenindependent. Under this assumption, the covariance matrix
the current and the previous range data. Letp;; of w, is calculated by:
denote the scan matching result (i.e., the observed relative

t — k. The stateS, is represented by the vector:

displacement) obtained by range scans at tiraadt — i. E’a‘"’k > 0 - g
Then the observation is represented by the vector: Sp = Puker oo (5)
. : " .
VS (pt,t-kTapt,t-k+1Ta e 7pt,t-lT) . (2) 0 0 Xpu

Fig. 2 illustrates the iteration process. Fig. 2(a) shows thehere X, ; is calculated as the uncertainty of the corre-
situation where the relative position at times k tot —1  sponding scan matching result (see Sec. llI-D).
with respect to the position at time- k& — 1 are estimated By applying Kalman filter to egs. (3) and (4), we
using the observations until time— 1. Fig. 2(b) shows iteratively update the stat§; and estimate its uncertainty.
the state transition fron$y, to S;; the relative position at At the initial position, the robot position and orientation
time ¢ with respect to a new basis (position at timek) is  are considered to have no uncertainty. We siss &, and
calculated from the difference between a relative positiorif the number of observations is less thias- 1, we set the
X1 in Spq and the scan matching result between rangdimension of the state vector accordingly.
data at timeg and¢t—k—1. Fig. 2(c) indicates the estimation
of S; by integrating newk scan matching results.

= ! i > [1l. OMNIDIRECTIONAL STEREO-BASED SCAN
The state transition equation (see Fig. 2(b)) is given by:

MATCHING

0 This section describes an implementation of the ego-
S, : motion estimation method using an omnidirectional stereo.
t-1t-1+ 0 +v; (3) T : L2
o 0 apply the ego-motion estimation method, we need a
—x (kD scan matching method which not only calculate the relative
position between observation points but also its uncertainty.
. The outline of the scan matching method is as follows.
v = : , We first compute the uncertainty of the current robot
0 position (with respect to some basis position) calculated
Iprekt — 0 XY by dead reckoning to determine a set of possible robot
positions and orientations. Next, we calculate the differ-
wheredpy1 andd X are the errors of the observation ence between the views of the current and the previous
Piik-1 and the relative position vectoYt(_ﬁ;k'l) respectively. range data for each candidate pair of the position and the
In this equation, the initial value oX("™™ is estimated orientation, and estimate the reliability of each candidate.
from pt k.1 and Xt(_tl;k'l); this means that our Kalman filter Finally, we determine the current position and orientation
integrates only observations. It is a simple extension twith their uncertainties by a weighted least squares-based
integrate odometry information into this formulation. estimation.




Fig. 4. Panoramic image obtained from the input image shown in Fig. 3.

Fig. 3. An example of the original
input image.

Fig. 5. Panoramic disparity image obtained from the images in Fig. 4. Brighter pixels are nearer.
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Fig. 6. Example range profile.

Omnidirectional
Stereo Cameras

Fig. 9. Problem caused by fixed angular resolution.

Fig. 7. Our mobile robot. B. Select Candidate Positions and Orientations

Fig. 7 shows our mobile robot. The robot moves by
driving the two rear wheels. We define a state of the robot
Our scan matching method uses the omnidirectionas X = (z,y,6), where (z,y) is a 2-dimensional robot
stereo. The omnidirectional stereo vision system uses twaosition centered at the omnidirectional stereo came¥as,
HyperOmni Vision [13] aligned vertically. Fig. 3 shows is a orientation of the robot. The positional uncertainty
an input image of the lower camera of our stereo systenincreases as the robot moves due to slippage of wheels or a
Each image can be converted to a panoramic image showantization error of odometry. We model the uncertainty
in Fig. 4 by projecting on a cylindrical image plane whoseby a three-dimensional normal distribution; the so-called

axis is aligned to an optical axis of the camera. By thiso ellipsoid obtained from the covariance matbi, rep-
conversion, we can obtain a stereo image pair where alésents the uncertainty region. The positional uncertainty
epipolar lines become vertical. Therefore, we can applgn (x,y) is calculated by projecting the ellipsoid on the
a conventional stereo matching algorithm for an ordinary-y plane and the orientational uncertainty is calculated as
perspective stereo. We use an SAD-based stereo matchiitg) marginal distribution ord.
algorithm. For the detail of this omnidirectional stereo, We select candidates of robot position and orientation
refer to [7]. in the region. Candidates of the position are set at lattice
To adopt a visual ego-motion estimation method, wepoints which are made by lines parallel with two principal
first extract the nearest obstacle in each direction. Sinaxes of the ellipse. The origin of the lattice is set at the
the horizontal axis of the panoramic image indicates theenter of the ellipse. The number of lattice points along
horizontal direction, we extract the nearest obstacles ieach axis is selected as the minimum odd number greater
every column, then we obtain a set of disparities of abouhan3, by which the length of the principal axis divided is
360 degrees. From this data set, a 2D contour (catlade smaller tharb0[mm]. For example, when the length of the
profile (RP) of the current free space centered at the robdbnger principal axis i200[mm] and that of the shorter is
position is obtained. Fig. 6 shows the RP obtained from thé40[mm], the number of the candidate positions becomes
disparity image shown in Fig. 5. In Fig. 6, the horizontal5 x 3. Candidates for the robot orientation are generated by
axis represents the viewing direction from the robot andliscretizing the range of the orientational uncertainty with
the vertical axis represents disparity of obstacles. the angular resolution of the RP.

A. Omnidirectional Stereo
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Fig. 10. Estimation of the positional distribution.
C. Comparing Two Range Profiles calculation to all disparities in the RP. In a candidate

To compare the current and a previous RP, we predi@©Sition and orientatior(z,y, ¢), the difference of the
the view of the previous RP for each candidate position anfiSParities in directiony of the current RP and the RP
orientation. Fig. 8 indicates the situation where the robgPPserved at time — i is calculated by:

at candidate positioiiz, y) is observing an object which . (Dy(¢) — Dt(f’y)@ —0))?
was observed at positioXy; = (i, %1, 6 ). We would d(z,y,0,i,0) = i , (1)
like to predict the direction and the disparity of the object b D (¢—0)

in order to predict the view of a previous RP. The obstaclevhere D, () represents the disparity in directignat time
positionop,, (4, which is observed at time-i in direction ¢, d(x,y, 0, i, ¢) represents the Mahalanobis distance; if the
¢ with disparity Dv.i(¢), is represented by using the robottwo disparity values in eq. (7) are from the same obstacle,
position X d is assumed to follow a2 distribution. Therefore, when
Lcos(e ) + 2 d is larger than. a_cer_tain threshold determined frdmn
ODu) = Dlisc¢) oVt t , (6) value of they? distribution,d is set as the threshold value.
Doty Sin(Oui + &) + e Also, whenD;, (¢) or D{*'¥) (¢ —6) is not obtained, we do
pot calculate the difference in that direction. By limiting

where b represents the baseline of the omnidirectiona

stereo, andf represents the focus length of panoramicthe maximum difference by considering thé distribution,

images. ¥,,, ., Which is the error covariance matrix the effect of false matches in stereo and that of the moving

- S obstacles can be reduced.
of op,,(g), IS calculated fromx,, Wh'(’;h 's the error "y " difference of RPs is then evaluated by:
covariance matrix of the positioX+, andaDH( ) which is

. . . - ¢77LQ(E
the error variance of disparith.;(¢), by error propagation. . N 1 .
We setaf_}t_iw) = o%. = 1 as the quantization error of Diff (z,y,6,7) = N(z,y,0,i) d)—; d(z,y,0,1,9), (8)

panoramic images.
Onceop,,(4) is calculated, we can determine the relativewhere [Gmin, dmaz | rEPresents the range of possible view-
position of op,,(4) from a candidate positiofiz, y), and ing directions (corresponding to the right and the left end
then we can calculate the distanceand the directiony’ ~ of panoramic image)N (z,y, 9, i) indicates the number of
to op, () from the candidate position. By converting thedata for which the difference of disparity is obtained.
distancer to the disparity by using the relatiob = %

we can calculatepf_f’y)w’) which is Fhe d'SPa.”.ty of the Fig. 10(b) shows an example distribution of difference
obstacleop,, (¢) v|eweq from a candeate posl(go(r)x,y)' values Diff around the predicted position in a corridor
Also U%"”’”)W , Which is the error variance db "’ (¢),  shown in Fig. 10(a). From this figure, we can consider
is calculated T>romEODH( » DY error propagation. that the correct robot position lies in the valley of the
The prediction of the view of a previous RP is performeddistribution, and that the shape of this valley is related
by converting each observed disparity in the previous RB the probability distribution of the robot position. So we
to the disparity to be observed from a candidate posiwould like to obtain the probability distribution of the robot
tion. There is, however, a possibility that such converteghosition and orientation from the difference distribution.
disparities are not obtained for several directions in the Nickels and Hutchinson [10] solved a similar problem
predicted RP, due to the fixed angular resolution. Fig. ®f estimating the uncertainty of the target localization in
shows the situation where the disparity corresponding ta template-based tracking. They calculate the distribution
the jth direction has not been obtained in the previousf the SSD values between a template image and an
observation. In such cases, if the nearest disparities on tireage region around the predicted position. They consider
both sides (e.ggj.1 andoj+1 in the figure) are close enough that the shape of the valley of this distribution represents
to be regarded to belong to the same obstacle, the disparitye uncertainty of the target localization, just like us.
in the jth direction is calculated by linearly interpolating Then, they convert the distribution of the SSDrésponse
the object surface from the disparities @f andoj:1. distribution which is defined by Singh and Allen [12].
We obtain the predicted view from candidate positioniThe response distribution calculates the confidence of each
(z,y) of an RP obtained at — i by applying the above estimated position.

D. Estimating Ego-Motion
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proposed method £
Wi‘hOF'tU"Ceé‘a;‘y’é’ 1 Fig. 12. Experimental enV|ronment of section IV-B.
rom oametry — -
! TABLE |
) ) ) ) ERROR OF THE EGGMOTION ESTIMATION.
50 100 150 200 250 z [mm] | y [mm] | 6 [rad]
] xmm ) ) proposed method 147.03 | 107.07 | 0.17
Fig. 11. Results of the experlmc_ent !n se.ctlon_ IV-A. method in 18 173.44 | 139.88 0.3
In our method, the response distribution is represented method in [7 274.42 | 1565 0.18
by the following: not have a mechanism to correct such errors in subsequent
r(z,y,0,1) = exp(—kDiff (z,y,0,1)), (9) estimations, the error grows relatively rapidly.
wherex is used as a normalization factor. We set= 1 On the other hand, our proposed method estimated
experimentally. Fig. 10(c) shows the response distributioglmost correct position for the: axis. While for they
converted from Fig. 10(b). axis, since there were not enough features to determine the

Since the response distribution can be interpreted as'@Poty position, the error is relatively large, but the correct
probability distribution of the position and orientation, wePOsition was inside the estimated uncertainty region.
approximate the distribution by a 3D Gaussian. The mean
of the Gaussian is calculated by a weighted least squargs
as: We conducted another experiment in a complex environ-
 Yeger@uy bz S or(z,y.0,i)y ment Wherg many obgtacles exist. For comparison, we shqw
Ti= > @,,0,0) Yi= T (2 9,0.4) results which are estimated by t_vvo other methqd. One is

@y ’9 " o @y, A S (10) the method which does not consider the uncertainty of the

éizzﬂﬂ’yv@ r(@y, ’Z? ) estimation described in the previous section. The other is
Zm,y,@ r(x,y,0,1) the method proposed in [8], which estimates the position
The covariance matrix can be calculated accordingly.  and orientation and its uncertainty from the distribution

The ego-motion estimation method described in Sec. kbf the summation of differences between scan data, not
requires scan matching resuis,—; and their uncertainties evaluating the uncertainty of each scan matching result.
Yp, . .- We use(z;,7;,0;) asp,,—; and its covariance  Fig. 12 shows the environment of this experiment. Figs.
matrix asX,, , . 13-15 show the error of the estimated ego-motion along
the z, they, and thef) axes on the robot local coordinates,
respectively. In these figures, the estimated uncertainties
A. Effect of Estimating Uncertainty are also shown by error bars. Fig. 16 shows the correct

The experiment was done in the corridor environmentrajectory (indicated as “correct position”) of the robot, and
shown in Fig. 10(a). In the experiment, the robot movedhe trajectories which are calculated by accumulating the
straight, and we gave an error for odometry data intenestimated ego-motions for the proposed method (“proposed
tionally by making the robot go over the cord. Due to themethod”), the method by [8] (“without Kalman filter”), and
effect of the error, the final position of the robot was athe method by [7] (“without uncertainty”). Table | shows
(140, 1600) [mm). the standard deviation of the error of y, and @ on the

We compared the proposed method with one of ourobot local coordinates shown in Figs. 13-15.
previous methods [7], which selects the position and the In these figures and the table, the estimations of the
orientation minimizing the sum of the differences betweemobot orientation are almost correct for all methods. The
the current and the 5 previous RPs, dead reckoning byason is probably that all methods use range data in
odometry, and the correct trajectory obtained by measuringarious directions obtained from the omnidirectional stereo.
the actual robot positions. About the estimation of the robot position, Fig. 16 and

Fig. 11 shows the correct and the estimated robot trajedable | shows that the proposed method performs best.
tories. In estimating the position numbered 2 in the figureConcerning the uncertainty estimates, Figs. 13-15 show
our previous method (denoted as “without uncertainty”that the correct ego-motions are almost always within
selected positioni66, 571), where the minimum difference the estimated uncertainties; this indicates the effectiveness
is 1.02596, while at the lattice point20,568) which is of the proposed uncertainty estimation method. Only the
nearest to the correct position, the difference value ikast estimation of the orientation was not correct. This is
1.14596. Since the difference distribution has a wide valleybecause the robot motion was out of the uncertainty model
around the correct position, this result was caused by @f dead reckoning; this problem is expected to be solved
small noise in range data. Since the previous method doéy refining the uncertainty model.

Experiment in a Complex Environment

IV. EXPERIMENTS
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V. CONCLUSION

This paper has proposed an ego-motion estimation
method by integrating multiple scan matching results.
The method simultaneously estimates the current and the
previous ego-motions with considering the uncertainty of
each scan matching result. Since the estimation process I[4]
formulated as an iterative one using Kalman filter, we can
estimate the current ego-motion and update the previoug;
k — 1 ego-motions simultaneously by using only+ 1
newly obtained scan matching results. We implement the
method by using omnidirectional stereo-based scan matchyp
ing method. Experimental result show the effectiveness of
the proposed method.

Since the proposed method identifies false matches b
tween range measurements using the Mahalanobis distance,

it can be applied to dynamic environments where only
a few moving objects exist. If there are many moving

o

(8]

objects, however, the measurement from a moving object
may match with that from another, and thus the ego-motio

estimation may be degraded. A future work is, therefor

Tor

e!

to develop a method of finding correct matches between
the range measurements in a highly dynamic environmerit?!
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