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Abstract— This research aims to develop a method of esti-
mating road boundaries by deep learning. Existing methods
detect boundaries using specifically designed features, and if
such features are not available, it is difficult to estimate road
boundaries. On the other hand, estimation by deep learning
does not require designing features beforehand because it can
learn features by itself, and it could estimate boundaries for
a more diverse set of roads. In this research, we propose a
method of estimating road boundaries by a combination of deep
learning and particle filter. By performing a temporal filtering
with a particle filter, it is possible to deal with occasional failures
in road boundary recognition by deep learning.

I. INTRODUCTION

Outdoor mobile robots need to have a function of estimat-
ing the boundary of a road or a traversable region for safe
navigation. There are many features that can be used for
road boundary estimation, but the features that are available
in a certain environment may not be available in different
environments. Therefore, it is undesirable to estimate road
boundaries using only pre-defined specific features.

We have developed methods of estimating road boundaries
using multiple visual features with flexible road models and
particle filter [1], [2]. The use of multiple features makes
it possible to estimate road boundaries robustly in various
environments. If it is difficult to obtain any pre-defined
features, however, estimation will fail. Therefore, we needed
to prepare a vast variety of features in advance.

In this paper, we apply deep learning to solving this
problem. Deep learning does not require features in advance,
but automatically obtains them by learning from various data.
Therefore, a road boundary estimation with deep learning
is expected to be able to deal with various types of road
boundaries without pre-defined features. However, such an
estimation is not always correct, and suffers from temporary
failures. In this research, a stable road boundary estimation is
realized using temporal information integration of framewise
estimation results by particle filter.

Fig. 1 shows the block diagram of the proposed method.
First, road boundary regions are detected by semantic seg-
mentation from RGB images using a deep neural network.
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Fig. 1: Outline of proposed method.

The states to estimate by the particle filter are road boundary
parameters and the output of the network is used as a
likelihood.

The rest of the paper is organized as follows. Section II
describes related work. Section III describes road boundary
estimation by semantic segmentation. Section IV describes
temporal information integration using particle filter for road
parameter estimation. Section V describes experiments of
the proposed method. Section VI describes conclusions and
future work.

II. RELATED WORK

A. Statistical road boundary estimation by multiple features

Matsushita and Miura [1] extract three types of road
boundary features, height difference from a laser range finder
and intensity and color gradient from a camera, and estimate
road parameters and the ego-motion using particle filter.
Chiku and Miura [2] apply this approach to a stereo-based
road boundary detection. By combining multiple features,
they can robustly estimate road boundaries in various road
scenes. In these works, a pre-defined set of features are used.

B. Semantic Segmentation

Semantic segmentation is a task of classifying each pixel
into one of the predefined set of classes. FCN, SegNet,
and ResNet are popular network models in semantic seg-
mentation using Deep Learning. FCN [3] uses end-to-end
convolution networks for semantic segmentation. SegNet [4]
is efficiently designed in terms of memory and calculation
time by using an encoder-decoder model with a smaller
number of trainable parameters. The encoder-decoder model
is also used for many networks such as U-NET [7]. ResNet
[5] trains deeper networks using learning of a residual
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function. ResNet is the basis of many networks such as
CASENet [8].

C. Semantic edge detection using deep learning

Z. Yu et al. [8] proposed a method of extracting boundaries
between semantic regions using deep learning. The method is
evaluated using SBD [9], a standard dataset for benchmark-
ing semantic edge detection, and Cityscapse [10], a pop-
ular semantic segmentation dataset. However, this method
requires a large computing power because the network is
based on ResNet101 [5], and could be difficult to apply to
mobile robots where real-time processing is indispensable.

III. ROAD BOUNDARY DETECTION BY DEEP LEARNING

We formulate the road boundary detection as a three-class
segmentation problem where each pixel is classified into
road, road boundary, and others. Fig. 2 shows an input image
and the corresponding label image. In Fig. 2(b), red, blue,
and, green regions represent road boundary, road, and other
regions, respectively.

A. Network

We use U-NET [7] structure shown in Fig. 3 as the
network. The input is a 256 × 256 RGB image of a road
scene, and the output is the result of segmentation into the
three classes, represented also by a 256× 256 RGB image.

B. Dataset

We use two datasets. One is ICCV09DATA [6], published
in ICCV 2009 and includes 715 data, classified into eight
classes: sky, tree, road, grass, water, building, mountain, and
foreground object. We divide these labels into road class (the
blue region in center of Fig. 4) and the others, and then add
a new class between them as road boundaries class. Fig. 4
shows examples of input images, original labeled ones, and
generated three-class labeled ones. Among those 715 images,
615 images are randomly chosen as training data, and the
remaining 100 images are used as test data.

The other dataset was created from images taken at
Toyohashi University of Technology. We took ten images as
the robot moves on a road. We used five of them for training
and the rest for testing. We manually labeled the images (see
Fig. 2 for an example).

(a) Input image (b) Label image

Fig. 2: Training of road boundary estimation by Deep Learn-
ing.

TABLE I: Evaluation using real data.

Recall Precision Accuracy F-measure
Best Recall(Fig.5) 0.793 0.840 0.957 0.816

Average 0.552 0.609 0.955 0.571
Standard Deviation 0.204 0.201 0.024 0.200

Combining the two datasets, we have 620 training data
and 105 test data. Furthermore, the data were augmented by
trimming, left/right inversion, and two types of gamma value
change, and we finally have 22,746 training and 4,200 test
data.

C. Detection Results

1) Evaluation using real data: We evaluate the method
using real data in terms of accuracy, recall, precision, and
F-measure. The accuracy is the ratio of correctly-identified
pixels. The precision is the ratio of the number of road
boundary pixels to that of pixels classified as road boundary.
The recall is the ratio of the number of pixels classified as
road boundary to that of pixels of road boundary. The F-
measure is the harmonic mean of the recall and the precision.

The accuracy focuses on the entire estimation result, and
it is not desirable to use it as the evaluation criterion in this
problem where most pixels are not road boundaries. Since for
autonomous navigation, detecting road boundaries reliably is
the most important, we use the recall of the boundary as the
primary measure of evaluation.

Fig. 5 shows the result for which the best recall is obtained.
Table I summaries the statistics for all test data. These results
show that the performance of the method is sufficient to be
used for temporal information integration.

2) Evaluation using simulator: We evaluate the method
using the Gazebo simulator on ROS [11]. The simulator can
build various environments for evaluating the method. Fig. 6
shows the results of road boundary estimation and Table II
is the evaluation of these figures. The results show that the
proposed method is effected in various environment.

D. Comparison between 2-class classification and 3-class
classification

We detect road boundary regions based on a 3-class
classification (road boundary, road, and others). A 2-class

Fig. 3: The structure of U-Net.



Fig. 4: Data created from ICCV09DATA. Each row shows
input image, segmentation result, and three-labeled image
from left to right.

(a) Input image. (b) Label image.

(c) Result of estimation. (d) Boundary extracted image.

Fig. 5: A classifier result for the real dataset.

classification (road boundary and others) might be, however,
enough for our purpose. We therefore compare their per-
formances. Both methods use the same network except the
output layers, which is due to the difference in the number
of classes.

Table III shows the comparison results in terms of recall,
precision, accuracy, and F-measure. Recall, our primary
measure, is better in 3-class classification than in 2-class one,
probably because 3-class classification utilizes geometrical
relationships among three classes, which could be more
informative than 2-class ones.

TABLE II: Evaluation in simulator.

Recall Precision Accuracy F-measure
Fig.6(a) 0.805 0.771 0.981 0.787
Fig.6(b) 0.826 0.686 0.983 0.750
Fig.6(c) 0.704 0.693 0.967 0.698

(a)

(b)

(c)

Fig. 6: Classification results for the simulated dataset. Each
row shows input image and segmentation result.

TABLE III: Comparison between 2-class classification and
3-class classification.

Recall Precision Accuracy F-measure

Average 2-class 0.379 0.675 0.973 0.469
3-class 0.552 0.609 0.955 0.571

Std. Deviation 2-class 0.185 0.184 0.016 0.192
3-class 0.204 0.201 0.024 0.200

IV. TEMPORAL INFORMATION INTEGRATION USING
PARTICLE FILTER

A. Road model

There are many types of road, such as an unbranched road
and an intersection. In this paper, we deal with the simplest
shape, that is, an unbranched road with a right and a left
straight boundary. The road model can be represented by
four points, namely, the start point and the end point of the
right and the left boundary. To cope with the deviation from



Fig. 7: The road model and state variables.

the road model, such as a loosely curved road, we estimate
the positions statistically.

Fig.7 illustrates our road model. Let (x, y, z) be the
coordinate value in the robot coordinate system. The x axis is
the front direction of the robot, the y axis is the left direction
of the robot, and the z axis is the upward direction of the
robot. Then, let the state variables be [yri, yrt, wi, wt]. yi,
yt are the y coordinate values of the start and the end point
of the right boundary, respectively. wi and wt are the road
widths at the start point and the end point, respectively. Since
the road width never becomes zero or less, we also have a
constraint of w∗ > 0. In this model, x and z values are
treated as constant and only the y component as a variable.

The position of the start point of the right boundary is
(0.5, yri, 0) and that of the end point is (1.5, yrt, 0). The start
and the end point position of the left boundary are expressed
as (0.5, yli = yri +wi, 0) and (1.5, ylt = yrt +wt, 0). Note
that the unit is meter.

B. Prediction step

There are two causes of uncertainty to be considered in
the state transition. One is the uncertainty of robot motion;
it does not exactly follow the road. The other is a gradual
shape change of the road itself. Both causes simultaneously
affect the road boundaries with respect to the robot pose.
We therefore add noise to the road boundary parameters
(yri, yrt, wi, wt) using a normal distribution with zero mean
and a standard deviation of 0.2 [m].

C. likelihood calculation

We project the left and the right road boundary in the
scene on the output image of the network, and then examine
how the projected boundaries and the semantic segmentation
results match for calculating the likelihood. The likelihood
is defined by:

likelihood =
1
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, (1)

where pi and pj are the values of the output image for the ith
and the jth pixel of the right and the left projected boundary,

TABLE IV: Execution environment of estimation road
boundary by Deep Learning

OS Ubuntu 16.04
CPU Intel(R) Core(TM)i7-7700HQ 2.80GHz (8 core)
GPU NVIDIA GeForce GTX 1050 Ti

DNN framework Chianer3.3.0

respectively, and N and M are the respective total number
of pixels.

V. EXPERIMENT

A. Experiment at Toyohashi University of Technology

The first experiment of estimating road boundary was
conducted by using the data taken at Toyohashi University
of Technology. The data were acquired using a Kinect v2 put
on Mercury Mega robot (Rivest Co., Ltd). We used rosbag, a
tool of ROS, for recording and playing back RGB and depth
images.

Fig. 8 shows the road boundary estimation results at steps
74, 84, 106, 107 and 245. The road boundary estimation
result at each frame is the weighted average of the parameters
of all particles. In addition, we compare our method with a
one-shot estimation by Hough transform, which is applied to
the output of deep learning without any temporal information
integration.

We determine the threshold for votes in Hough transform
as one third of the vertical size of the image. The result of
road boundary estimation by Hough transform is given by
the maximum voted line on the deep learning result.

At step 74, using the likelihood values as weights, the par-
ticles converges to some extent and, therefore, the estimation
becomes certain. At step 84, the result of one-shot estimation
has only left boundary because the right boundary is not be
detected by deep learning. However, our method succeeds in
estimating it by temporal information integration. At steps
106 and 107, the one-shot estimation is successful at the
former but is not at the latter due to the failure of detecting
the right boundary by deep learning. At step 245, the deep
learning outputs very bad result. Even in these case, our
method succeeds thanks to temporal information integration.

The execution time in the environment shown in Table IV
was 0.32 sec per cycle with 200 particles and 0.30 sec per
cycle with 100 particles.

B. Experiment at Universitas Gadjah Mada

We also conducted experiments at another place, Universi-
tas Gadjah Mada (UGM). For training the network, we added
23 data taken at UGM to the original dataset and applied the
data augmentation as well. Fig. 9 shows the results of the
road boundary estimation at UGM. The proposed method
also works well for different road scenes, while the one-shot
detection does not. Especially, at step 99, although the deep
learning result produces lots of fake boundary regions, the
proposed method keeps a reasonable detection thanks to a
model-based filtering.



(a) step74 (b) step84 (c) step106 (d) step107 (e) step245

Fig. 8: Result of the Experiment in Toyohashi University of Technology. From top to bottom of each columns are input
image, output of the network, particle filter output, road boundary estimation by using our method and road boundary
estimation by using Hough transform.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a road boundary estima-
tion method for a mobile robot using deep learning and parti-
cle filter. We use U-Net for boundary extraction and showed
that the 3-class classification (road boundary, road, others) is
better than the 2-class classification (road boundary, others).
To cope with occasional boundary detection failures, we use
particle filter for a stable road boundary detection. We define
a state vector to represent the road shape and use the output
of the trained network for calculating the likelihood values.
We applied the proposed method to simple unbranched roads
and showed its effectiveness.

We currently deal with only unbranched roads with a right
and a left boundary. It is future work to extend the model to a
more variety of road shapes such as intersections and acutely-
curved roads. It is also necessary to increase the variations of
road appearances in the dataset so that the proposed method

will be applied to various road scenes.
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