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Visual Tracking of Multiple Persons in a Heavy Occluded Space Using
Person Model and Joint Probabilistic Data Association

Maarten Liebens, Takuro Sakiyama and Jun Miura

Abstract—This paper presents a new approach to the pro- this paper will perform Kalman filter-based tracking and to
blem of image-based tracking of multiple persons in a heavy cope with similar-colored nearby objects/persons and short-
occluded space using a single camera. The presence of heavya occlusions, it will use a person model and the Joint

occlusions results in uncertain measurement data. Examples of o L
heavy occlusions are objects which impede the observation of a Probabilistic Data Association (JPDA) theory.

person, the overlap of multiple persons, etc. This measurement 10 SeNse a certain space, former approaches made use of
uncertainty can be partially by-passed if the process knows sonar [6] or laser-range scans [7], [13], [14] wherefrom 3D
more about a person’s expected size, i.e. person model. This data can be gathered but they are superseded, too expensive
way the observed measurement can be_ corrected using the intro- or take too much processing time. Other 2D laser sensors
duced person model. Also the uncertainty of the measurements I id dat . | St g
will be calculated with this person model. Subsequently, the only provide range data on a scanning plane. Sereo vision
corrected measurement is used to estimate the person’s state C&Nn be used, but needs two or more cameras and extra pro-
(i.e. position and velocity) in the Kalman filter resulting in a  cessing. The MPT described in this paper performs image-
more robust tracking. Next, tracking _multiple persons _jointly based tracking using a single camera.
implies the need for a data association technique. This paper  one of the key features of this paper is how measurement
uses the Joint Probabilistic Data Association (JPDA) filter which tainti det ined and h ¢ b
calculates the a posteriori probabilities of the measurements uncertainues are determined an . Oow measurements can be
having probably originated from the tracked persons. Finally, ~corrected based upon the comparison between the extracted
the approach has been implemented and tested on a single measurement and the expected size of the tracked person, i.e.
static camera bearing in mind that it will be applied on a  a person model. Section II-B explains the computation of the
mobile camera or robot. The approach presented here will - e55rement uncertainties and section 111 will expound how
verify whether the use of a single camera, wherefrom only t ted usi del
2D image-based data is gathered, delivers satisfactory tracking measurements are correcte “S'”Q a per_s‘?” moael. .
results using the Kalman and JPDA filter. Further, the MPT has to deal with additional uncertainty
caused by the uncertainty of the origin of the measurements
I. INTRODUCTION and the correctness of associations of measurements to
This paper presents a new approach to the problem afperson. This measurement-to-person correspondence has
tracking multiple persons jointly using a single cameraextensively been studied for person tracking and the surveil-
Visual analysis of human motions has been widely studieldnce community. A number of statistical data association
[15]. In order to analyze human motions, we first need ttechniques are compared with each other by Cox [5]. The
detect and track humans reliably. Various visual featurddPT applies the JPDA technique [1], [2], [3], [6] and is
are used for detection and tracking such as optical flowiscussed in more detail in section IV. Former approaches
color, depth, and their combinations [11], [17]. Color in-to track multiple persons already investigated the use of the
formation is especially useful when a target wears clothingPDA filter. However, most of these approaches use laser
with distinctive colors [10]. Recentlynean shiftracking has sensed data and patrticle filters [7], [14]. There are not many
been proposed [4] which calculates the most probable targgbrks on applying the JPDA theory to image-based tracking.
position using a spatially-smooth similarity function. Perez
et al. [12] extended this idea to particle filter-based tracking _ ”'_ STATE ESTIMATION
to cope with similar-colored nearby objects or short-ternft. Kalman Filtering
occlusions. The Multiple Person Tracker (MPT) presented in The MPT tracks a specific person by calculating its
_ _ , _ state using the centers of gravity of the extracted regions.
This research was conducted while the first author was with Osal d t lusi d lack of inf ti bout
University. His stay was supported by the DeMaMech student exchan owever, due 0 occlusion _an ac O Inrormation about a
program runned by the project leaders Prof.Dr. Tetsuo Tomiyama arf@erson’s true size and motion over time, the MPT extracts
Prof.Dr. Hiromasa Suzuki for the European Union and Japan respectivebjften disfigured regions i.e. measurements perturbed with
The MPT was designed, implemented and tested in the Active Intelligent _. | . f thi y he MPT d .
Systems Laboratory of Prof.Dr. Jun Miura. noise. In spite of this noise, the needs to estimate a
M.Liebens is with the Department of Mechanical Engineer-person’s state. One of the most well-known and often-used
ing, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.igols for tracking is the Kalman filter [2], [8], [16].
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transition matrix which maps the previous state on the current
state based on the previous velocity amds the process
noise, assumed to be normally distributed with zero mean :
and variance). b
The measurement system is modeled as follows. If the
measurement originates from the person, then

Z, = Hxp + Vi, 2 Ji 4:1

where H is the known(2 x 4) matrix which maps the true (@) ®)

state on the observed state andrepresents the measure-

ment noise, also assumed to be norma”y distributed Wiﬂﬁg-_l-_ Distributions c_Jf a person’s state during ambiguous events. (a)
. Beginning of full occlusion. (b) Overlap of a person and a same colored

zero mean and variandey. object.

The MPT's estimation of a person’s statg at time k,

given data up to time, is denotedk;;. The error in the

state estimation is represented by its variance ma&ix. whether the left side corresponds to the real expected left side

In the absence of measurement origin uncertainty (whicbf a person or whether this left observed side is the boundary

will be introduced in section 1V) the discrete-time Kalmanbetween the person and the occluding object. The same is

filter calculates a person’s state estimation and its variangensidered for the right side. The two measures drawn in Fig.

by correcting their predictions as follows 1(a) depict the outer possible locations of the expected width.

The position of the center of gravity becomes more uncertain,

X = X W2 o .
kI kJ’“*l +Wazk . qguantified by equation (7), and the MPT assumes that the
= A1+ Wiz @) probability of a person’s position is uniformly distributed
Prr = Prpr—1 —WkSkW}C between the middles of the two outer positions of width.
— AP AT+ Q- Wi SWT (4) However, the measurement's noise is normally distributed.

. o _ . The coefficiento in (7) and (8) are meant to spread out the
whereW, is the Kalman gainz; is the innovation vector and normal distribution of the measurement’s noise in order to
defined by the difference between the observed measuremggtin agreement with the uniform distribution like presented

and the predicted person’s state in Fig. 1(a).
5 _ " _ 5 On the other hand, a measurement can also be wider
2 =2 — HXpp—1 = Zk — Zgpp—1 (5)
than the person model when an overlap occurs between a
and whereS; is the variance matrix of the innovation person and a same colored object. This event is presented in
Fig. 1(b). The upper drawn measure represents the measured
Si = AP 1 AT + Ry 6 . ; :
§ k=127 4 Rk ©)  Width of the tracked person. The center of gravity of this
B. Uncertainty of Measurement Using Person Model measurement is uncertain and this uncertainty is quantified

measurement noise varianBeinto the Kalman filter. How- two outer possible positions of the person’s true width. The
ever, the MPT extracts measurements having their own siZXplanation about the distributions in the former case counts
characterized by height and width w. Compared with @ISO here.

the e_»_(pected he_lghE[h} and expected W|dthE[y;] of a . MEASUREMENT CORRECTION USING
specific person, i.e. person model, tfiex 2) variance of PERSON MODEL

the measurement’s noise can be calculated from frame to

frame during tracking A person walking in a heavy occluded space results often

in disfigured and implausible measurements. Fortunately,
R 1y = a(Ew] - w)? + 0% (7) measurements can be corrected in some cases by the MPT
Ra.9) = (B[R] — h)? + 0 (8) if there isa priori information about a person’s expected

height and width, i.e. a person model. The intention of this

Raz = Ren =0 ©)  correction is to reduce a measurement's uncertaint
Y.

whereo is the deviation from the mean of the expected size The MPT can determine whether only the upper or lower
of the unoccluded tracked person. This previous variance figrt of a tracked person is visible or whether a same colored
added in order to avoid obtaining varian@éf the expected object in space suddenly enlarges the extracted region. The
size matches the current measured size. On the other hamsk of the person model for both cases will be explained
when occlusion occurs and the measured region suddenbgether with Fig. 2. Fig. 2(a) represents the case when a
enlarges or shrinks, the measurement’s noise variance shopktson’s lower part of the body is occluded. The height
increase, for instance when an object starts to obstruct thé the extracted measurement has changed gravely from
presence of the tracked person. This event is presented in Rige previous frames. When the MPT detects this change,
1(a). The observed width of the extracted region is smallér checks whether the upper pixel of the disfigured extracted
compared to the person model. It is not immediately cleaegion can be found within a threshold around the upper pixel
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time subscript will be suppressed for convenience from all
variables except fronP and Z.

The main purpose of the JPDA filter is to combine all these
measurements’ innovations weighted with thagsociation
probability in order to correct the prediction of perseénn

O

O where 2 is the predicted measurement for persoriThe
)
o

(a) () the Kalman filter with a total innovatio®':
m
Fig. 2. Measurement correction. (a) Partial occlusion of the lower part of gt Zﬁt 3.t (12)
the tracked person. The bounding boxes represent the demarcation of the ¢ 7
extracted measurements, the bright dots are the centers of gravity of the J=1

measurements and the dark dot (accompanied by the arrow) is the correcteﬂ tis th L babilitvth t
measurement. (b) Overlap of a person and a same colored object. W ereﬂj IS the association probabilitthat measuremery

originated from person.

of the region extracted in the frame before the occurrence 8 Joint Event Probabilities

partial occlusion. The same is done for the lowest pixel to The key to the JPDA algorithm and to the calculation

find out whether the upper part is occluded. When the MPGf the association probabilitiess! is the evaluation of the

concludes that the lower part is occluded, tecoordinate following feasible joint events

of the center of gravity of the measurement is corrected by m

positioning the center of gravity.,, below the upper pixel. Y = ﬂ Xjt (13)
According to this course of reasoning, the measurement, =1

obtained from a frame where a tracked person and a same ) .

colored object are in overlap, can be corrected the same w‘%b‘erert is the event that measuremenbriginated from

and this correction is presented in Fig. 2(b). persont. The feasible ever_1ts_ are those joint events in which
only one measurement originates from only one person and
IV. DATA ASSOCIATION vice versa [1], [2], [6]. The probability of the joint event
A. Problem Formulation conditioned on the measurements up to titnés denoted

The appearance of multiple measurements, due to occfés P(x|Z*). After obtaining these feasible joint evenis
sion or simply due to the presence of multiple persongnd their probabilities, thassociation probability3} is the
complicates the process of tracking. The analysis for thigrobability of the event where measuremgin associated to
appearance requires knowledge of measurement-to-perd¥§#Sont conditioned on all measurements up to the present
correspondence. That is, what is the possibility that the meHIe &:
surement currently originates from this person? Which mea- 85 & P(x;12") (14)
surements are used to correct the predicted state of a perso

n order t timat rson’ ition? Anv m rerm nt':f'he extra computational burden resulting from the con-
order lo estimale a person's position= Any measuremefy, -iqn of all the events (also those events with negligible
might have originated from any person. In practice, som

. - robability or even probability zero), in order to calculate the
measurements are more likely to originate from one tra

: . ssociation probability3?, can be avoided with suitable logic
than another. A distance measure is therefore needed tI P % 9

guantifies this likelihood. The smaller the distance betweenﬁ%Itlng the_probability calculations to only those events

m rement and its predicted value. the more likely it {nvolving validated measurements. This logic, which has
a measurement a S predicted value, the more fIikely §’ctually a negligible effect on the numerical results but not
to have originated from it. From the Kalman filter theory,

o . . n the computational burden, is presented in [7].
it is known that the measurement is normally d|str|bute8 pula o b - [71

. . The probability of a joint event conditioned on all mea-
about its predicted value [16]. In that case, a common

. . L rements up to the present tithecan be presented as:
distance measure is the Mahalanobis distance [9]. The MF’S|J P P P

associates only the measurements to a person with distance P(y|z*) = P(x|zi,...,zn, 2571 (15)
\/2S; 2w < ~. The Mahalanobis distance quantifies the = P(x|zi,...,2Zm, X") (16)
likelihood that a measurement originates from a specific 1 & &

person and can be considered to be a generalization of the . P15 Zm | X X7) P [ XF)(17)

Euclidean distance which also takes the relative uncertainti
in innovations into account.

The m validated measurements extracted from the fra
at time k are denoted az;:

The measurement&” in (15) can be split up in the current
mdetected measurements, ..., z, and the measurements
k1 obtained before timé. However, to consider the con-
dition of all measurements obtained before tiknis complex
ZF =Az1,..., 2} U AR (10) and laborious. To overcome this problem, the distributions of
the predictions of the persons’ stat&¢ are introduced in
(16). All previous measurements are indirectly encapsulated
in these predictions. On the other hand, the prediction and
z; -2 (11) the estimation problem are assumed to be Markovian. The

and the corresponding individual innovations at timndor
persont are, forj =1,...,m:

st A
Zj =



state of a person depends only on the measurements obtaiasdociation probability3§. Also the Kalman gaifk* depends

at time £ and the state at timé — 1. on the measurements because every measurejmeas its
Using Bayes’ rule, the probability of a joint event own uncertaintyR;. Subsequently, the total Kalman gain is,

can be presented as in (17) wheRéx|XF¥) is the prior similar to the estimation of a person’s state, composed out

probability conditioned on the distribution of the currentof partial Kalman gains originating from individual validated

predicted statex’* and the termi /c is the prior probability measurements and weighted by #ssociation probabilityf

of the measurements conditioned on the past data, and aitte measurement:

as a normalizing constant. m
The probability of each measurement-to-person associa- K' = Z K% 35 (21)
tion is derived in [6] and defined as follows: j=1
SINT (at\—1 (5t s
rodzty = LI e (- w) — >0 8 Pl HT(HPL,_HT 4 R)) (@)
€ jm=14/2n|9] 5=l
B. Uncertainty of state estimation
II 2o II @ —Po) (18) . v . . o .
5,1 t:6,=0 The variance associated with the above estimation (20) is

derived in [3] and can be represented as follows:
wherePp, is the probability of detecting a person in the frame
and related to the observed spaédejs the target detection Pee = /(Xk = Rio) (X — Kpopie) "
indicator and equald if any measurement is associated

with targett in eventy (i.e. whether target is detected) p(xk‘zl””’zm;f’“) X (23)
an_d 7; is the mea§qrement assouayon indicator a_nd equals _ 63 Prk_1 + Z ﬂ;; Puk, + Pr (24)
1 if measuremenyj is associated with any target in event =

x- The first product term in (18) is the probability density _ . .
of a measuremerg; if it is associated to a person This The uncertainty consists of three parts. The first term

. Al .
probability is normally distributed about its predicted valug’o Prix—1 COVers the contribution of the possible event

5t with varianceSt. that no measuregents are associated to Ttnhe tracked person
where3{ = 1-37" f3;. The second tery 70, B% Pk
C. Association Probabilities represents the share of all validated measurements to the total

The probability3t that measuremerjt from the collection uncertainty. The last term is an additional share reflecting
of all m validatedjmeasurements belongs to personay how measurements are located from one another where

now be obtained over all feasible evengsfor which this the previous terms reflect how measurements are located
condition is true: from the predicted position of a tracked person. The precise
formula for this last term is derived and given in [3], [6].
B = 3P| ZF)wii(x) (19)
X

VI. EXPERIMENTAL RESULTS

where w;+(x) equals unity if measurement belongs to The MPT is implemented and s_uccessfully app_lied_to
persont in eventy and zero otherwise. These probabilitiesS€Veral image sequences. To quantify the computation time,
are used to calculate the combined innovation (12) for evef{ the case where there are four persons tracked, the average

person. processing time per frame is about 0.12s when running on a
1.5GHz CPU. This shows that real-time tracking is possible
V. MODIFICATION OF STATE ESTIMATION with a rate of 8 frames per second. However, the processing

The Kalman filter as described in section 1l needs t&me depends on the number of persons that are tracked, the
be modified to account for the possibility of incorrecthumber of extracted measurements, on the specifications of
measurement-to-person associations. Therefore, the estirffi@ CPU where the MPT is running on, etc.
tor has to assimilate thassociation probabilitiesThis way, A color-Based Person Detection

the estimator becomes nonlinear because the estimation and

its variance are nonlinear functions of the measurements. ' n€ MPT uses a color model from the upper part of a
person’s body as a feature in order to detect this person and

A. State estimation to extract measurements. When a person enters the observed
The state estimation of a person is modified in the followSPace and its presence isn't associated to an existing track,
ing way: a new track is initiated and a corresponding color model is

constructed based on the HSV color space. Charged with the
color models from all tracked persons, the MPT will extract
regions from every frame of the image sequence and after
noise removal, regions are labeled with a number. Regions
where )‘(fc‘,w- is the estimation using a single measuremertiecome measurements when they are labeled, surrounded by
out of m validated measurements and weighted by tha bounding box and characterized with a center of gravity.

Ko = R, B = Xy + K'YE (20)
j=1
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Fig. 3. Comparison ofiterative Kalman filterand extended JPDAF
Kalman filter (a) Use ofiterative Kalman filter The ellipses show the |
99% probability area where the estimated position is located. (b) Use
extended JPDA Kalman filteThe ellipse is smaller. The estimated position
is more certain when using trextended JPDA Kalman filter

[
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B. Effect of JPDA Filter {

The MPT performs for every initialized person a correctior
of the prediction using a measurement. When multiple mee
surements are feasible, two options arise for this correctiol
The first option is the use of aiterative Kalman filter
This filter corrects the prediction with the first measure-
ment and this correction will be corrected with the nexFig 4 Representation o_fasequence Whe_re four persons are tracked when
measurement, etc. This way, all measurements will hayigking at random and with several occlusions.
the same share in correcting the prediction. This results in

a more uncertain estimation when some measurements

more likely to originate from a current tracked person. Th .
I . atter measurement than the probability that no measurements
second option is thextended JPDA Kalman filteHere the : . .
fre detected from this person. This none detection event

rediction is corrected only once using a combination of a . . .
P y g Is. pushed through during the evaluation and results in a

vallda'_[eq measurements weighted with their share, i.e. thenlﬂrarginal correction of the prediction. According to (24) the
association probability

The comparison of both options is presented in Fig. 3. IHrst term is from considerably more importance during the

this example the hindmost person is occluded by the persgﬁlculatmn of the estimation’s uncertainty. Subsequently, this

. L uncertainty and its representation as an ellipse will increase
in the front resulting in two extracted measurements. The Y P P

Se .
two measurements are handled byitnative Kalman filter deurmg_ a full ‘occlusion. _From the moment_when a repre-
N ' sentative measurement is extracted according to the person
In Fig. 3(a) and handled by the Kalman filter extended by thr%odel and the prediction, the estimation’s uncertainty will
JPDA theory in Fig. 3(b). There is a neglected effect on th P ' y

. o . . . ﬁecrease again. However in Fig. 4(c) occurs an overlap with
estimated position but a noticeable effect on its uncertama/same colored obiect. The measurement suddenly expands
which is smaller when thextended JPDA Kalman filtas ject. Yy €xp

used in its width and the estimation’s uncertainty increases in
' this direction. In Fig. 4(e) the measurements of the two

So it is clear that the MPT will solve the associationred colored persons are meraed toaether. The height of thi
problem with the JPDA theory. From every frame of the persons 9 9 : '9 IS

image sequence and for every person that is tracked, the Mﬁlgv?/:(r;mti?; Sr:fefifufé%:gfta:;z ggngot;féztggrf;ntgoselsér
performs a number of loops and recursive algorithms in ordg} ' PP

to link measurements to different tracks and to calculate erson as described in section Il which results in a better

measurement’s share in the state estimation of the trackdd. te estimation and lower uncertainty. The measurement
person can not be corrected for the lower person because the

In Fig. 4, four persons are tracked. When two same Coloré'ggasurement doesn't satisfy the requirements for using of

persons approach each other, measurements originating fr{) person model. After this crossing the two persons are
both persons will be used for the state estimation of onéacked correctly.

erson. A measurement’s share will be calculated by th .
IF\J/IPT based on the innovation, the difference between yme . Effect of Using Person Model
sured size and the person model, etc. Also several occlusionsThe person model of a tracked person contains information
and exceptional cases occur in Fig. 4. Fig. 4(a) shows about its expected height and width. Assuming a person isn't
person appearing after full occlusion by an object in theccluded when he enters the observed space, a mean value
observed space. During its occlusion no measurements frand deviation of it's height and width is calculated. During
this person were gathered although the measurement fraracking, the measurement’s size is compared with the person
the same colored person who was walking in front of thenodel of the tracked person in order to detect occlusion and
object can be associated to this tracked person. However, tizecalculate a measurement’s variariRg

"f\l/ﬁE’T calculates a much lowassociation probabilityor this
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Use of person mode! - Partial occlusion Use of person model - Same colored object

the uncertainties. Next, the MPT decides which measure-
ments are allowed to compete for correcting the estimation’s
prediction and in what extent by calculating @ssociation
probability. This extension of the Kalman filter is realized
by the JPDA theory.

Continuing research in this topic includes tracking of
non-continuous motion (currently possible for a not so
sudden change of motion and depending on the estimation
uncertainties), the use of more complex models for state
estimation and the implementation of the MPT on a mobile
camera/robot. The ultimate objective is the application of the
MPT in a more complicated situation where many persons
are distinguished and tracked. The computational cost for
every state estimation will be a drawback in such a situation.
Another consequence is that other features than only the
color of the upper part of the body will be necessary for
detection and association of measurements, for instance color
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Fig. 5. Effect on measurement and estimation when using a persorLS]
model. (a) Partial occlusion before correction of the measurement. The
bounding box represents the observed measurement, the cross represeﬁs
the measurement’s uncertainty in both directions. (b) Partial occlusion afte
correction using the person model. (c) Quantitative representation of the
correction. TheX axis presents time and thé axis theY” component of the
measurement’s noise deviation. The crossed line represents tracking witho
using the person model. The line marked with the circles represents th
deviation when using the person model. The first vertical line shows whe 8]
the tracked person starts to walk behind the scene. The last line shows when
he is completely visible again for the camera. (d), (e) and (f) Analogue but[g]
in case of an overlap with a same colored object.

[10]

Fig. 5 represents the use of the person model to corregt,
a measurement for the case of partially occluded persons
and enlarged regions because of a same colored object in
the background. Section IIl described how the MPT handld&?
these two cases.
[13]
VIl. CONCLUSION

The MPT is in a state where it can perform fail-saf
tracking in a populated and heavy occluded space whe
every person is tracked with a Kalman filter. The Kalman
filter has been shown to provide highly efficient state est('k—1 ]
mates for image-based tracking, although assuming unimo al
Gaussian distributions. Furthermore, the Kalman filter ig6]
adjusted to image-based tracking using a person model for
a more precise calculation of the uncertainties. But beforg;;
estimating a person’s state, the measurements are corrected
by the MPT using also this person model in order to reduce

14
&

of skin and hair, size, etc.
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