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Abstract— This paper presents a new approach to the pro-
blem of image-based tracking of multiple persons in a heavy
occluded space using a single camera. The presence of heavy
occlusions results in uncertain measurement data. Examples of
heavy occlusions are objects which impede the observation of a
person, the overlap of multiple persons, etc. This measurement
uncertainty can be partially by-passed if the process knows
more about a person’s expected size, i.e. person model. This
way the observed measurement can be corrected using the intro-
duced person model. Also the uncertainty of the measurements
will be calculated with this person model. Subsequently, the
corrected measurement is used to estimate the person’s state
(i.e. position and velocity) in the Kalman filter resulting in a
more robust tracking. Next, tracking multiple persons jointly
implies the need for a data association technique. This paper
uses the Joint Probabilistic Data Association (JPDA) filter which
calculates the a posteriori probabilities of the measurements
having probably originated from the tracked persons. Finally,
the approach has been implemented and tested on a single
static camera bearing in mind that it will be applied on a
mobile camera or robot. The approach presented here will
verify whether the use of a single camera, wherefrom only
2D image-based data is gathered, delivers satisfactory tracking
results using the Kalman and JPDA filter.

I. INTRODUCTION

This paper presents a new approach to the problem of
tracking multiple persons jointly using a single camera.
Visual analysis of human motions has been widely studied
[15]. In order to analyze human motions, we first need to
detect and track humans reliably. Various visual features
are used for detection and tracking such as optical flow,
color, depth, and their combinations [11], [17]. Color in-
formation is especially useful when a target wears clothing
with distinctive colors [10]. Recently,mean shifttracking has
been proposed [4] which calculates the most probable target
position using a spatially-smooth similarity function. Perez
et al. [12] extended this idea to particle filter-based tracking
to cope with similar-colored nearby objects or short-term
occlusions. The Multiple Person Tracker (MPT) presented in
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this paper will perform Kalman filter-based tracking and to
cope with similar-colored nearby objects/persons and short-
term occlusions, it will use a person model and the Joint
Probabilistic Data Association (JPDA) theory.

To sense a certain space, former approaches made use of
sonar [6] or laser-range scans [7], [13], [14] wherefrom 3D
data can be gathered but they are superseded, too expensive
or take too much processing time. Other 2D laser sensors
only provide range data on a scanning plane. Stereo vision
can be used, but needs two or more cameras and extra pro-
cessing. The MPT described in this paper performs image-
based tracking using a single camera.

One of the key features of this paper is how measurement
uncertainties are determined and how measurements can be
corrected based upon the comparison between the extracted
measurement and the expected size of the tracked person, i.e.
a person model. Section II-B explains the computation of the
measurement uncertainties and section III will expound how
measurements are corrected using a person model.

Further, the MPT has to deal with additional uncertainty
caused by the uncertainty of the origin of the measurements
and the correctness of associations of measurements to
a person. This measurement-to-person correspondence has
extensively been studied for person tracking and the surveil-
lance community. A number of statistical data association
techniques are compared with each other by Cox [5]. The
MPT applies the JPDA technique [1], [2], [3], [6] and is
discussed in more detail in section IV. Former approaches
to track multiple persons already investigated the use of the
JPDA filter. However, most of these approaches use laser
sensed data and particle filters [7], [14]. There are not many
works on applying the JPDA theory to image-based tracking.

II. STATE ESTIMATION

A. Kalman Filtering

The MPT tracks a specific person by calculating its
state using the centers of gravity of the extracted regions.
However, due to occlusion and lack of information about a
person’s true size and motion over time, the MPT extracts
often disfigured regions, i.e. measurements perturbed with
noise. In spite of this noise, the MPT needs to estimate a
person’s state. One of the most well-known and often-used
tools for tracking is the Kalman filter [2], [8], [16].

The dynamics of a person are modeled by the equation

xk+1 = Axk + u (1)

where xk is the 4-dimensional state vector (i.e. position
and velocity in two directions) at framek, A is the known
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transition matrix which maps the previous state on the current
state based on the previous velocity andu is the process
noise, assumed to be normally distributed with zero mean
and varianceQ.

The measurement system is modeled as follows. If the
measurement originates from the person, then

zk = H xk + vk (2)

whereH is the known(2 × 4) matrix which maps the true
state on the observed state andvk represents the measure-
ment noise, also assumed to be normally distributed with
zero mean and varianceRk.

The MPT’s estimation of a person’s statexk at time k,
given data up to timei, is denotedx̂k|i. The error in the
state estimation is represented by its variance matrixPk|i.
In the absence of measurement origin uncertainty (which
will be introduced in section IV) the discrete-time Kalman
filter calculates a person’s state estimation and its variance
by correcting their predictions as follows

x̂k|k = x̂k|k−1 + Wkz̃k

= Ax̂k−1|k−1 + Wkz̃k (3)

Pk|k = Pk|k−1 −WkSkWT
k

= APk−1|k−1AT + Q−WkSkWT
k (4)

whereWk is the Kalman gain,̃zk is the innovation vector and
defined by the difference between the observed measurement
and the predicted person’s state

z̃k = zk − H x̂k|k−1 = zk − ẑk|k−1 (5)

and whereSk is the variance matrix of the innovation

Sk = APk|k−1AT + Rk (6)

B. Uncertainty of Measurement Using Person Model

Former approaches [6], [7], [14] often apply a constant
measurement noise varianceR into the Kalman filter. How-
ever, the MPT extracts measurements having their own size,
characterized by heighth and width w. Compared with
the expected heightE[h] and expected widthE[w] of a
specific person, i.e. person model, the(2 × 2) variance of
the measurement’s noise can be calculated from frame to
frame during tracking

R(1,1) = α(E[w]− w)2 + σ2
X (7)

R(2,2) = α(E[h]− h)2 + σ2
Y (8)

R(1,2) = R(2,1) = 0 (9)

whereσ is the deviation from the mean of the expected size
of the unoccluded tracked person. This previous variance is
added in order to avoid obtaining variance0 if the expected
size matches the current measured size. On the other hand
when occlusion occurs and the measured region suddenly
enlarges or shrinks, the measurement’s noise variance should
increase, for instance when an object starts to obstruct the
presence of the tracked person. This event is presented in Fig.
1(a). The observed width of the extracted region is smaller
compared to the person model. It is not immediately clear

Fig. 1. Distributions of a person’s state during ambiguous events. (a)
Beginning of full occlusion. (b) Overlap of a person and a same colored
object.

whether the left side corresponds to the real expected left side
of a person or whether this left observed side is the boundary
between the person and the occluding object. The same is
considered for the right side. The two measures drawn in Fig.
1(a) depict the outer possible locations of the expected width.
The position of the center of gravity becomes more uncertain,
quantified by equation (7), and the MPT assumes that the
probability of a person’s position is uniformly distributed
between the middles of the two outer positions of width.
However, the measurement’s noise is normally distributed.
The coefficientα in (7) and (8) are meant to spread out the
normal distribution of the measurement’s noise in order to
be in agreement with the uniform distribution like presented
in Fig. 1(a).

On the other hand, a measurement can also be wider
than the person model when an overlap occurs between a
person and a same colored object. This event is presented in
Fig. 1(b). The upper drawn measure represents the measured
width of the tracked person. The center of gravity of this
measurement is uncertain and this uncertainty is quantified
by (7). The lowest two measures in Fig. 1 represent the
two outer possible positions of the person’s true width. The
explanation about the distributions in the former case counts
also here.

III. MEASUREMENT CORRECTION USING
PERSON MODEL

A person walking in a heavy occluded space results often
in disfigured and implausible measurements. Fortunately,
measurements can be corrected in some cases by the MPT
if there is a priori information about a person’s expected
height and width, i.e. a person model. The intention of this
correction is to reduce a measurement’s uncertainty.

The MPT can determine whether only the upper or lower
part of a tracked person is visible or whether a same colored
object in space suddenly enlarges the extracted region. The
use of the person model for both cases will be explained
together with Fig. 2. Fig. 2(a) represents the case when a
person’s lower part of the body is occluded. The height
of the extracted measurement has changed gravely from
the previous frames. When the MPT detects this change,
it checks whether the upper pixel of the disfigured extracted
region can be found within a threshold around the upper pixel



Fig. 2. Measurement correction. (a) Partial occlusion of the lower part of
the tracked person. The bounding boxes represent the demarcation of the
extracted measurements, the bright dots are the centers of gravity of the
measurements and the dark dot (accompanied by the arrow) is the corrected
measurement. (b) Overlap of a person and a same colored object.

of the region extracted in the frame before the occurrence of
partial occlusion. The same is done for the lowest pixel to
find out whether the upper part is occluded. When the MPT
concludes that the lower part is occluded, theY coordinate
of the center of gravity of the measurement is corrected by
positioning the center of gravityhexp below the upper pixel.

According to this course of reasoning, the measurement,
obtained from a frame where a tracked person and a same
colored object are in overlap, can be corrected the same way
and this correction is presented in Fig. 2(b).

IV. DATA ASSOCIATION

A. Problem Formulation

The appearance of multiple measurements, due to occlu-
sion or simply due to the presence of multiple persons,
complicates the process of tracking. The analysis for this
appearance requires knowledge of measurement-to-person
correspondence. That is, what is the possibility that the mea-
surement currently originates from this person? Which mea-
surements are used to correct the predicted state of a person
in order to estimate a person’s position? Any measurement
might have originated from any person. In practice, some
measurements are more likely to originate from one track
than another. A distance measure is therefore needed that
quantifies this likelihood. The smaller the distance between
a measurement and its predicted value, the more likely it is
to have originated from it. From the Kalman filter theory,
it is known that the measurement is normally distributed
about its predicted value [16]. In that case, a common
distance measure is the Mahalanobis distance [9]. The MPT
associates only the measurements to a person with distance√

z̃T
k S−1

k z̃k ≤ γ. The Mahalanobis distance quantifies the
likelihood that a measurement originates from a specific
person and can be considered to be a generalization of the
Euclidean distance which also takes the relative uncertainties
in innovations into account.

The m validated measurements extracted from the frame
at timek are denoted aszj :

Zk = {z1, . . . , zm}
⋃

Zk−1 (10)

and the corresponding individual innovations at timek for
persont are, forj = 1, . . . ,m:

z̃t
j , zj − ẑt (11)

where ẑt is the predicted measurement for persont. The
time subscriptk will be suppressed for convenience from all
variables except fromP andZ.

The main purpose of the JPDA filter is to combine all these
measurements’ innovations weighted with theirassociation
probability in order to correct the prediction of persont in
the Kalman filter with a total innovatioñzt:

z̃t =
m∑

j=1

βt
j z̃j

t (12)

whereβt
j is the association probabilitythat measurementj

originated from persont.

B. Joint Event Probabilities

The key to the JPDA algorithm and to the calculation
of the association probabilitiesβt

j is the evaluation of the
following feasible joint events

χ =
m⋂

j=1

χj t (13)

whereχj t is the event that measurementj originated from
persont. The feasible events are those joint events in which
only one measurement originates from only one person and
vice versa [1], [2], [6]. The probability of the joint event
conditioned on the measurements up to timek is denoted
as P (χ|Zk). After obtaining these feasible joint eventsχ
and their probabilities, theassociation probabilityβt

j is the
probability of the event where measurementj is associated to
persont conditioned on all measurements up to the present
time k:

βt
j , P (χj t|Zk) (14)

The extra computational burden resulting from the con-
sideration of all the events (also those events with negligible
probability or even probability zero), in order to calculate the
association probabilityβt

j , can be avoided with suitable logic
limiting the probability calculations to only those events
involving validated measurements. This logic, which has
actually a negligible effect on the numerical results but not
on the computational burden, is presented in [7].

The probability of a joint event conditioned on all mea-
surements up to the present timek can be presented as:

P (χ |Zk) = P (χ | z1, . . . , zm, Zk−1) (15)

= P (χ | z1, . . . , zm, Xk) (16)

=
1
c

p(z1, . . . , zm |χ,Xk) P (χ |Xk) (17)

The measurementsZk in (15) can be split up in the current
detected measurementsz1, . . . , zm and the measurements
Zk−1 obtained before timek. However, to consider the con-
dition of all measurements obtained before timek is complex
and laborious. To overcome this problem, the distributions of
the predictions of the persons’ statesXk are introduced in
(16). All previous measurements are indirectly encapsulated
in these predictions. On the other hand, the prediction and
the estimation problem are assumed to be Markovian. The



state of a person depends only on the measurements obtained
at timek and the state at timek − 1.

Using Bayes’ rule, the probability of a joint eventχ
can be presented as in (17) whereP (χ|Xk) is the prior
probability conditioned on the distribution of the current
predicted statesXk and the term1/c is the prior probability
of the measurements conditioned on the past data, and acts
as a normalizing constant.

The probability of each measurement-to-person associa-
tion is derived in [6] and defined as follows:

P (χ|Zk) =
1
c

∏

j:τj=1

1√
2π|St|

exp
(
− (z̃t

j)
T (St)−1(z̃t

j)
2

)

∏

t:δt=1

PD

∏

t:δt=0

(1− PD) (18)

wherePD is the probability of detecting a person in the frame
and related to the observed space,δt is the target detection
indicator and equals1 if any measurement is associated
with target t in event χ (i.e. whether targett is detected)
and τj is the measurement association indicator and equals
1 if measurementj is associated with any target in event
χ. The first product term in (18) is the probability density
of a measurementzj if it is associated to a persont. This
probability is normally distributed about its predicted value
ẑt with varianceSt.

C. Association Probabilities

The probabilityβt
j that measurementj, from the collection

of all m validated measurements, belongs to persont may
now be obtained over all feasible eventsχ for which this
condition is true:

βt
j =

∑
χ

P (χ |Zk)ωj t(χ) (19)

where ωj t(χ) equals unity if measurementj belongs to
persont in eventχ and zero otherwise. These probabilities
are used to calculate the combined innovation (12) for every
person.

V. MODIFICATION OF STATE ESTIMATION

The Kalman filter as described in section II needs to
be modified to account for the possibility of incorrect
measurement-to-person associations. Therefore, the estima-
tor has to assimilate theassociation probabilities. This way,
the estimator becomes nonlinear because the estimation and
its variance are nonlinear functions of the measurements.

A. State estimation

The state estimation of a person is modified in the follow-
ing way:

x̂t
k|k =

m∑

j=1

x̂t
k|k,j βt

j = x̂t
k|k−1 + K t ỹt (20)

where x̂t
k|k,j is the estimation using a single measurement

out of m validated measurements and weighted by the

association probabilityβt
j . Also the Kalman gainK t depends

on the measurements because every measurementj has its
own uncertaintyRj . Subsequently, the total Kalman gain is,
similar to the estimation of a person’s state, composed out
of partial Kalman gains originating from individual validated
measurements and weighted by theassociation probabilityof
the measurement:

K t =
m∑

j=1

K t
j βt

j (21)

=
m∑

j=1

βt
j Pt

k|k−1 HT (HPt
k|k−1HT + Rj) (22)

B. Uncertainty of state estimation

The variance associated with the above estimation (20) is
derived in [3] and can be represented as follows:

Pk|k =
∫

(xk − x̂k|k)(xk − x̂k|k)T

p(xk|z1, . . . , zm, Xk) dxk (23)

= βt
0 Pk|k−1 +

m∑

j=1

βt
j Pk|k,j + Pk (24)

The uncertainty consists of three parts. The first term
βt

0 Pk|k−1 covers the contribution of the possible event
that no measurements are associated to the tracked person
whereβt

0 = 1−∑m
j=1 βt

j . The second term
∑m

j=1 βt
j Pk|k,j

represents the share of all validated measurements to the total
uncertainty. The last term is an additional share reflecting
how measurements are located from one another where
the previous terms reflect how measurements are located
from the predicted position of a tracked person. The precise
formula for this last term is derived and given in [3], [6].

VI. EXPERIMENTAL RESULTS

The MPT is implemented and successfully applied to
several image sequences. To quantify the computation time,
in the case where there are four persons tracked, the average
processing time per frame is about 0.12s when running on a
1.5GHz CPU. This shows that real-time tracking is possible
with a rate of 8 frames per second. However, the processing
time depends on the number of persons that are tracked, the
number of extracted measurements, on the specifications of
the CPU where the MPT is running on, etc.

A. Color-Based Person Detection

The MPT uses a color model from the upper part of a
person’s body as a feature in order to detect this person and
to extract measurements. When a person enters the observed
space and its presence isn’t associated to an existing track,
a new track is initiated and a corresponding color model is
constructed based on the HSV color space. Charged with the
color models from all tracked persons, the MPT will extract
regions from every frame of the image sequence and after
noise removal, regions are labeled with a number. Regions
become measurements when they are labeled, surrounded by
a bounding box and characterized with a center of gravity.



Fig. 3. Comparison ofiterative Kalman filter and extended JPDAF
Kalman filter. (a) Use of iterative Kalman filter. The ellipses show the
99% probability area where the estimated position is located. (b) Use of
extended JPDA Kalman filter. The ellipse is smaller. The estimated position
is more certain when using theextended JPDA Kalman filter.

B. Effect of JPDA Filter

The MPT performs for every initialized person a correction
of the prediction using a measurement. When multiple mea-
surements are feasible, two options arise for this correction.
The first option is the use of aniterative Kalman filter.
This filter corrects the prediction with the first measure-
ment and this correction will be corrected with the next
measurement, etc. This way, all measurements will have
the same share in correcting the prediction. This results in
a more uncertain estimation when some measurements are
more likely to originate from a current tracked person. The
second option is theextended JPDA Kalman filter. Here the
prediction is corrected only once using a combination of all
validated measurements weighted with their share, i.e. their
association probability.

The comparison of both options is presented in Fig. 3. In
this example the hindmost person is occluded by the person
in the front resulting in two extracted measurements. These
two measurements are handled by aniterative Kalman filter
in Fig. 3(a) and handled by the Kalman filter extended by the
JPDA theory in Fig. 3(b). There is a neglected effect on the
estimated position but a noticeable effect on its uncertainty
which is smaller when theextended JPDA Kalman filteris
used.

So it is clear that the MPT will solve the association
problem with the JPDA theory. From every frame of the
image sequence and for every person that is tracked, the MPT
performs a number of loops and recursive algorithms in order
to link measurements to different tracks and to calculate a
measurement’s share in the state estimation of the tracked
person.

In Fig. 4, four persons are tracked. When two same colored
persons approach each other, measurements originating from
both persons will be used for the state estimation of one
person. A measurement’s share will be calculated by the
MPT based on the innovation, the difference between mea-
sured size and the person model, etc. Also several occlusions
and exceptional cases occur in Fig. 4. Fig. 4(a) shows a
person appearing after full occlusion by an object in the
observed space. During its occlusion no measurements from
this person were gathered although the measurement from
the same colored person who was walking in front of the
object can be associated to this tracked person. However, the

Fig. 4. Representation of a sequence where four persons are tracked when
walking at random and with several occlusions.

MPT calculates a much lowerassociation probabilityfor this
latter measurement than the probability that no measurements
are detected from this person. This none detection event
is pushed through during the evaluation and results in a
marginal correction of the prediction. According to (24) the
first term is from considerably more importance during the
calculation of the estimation’s uncertainty. Subsequently, this
uncertainty and its representation as an ellipse will increase
during a full occlusion. From the moment when a repre-
sentative measurement is extracted according to the person
model and the prediction, the estimation’s uncertainty will
decrease again. However in Fig. 4(c) occurs an overlap with
a same colored object. The measurement suddenly expands
in its width and the estimation’s uncertainty increases in
this direction. In Fig. 4(e) the measurements of the two
red colored persons are merged together. The height of this
measurement differs significantly from both person models.
However, this measurement can be corrected for the upper
person as described in section III which results in a better
state estimation and lower uncertainty. The measurement
can not be corrected for the lower person because the
measurement doesn’t satisfy the requirements for using of
the person model. After this crossing the two persons are
tracked correctly.

C. Effect of Using Person Model

The person model of a tracked person contains information
about its expected height and width. Assuming a person isn’t
occluded when he enters the observed space, a mean value
and deviation of it’s height and width is calculated. During
tracking, the measurement’s size is compared with the person
model of the tracked person in order to detect occlusion and
to calculate a measurement’s varianceRk.



Fig. 5. Effect on measurement and estimation when using a person
model. (a) Partial occlusion before correction of the measurement. The
bounding box represents the observed measurement, the cross represents
the measurement’s uncertainty in both directions. (b) Partial occlusion after
correction using the person model. (c) Quantitative representation of the
correction. TheX axis presents time and theY axis theY component of the
measurement’s noise deviation. The crossed line represents tracking without
using the person model. The line marked with the circles represents the
deviation when using the person model. The first vertical line shows when
the tracked person starts to walk behind the scene. The last line shows when
he is completely visible again for the camera. (d), (e) and (f) Analogue but
in case of an overlap with a same colored object.

Fig. 5 represents the use of the person model to correct
a measurement for the case of partially occluded persons
and enlarged regions because of a same colored object in
the background. Section III described how the MPT handles
these two cases.

VII. CONCLUSION

The MPT is in a state where it can perform fail-safe
tracking in a populated and heavy occluded space where
every person is tracked with a Kalman filter. The Kalman
filter has been shown to provide highly efficient state esti-
mates for image-based tracking, although assuming unimodal
Gaussian distributions. Furthermore, the Kalman filter is
adjusted to image-based tracking using a person model for
a more precise calculation of the uncertainties. But before
estimating a person’s state, the measurements are corrected
by the MPT using also this person model in order to reduce

the uncertainties. Next, the MPT decides which measure-
ments are allowed to compete for correcting the estimation’s
prediction and in what extent by calculating itsassociation
probability. This extension of the Kalman filter is realized
by the JPDA theory.

Continuing research in this topic includes tracking of
non-continuous motion (currently possible for a not so
sudden change of motion and depending on the estimation
uncertainties), the use of more complex models for state
estimation and the implementation of the MPT on a mobile
camera/robot. The ultimate objective is the application of the
MPT in a more complicated situation where many persons
are distinguished and tracked. The computational cost for
every state estimation will be a drawback in such a situation.
Another consequence is that other features than only the
color of the upper part of the body will be necessary for
detection and association of measurements, for instance color
of skin and hair, size, etc.
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