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Abstract— This paper describes the use of WiFi signals
for improving SLAM and person localization problems. Loop
closing is the most important step in large-scale mappings and
many previous methods rely on image-based feature matching.
Such methods are, however, usually costly and tend to sensitive
to illumination variations and the robot heading. We therefore
propose a new loop closure detection method using WiFi
fingerprints. Since WiFi signals are sometimes quite uncertain,
we do matching not a pair of poses but a pair of pose sequences
for improving the loop closing performance. We then use the
WiFi-recorded map to localizing a person with a smartphone.
We develop a particle filter-based method and apply it to a
robot call system. Experimental results show the effectiveness
of the proposed methods.

I. INTRODUCTION

SLAM (Simultaneous Localization And Mapping) is one
of the most important technologies for mobile robots working
in unknown environments [1]. Among many SLAM methods,
LIDAR-based 2D mapping is the most common, and loop
closing is always a problem in a large scale SLAM. This
paper deals with the problem in a LIDAR-based 2D SLAM.

Loop closing is the most important step in large-scale
mappings There are various ways to solving the loop closing
problem such as LIDAR-based (e.g., [2]) and image-based
(e.g., [3]). These approaches work well when applied to the
environment and the condition where appropriate features
are sufficiently observed. If not due to, for example, an bad
illumination condition, they may fail to correctly close loops.

As wireless connection services become popular in public
spaces, using WiFi signals could provide extra information
to robot and person localization. Several methods have been
proposed for improving localization accuracy (e.g., [4]) but
not applied to improving loop closing.

In this paper, we propose a new way of using WiFi
signals for improving a LIDAR-based SLAM. Since WiFi
signals are sometimes quite uncertain, we do matching not a
pair of poses but a pair of pose sequences for improving
the loop closing performance. We also develop a WiFi-
based person localization method. Since the generated map
includes recorded WiFi information, the method utilizes it in
a particle filter-based localization. As an application of the
combination of WiFi-supported SLAM and person localiza-
tion, we develop a robot call system by which the user can
easily call the robot from anywhere. We implemented the
proposed methods and evaluated through mapping and robot
call experiments.
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The rest of the paper is organized as follows. Section II
describes related works on loop closing and person local-
ization. Sec. III describes a WiFi-augmented loop closing
and mapping results. Sec. IV describes a WiFi-based person
localization and its application to a robot call system. Sec.
V concludes the paper and discusses future work.

II. RELATED WORK

A. Loop closing

There are several approaches to solving the loop closing
problem. Blanco et al. [2] developed a method of optimizing
a map with loops using LIDAR and odometry information.
Their method, HMT-SLAM, divides a map into several
areas and compares the shape of grid maps of those areas
to optimize the whole map while keeping its topological
structure. The method works well in environments with a rich
shape variety, but might be weak in a simple environment
such as the one composed of long straight corridors. Other
LIDAR and odometry-based methods suffer from similar
drawbacks.

Image-based loop closure detection [5], [6], [7] is also
popular. These methods represent locations with an image
feature such as BOVW (bag of visual words) [8], and
compare the current image with past ones to find loop
closures. Calculation of image features is relatively costly,
although several attempts exist to reduce the cost by limiting
the number of image comparison [3], [9], [10]. Moreover,
image-based methods sometimes suffer from a limited field
of view and sensitivity to illumination changes.

B. WiFi-based localization

Huang et al. [4] developed a method of estimating a
user trajectory by combining odometry-based ego-motion
with a WiFi signal similarity in a pose graph optimization
framework. Ferris et al. [11] proposed to use Gaussian
Process Latent Variable Model (GP-LVM) to represent WiFi
signal distributions in a mapping area. They optimize the
marginalized latent positions by minimizing the negative log-
likelihood of GP-LVM that was composed of positions and
measured WiFi signal strengths. These works exhibit a good
performance but not used for increasing map quality in a
robotic LIDAR-based mapping.

Ito [12] proposed a mobile localization method using WiFi
signals with a Gaussian process particle filter. This method is
effective especially when a dense WiFi data set is obtained.
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Fig. 1. Flow of the proposed method.

III. WIFI-AUGMENTED LOOP CLOSING

A. Overview of the SLAM method

This paper proposes a new loop closing method using
WiFi signals. We use ICP-SLAM [13] as a based SLAM and
a GraphSLAM algorithm [14] for pose-graph optimization
after detecting loop closures.

Fig. 1 shows the proposed SLAM framework. The inputs
are odometry data, LIDAR scans, and WiFi signals. ICP-
SLAM updates the map when the robot moves by a certain
distance or a certain angle. Loop Closure Detection step
checks if a loop candidate exists based on the robot odometry
and the WiFi signal similarity. If detected, Pose Sequence
Matching step verifies it. If verified, the map is updated by
GraphSLAM with newly added loops.

We use MRPT (Mobile Robot Programming Toolkit) [15]
implementations of the SLAM algorithms, but the proposed
loop closure method can be applied to any implementation.

B. Loop Candidate Detection

1) Robot pose uncertainty: Loop candidate detection is
performed for pairs of the current and a past pose. The
first step is to find possible pairs using a pose uncertainty
estimate, calculated by accumulating odometry errors.

2) WiFi signal handling: WiFi signal strengths are mea-
sured by a common wireless LAN receiver device and Native
WiFi API [16], at every two to three seconds. At each map
update, the latest value is recorded with the robot pose.
Native WiFi uses the following expression to define the
signal quality SQ:

SQ = 2 · (RSSI + 100), (1)

where RSSI indicates the received signal strength indicator,
expressed in the range [0: 100] in Decibel-milliwatt.

The source of a signal is determined by BSSID (Basic
Service Set Identifier), uniquely assigned to each AP (access
point). All signal strength data observed at all poses are
compiled in a two-dimensional signal-pose matrix S, which
has the dimension of T × N where T is the number of
robot poses and N is the number of APs detected so far.
Both dimensions increase as a new AP is found or a new
observation is performed.

We do not use raw signal data because they are usually
very noisy. Instead, we apply a temporal smoothing to
them. Let sn be the nth column vector of S, and SA be

Fig. 2. Making a current sequence.

the temporally-smoothed WiFi signal matrix. Each element
SAtn is given by:

SAtn = βT
t sn, (2)

where βt is a weight vector for the smoothing and its
elements are given by [17]:

[βt]i ∝ exp

{
− 1

2τ2
dist (Poset − Posei)

2

}
,(3)

T−1∑
i=0

[βt]i = 1, (4)

where dist(Poset−Posei) is the cumulative travel distance
between the ith and the tth pose; τ is a parameter to control
the smoothing, currently set to 1.5m. This weighting is based
on a model that WiFi signals are attenuated as the distance
between two poses increases in a wall-free environment [17].
We then define the WiFi signal strength similarity Simij

between the ith and the jth pose as the cosine similarity of
the corresponding vectors in SA.

3) Loop candidate detection by constructing a sequence
pair: Loop candidate detection is to find a pair of pose
sequences, the current one (Current Sequence, CS) and the
past one (Past Sequence, PS). Fig. 2 shows the process of
CS detection based on the positional correspondence. The
process starts when a revisit of a past location is detected
using the confidence ellipse (we use 3σ ellipse). It continues
until the corresponding pair is no longer detected. Since the
first and the last part of a CS could include poses which
are likely to have no corresponding poses in the past, the
poses inside the first and the last confidence ellipses are
deleted. The remaining poses constitutes a CS. Fig. 3 shows
an example process of CS detection in a real environment;
poses in the confidence ellipses at steps 1 and 3 are deleted.

A PS is then made for a given CS by collecting past poses
which have a certain level of WiFi signal similarity with at
least one of the poses in the CS. The collected past poses
constitutes the PS as shown in Fig. 4.

C. Pose Sequence Matching for Loop Candidate Verification

1) Continuous DP matching between CS and PS: There
may sometimes be multiple corresponding candidates from
a pose in the CS to those in the PS as shown in Fig. 4. To
make a set of uncrossed pose correspondence, we adopt DP
matching. In our case, since a PS is usually longer than a
CS and their starting poses are not always matched, we use
continuous DP [18], which is suitable for spotting the CS’s
corresponding part in the PS.

We prepare a cost map as shown in Fig. 5 for the



Fig. 3. An example detection of a current sequence.

Fig. 4. Making a past sequence for a current
sequence.

Fig. 5. Cost map.

continuous DP matching. The value of each cell of the
cost map is given by the inverse of the similarity value
Simij . The costs of edges are defined such that horizontal
movements become more costly than oblique ones assuming
that the robot speed is almost constant in the same area.
Choosing a coefficient α = 1.1 experimentally, the minimum
cost from C0∗ (any selected node in the top row of cost map
C) to Cij , gij , is calculated by:

gij = min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g(i−1)(j−3) + Ci(j−2) + αCi(j−1) + αCij

g(i−1)(j−2) + Ci(j−1) + αCij

g(i−1)(j−1) + Cij

g(i−2)(j−1) + C(i−1)j + αCij

g(i−3)(j−1) + C(i−2)j + αC(i−1)j + αCij

(5)

We call the matrix composed of gij’s as the minimum
path map G. In the continuous DP matching, we seek the
minimum path from G0∗ to GM∗ (M is the number of rows
(i.e., current poses) in G).

2) ICP-matching for calculating relative poses and for ex-
cluding mismatches: We now have two pose sequences with
a set of pose-to-pose correspondence. Since all correspon-
dence are just WiFi signal similarity-based, they are usually
geometrically different. We thus apply the ICP matching to
each of them for calculating their relative pose, and only
consistent relative poses are then added to the pose graph as
new edges.

Fig. 6. ICP matching for relative pose calculation.

Fig. 7. A mismatch exclusion process. The red, the blue, and the black
markers indicate the current sequence (CS), the past sequence (PS), and the
relative past sequence (RPS), respectively.

Fig. 6 illustrates an example ICP matching result. In the
figure, blue markers indicate the robot pose sequence in the
first visit (PS) and red ones indicate those in the second
visit (CS). By applying the ICP matching to each pose-to-
pose correspondence, we get a relative pose of a past pose
with respect to its corresponding current pose, indicated by
blacker markers and two-way arrows in the figure. We call
this black pose sequence a relative past sequence (RPS).
Since the ICP matching does not always give us a correct
relative pose, we need to exclude mismatches and obtain a
set of consistent relative poses.

Fig. 7 illustrates the process of mismatch exclusion. If
all of ICP matching results are correct, two sequences, PS
and RPS, almost overlap with each other. If not, some non-
overlapping poses appear in RPS. To detect such a case,
we evaluate each edge in terms of the consistency with the
others. We exhaustively choose pair of correspondence one
by one, transform the RPS using the chosen pair (steps 1 and
2 in the figure), and exclude outliers using a statistical test
(step 3). All remaining edges (i.e., inliers) are then added to
the pose graph for the subsequent pose graph optimization.

D. Mapping experiment

1) Experimental setup: We conducted experiments in the
second floor of the buildings in our campus. Our robot is
composed of a modified electric wheelchair controlled by a
PC (Patrafour by Toyota Motor East Japan) and two LIDARs
(Hokuyo UTM-30LX) covering 360 deg., and a GW-300S



Fig. 8. A mapping result with the proposed method.

Fig. 9. WiFi signal strength similarity matrix.

KATANA WiFi receiver module.
2) Mapping results: Fig. 8 shows a mapping result. We

can see that two large loops in the environment are correctly
closed. Fig. 9 shows the WiFi signal strength similarity
matrix (SA in Sec. III-B.2), where brighter values indicate
higher similarity. Red dots indicate loop closure sequences
detected by our method. We can clearly see two loop
closures: one is for the central part (poses around time 150
and those around 450) and the other is the overlap of robot
poses near the starting and the end point (poses around time
0 and those around time 800).

Fig. 10 shows an effect of DP matching-based loop
verification. Fig. 10(a) shows most-probable correspondence
between poses using only the WiFi similarity measure; many
crossed corresponding relationships exist. Fig. 10(b) shows
the set of final correspondence after taking the verification
step, which is consistent enough to be used for loop closing.
Fig. 11 shows the result of mapping a larger indoor environ-
ment at our university. The size of the environment is about
300m× 50m. The map is basically reasonable to be used
for localization, and has correct shapes at regions with loops.

3) Comparison with visual loop closing: Visual features
are sometimes very effective in finding correct loop closures.
We here choose RTABMap [3] and use its implementation
[19] for comparison. We collected images at each robot pose
using a 120◦ wide-angle camera, calculated SIFT features,
and constructed a Bag-of-visual-words representation with
400 words for generating input data to RTABMap. Evaluation

(a) Without verification.

(b) With verification.

Fig. 10. Effect of DP matching-based correspondence verification.

Fig. 11. Mapping of a large indoor environment.

criteria are the accuracy of loop closure detection and the
speed of map update.

a) Accuracy in loop closure detection: We made the
ground truth data of pose correspondence at the two loop
closing regions in Fig. 8. Fig. 12 shows the error of cor-
respondence in terms of the number of poses apart. Table
I summarizes the statistics of the errors. We can see that
both methods shows reasonably good accuracy, although our
method exhibits a little larger errors. The average pose inter-
val was about 0.5m in this experiment, and the maximum
error (i.e., nine frames) corresponds to about 4.5m error.
The average error is about 75 cm and this is acceptable in
spite of the shape feature-scarce environment, especially in
a long corridor in the first loop closure region.

b) Calculation time: Fig. 13 shows the comparison
results in terms of loop candidate detection and verification.

Fig. 12. Correspondence error in loop closure regions.



TABLE I
STATISTICS OF CORRESPONDENCE ERRORS.

Methods Average Std. Max.
Our method 1.461 2.788 9
RTABMap 1.135 0.502 4

Fig. 13. Comparison with RTABMap in terms of calculation time.

Fig. 13(a) shows the calculation time at each map update.
RTABMap constantly takes about 100ms for one loop clo-
sure detection, whereas our method takes only about 10ms.
Two peaks in the data of our method indicate the time point
where the pose sequence verification including ICP matching
for estimating relative poses was performed.

IV. WIFI-BASED PERSON LOCALIZATION

A. Predicting WiFi signal strength using Gaussian Processes

The location of a person in a map is useful for a robot to
move to and provide the service to the user. Since our map
has a set of WiFi signal data recorded with the corresponding
robot poses, we would like to utilize it for person local-
ization. We adopt Ito’s approach [12] which approximates
the distribution of WiFi fingerprints using Gaussian Process
(GP).

The set of WiFi data used for GP modeling is given by:

D = {(p0, s0), (p1, s1), (p2, s2), · · · , (pN , sN )}, (6)

where pn is the nth robot pose and sn is the WiFi fingerprint
obtained at pn. We model the relationship between sn and
pn using the following form:

sn = f(pn) + ε, (7)

where ε is an additive noise and follows N(0, σ2
pI). The

predicted WiFi fingerprint at position p is described by the
mean and the variance. The mean GPμ(p, D) is given by:

GPμ(p, D) = kT (K + σ2
pI)

−1S, (8)

S = {s0, s1, · · · , sN}T ,

k(p1,p2) = σ2
f exp

{
− 1

2l2
|p1 − p2|2

}
(9)

k = {k(p,p0), k(p,p1), · · · , k(p,pN )}T
Kij = k(pi,pj)

Fig. 14. Strength vs. standard deviation relationship of WiFi signals. Purple
plots are measured value and green ones are fitted ones.

The variance GPσ2 (p, D) is given by:

GPσ2 (p, D) = k′(p,p)− k′T (K ′ + σ2
pI)

−1k′ (10)

k′(p1,p2)=Fs(GPμ(p, D)) exp

{
− 1

2l2
|p1 − p2|2

}
(11)

k′ = {k′(p,p0), k
′(p,p1), · · · , k′(p,pN )}T

K ′
ij = k′(pi,pj)

In the kernel functions (eqs. (9) and (11)), l is a parameter
which indicates an average distance from the robot to a wall
in the experimental environment, currently set to 1.5m, and
the norm |p1 − p2| is the accumulated distance between the
poses.

In [12], a kernel function is used for both mean and
variance estimation. In this work, we use a different kernel
k′ for the variance because we observed that the variance
follows a complex function Fs(GPμ(p, D)) of a signal
strength. We measured the actual mean and the variance of
WiFi signal strengths at various positions, as plotted in Fig.
14. The variance is smaller when the strength is sufficiently
large or small and larger otherwise. Examining the plotted
distribution, we assumed this relationship is approximated
by a summation of a Beta function and a linear function of
signal strength and fit it to the data to obtain the following
function:

Fs(x) =
x4.59721(100− x)3.30446

2.9568824 · 1013 · 8.32773
− 0.00388x+ 5.18341. (12)

B. Person localization using particle filter

Predicted signal strengths are used for a particle filter-
based person localization. The weight wi of the ith particle,
whose pose is pi, is given by:

wi =

N∑
n=1

LHn (13)

LHn =

⎧⎨
⎩

1√
2πσ2

in

exp

{
− (sin − μin)

2

2σ2
in

}
(sin �= 0)

0 (sin = 0)

(14)



(a) Mean map. (b) Variance map.

Fig. 15. Pre-calculated WiFi signal maps.

(a) Error at each location.

(b) Cumulative error probability.

Fig. 16. Evaluation of WiFi-based localization.

where LHn is the similarity for the nth AP (access point),
which is set to zero when the signal for the AP is not
detected. The weights are normalized over the all particles.

To reduce the calculation cost of the mean and the variance
for every particle, we make their pre-calculated grid maps.
Fig. 15 shows heat maps representing the magnitude of
the mean and the variance for some AP. Using the map,
the weight calculation can be done in real-time. For the
prediction step of the particle filter, we use the number of
steps estimated by a smartphone multiplied by an average
movement per step of an ordinary person as a prediction of
movement.

We tested the person localization method in a route in
our building. The route is the left-side loop in the map
shown in Fig. 8, where we use the mobile robot and collect
WiFi signals with LRF data. Supposing that the localization
results using the LRF data are correct, we calculate the error
of the WiFi-based localization. Fig. 16(a) and (b) shows
the point-wise errors and the accumulated error probability
distribution, respectively.

The average error is about 13m. Although this is worse
than [12], this method recorded the averaged signal strength
at each location with 60-second signal measurements, while
our method uses a sequence of instantaneous measurements

Main GUI.

# Description

1© IP Connect status

2© User name

3© Sensor measurements

4© Buttons for start and call

5© WiFi and GPS status

6© List of destinations

Description of each part of GUI. Example QR code.

Fig. 17. GUI for smartphone application.

as the robot moves, and the time for making the WiFi signal
maps is about ten minutes for the route shown in Fig. 16(a).

C. A robot call system

1) Overview of the system: Using the person localization
method, we developed a prototype of robot call system,
by which the user can call a robot and ask it to guide
to some destination. The system is composed of a server
system for receiving a call request and for dispatching a
robot, an application on a smartphone of the user, and a robot
control system on the robot. The application on a smartphone
continuously sends WiFi signal data for updating the user’s
location on the server. When the user makes a call, the call
request with the user’s latest location is sent to the robot. The
robot control system plans a route to the user and moves the
robot. When the robot reaches the user, the user identifies
himself/herself by showing a QR code, sent in advance from
the server system, to the robot. Then the user specifies the
destination from a list and the robot will guides the user to it.
What the user has to do are: (1) push a call button, (2) show
the QR code, and (3) select the destination. Fig. 17 shows
the GUI of the application on smartphone. Fig. 18 shows
snapshots of a successful use of the robot call system.

2) Reaching the user: The robot moves to the user au-
tonomously based on the user location information sent from
the server. The user localization is done by a particle filter,
as explained above, and setting the destination of the robot
to, for example, the center of mass of the particle distribution
may not be appropriate when the uncertainty of user location
is large. We thus apply a k-means clustering (k is currently
set to twelve) to the particle set to extract a finite set of user
location candidates. The robot takes a shortest path to visit
all the candidates and stops when it finds a person.

3) Evaluation: We did a repetitive robot calling experi-
ment. Numbers in Fig. 19. show the sequence of locations
where the robot was called. We succeeded in calling all
locations but the 4th location, where the scarcity of APs
makes the user localization relatively less accurate and the
robot failed to find the user. However, after giving up finding
the user, the robot was able to continue the operation.



(a) The robot is called. (b) Moving to the user. (c) User authentication.

(d) Start guiding. (e) Continue guiding. (f) Guiding finished.

Fig. 18. An example use of the robot calling system.

Fig. 19. Testing locations.

V. CONCLUSIONS AND FUTURE WORK

This paper has described the use of WiFi signal data for
improving both SLAM and person localization performance.
We developed a WiFi-augmented loop closure detection for
LIDAR scan-based 2D SLAM. By not making pose-to-pose
correspondence directly but making sequence-to-sequence
correspondence using WiFi signals, a reliable loop closure
detection is realized. We successfully applied the method to
shape feature-scarce indoor environments with large loops.
The method is four times more efficient than a state-of-the-
art image-based loop closure detection with a comparable
detection accuracy.

We then developed a person localization method using a
map with WiFi signal data. We model the distribution of
WiFi signal strengths using Gaussian Process and the simi-
larity between the measured and the predicted signal strength
is used for calculating the likelihood. We implemented a
particle filter-based person localization. We made a robot call
system based on this person localization method and have
shown that the person with a smartphone can be localized
with a reasonable accuracy. Using the call system, the user
can easily call a robot and make the robot guide him/her to

some destination by just pushing buttons.
Currently the loop closure verification process using con-

tinuous DP matching runs as a batch process. One possible
improvement is to separate the process as a backend one for
a real-time mapping. Applying the proposed loop detection
to 3D mapping of indoor environment with multiple floors
is also an interesting extension.

The current WiFi-based person localization method uses
signals from all APs in the environment. As we expand
the area of consideration, the cost of making and using the
WiFi signal maps also increases. One possible solution is
to chooses only effective APs at each local area. Increasing
the localization accuracy is also future work for reducing the
exploratory movement of the robot near the person location.
Evaluating the robot call system in a variety of situations for
a long run is also necessary for future deployment.
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[10] M. Labbé and F. Michaud. Memory management for real-time
appearance-based loop closure detection. In Proceedings of 2011
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1271–
1276, 2011.

[11] B. Ferris, D. Fox, and N.D. Lawrence. WiFi-SLAM Using Gaussian
Process Latent Variable Models. In 20th Int. J. Conf. on Artificial
Intelligence, pp. 2480–2485, 2007.

[12] S. Ito. WiFi Localization Method Using Gaussian Process Particle
Filter. In DICOMO 2011 Symp., pp. 439–448, 2011. (in Japanese).

[13] S. Segal, D. Hähnel, and S. Thrun. Generalized-ICP. In Robotics:
Science and Systems, 2009.

[14] S. Thrun and M. Montemerlo. The Graph SLAM Algorithm with
Applications to Large-Scale Mapping of Urban Structures. Int. J. of
Robotics Research, Vol. 25, No. 5-6, pp. 403–429, 2006.

[15] MRPT. http://www.mrpt.org/.
[16] NativeWifi. https://msdn.microsoft.com/en-us/

library/windows/desktop/ms706556(v=vs.85).aspx.
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