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Abstract— This paper deals with a navigation of a mobile
robot in a campus environment using a hand-drawn line
drawing building map. Hand-drawn maps often include various
types of uncertainty such as incorrect size/position and missing
objects, thereby making it difficult to establish correspondence
between objects in the map and sensory data. We solve this
problem using a SLAM approach with an input hand-drawn
map being an initial estimate. The proposed method combines
a FastSLAM with a particle swarm optimization for map
refinement. The method has been successfully applied to a
stereo-based localization in a real scene.

Index Terms— Outdoor navigation, Hand-drawn map, Line
drawing map, Particle filter, Particle swarm optimization.

I. INTRODUCTION

Localization is one of the fundamental functions of mobile

robots. Vision has increasingly been used as a sensor for

outdoor localization and navigation [3]. Previous works on

visual localization in outdoor environments can roughly be

divided into two categories: landmark-based ones [18], [7],

[5], [8] and view-based ones [2], [14]. These works are

basically learning-based, that is, the localization is performed

using a learned map. This means that the data of the

environment must be collected before localization.

People often use a line drawing map and can navigate

themselves where they have never been. Although only a

part of objects such as buildings are usually written in the

map, people can determine their position with respect to

such objects by matching their knowledge of the map with

observations of the environment. Since mobile robots in the

future are expected to communicate with people as in the

way people do, localization using a line drawing map will

be an important capability.

Yun and Miura [22] proposed a localization method using

a line drawing building map with uncertainty. They used

line segments in the image and vertical planes in stereo

data as features for localization. To cope with uncertain

correspondence, they adopt a multi-hypothesis approach,

which is relatively complicated and costly. Leung, Clark,

and Huissoon [11] proposed a localization method based on

the matching between detected wall features and the line

features extracted from aerial images in conjunction with

particle filter. Senlet and Elgammal [19] used aerial images

as a prior knowledge of sidewalk positions. Kümmerle et

al. [9] developed a graph SLAM method based on a similar

idea and an accurate 3D range sensor. Parsley and Julier

[17] proposed a general framework of exploiting the use of

Fig. 1. An example of hand drawn map (bold) superimposed on an accurate
map (thin). Building sizes and positions are largely deviated from the true
values, but their qualitative placements are correct.

various prior information with uncertainty in SLAM. These

works use relatively accurate maps for localization or SLAM.

Line drawing maps we usually use have various types of

uncertainties. Fig. 1 shows an example of hand-drawn map

of our campus. One student of our laboratory drew this map

with a GUI-based tool and under the direction to draw only

main buildings, given a rough scale of the environment, but

without seeing any maps or aerial images (that is, only with

his memory)1. The bold lines in the map indicate outlines of

buildings, superimposed on the true outlines drawn with thin

lines. We can guess this map can provide enough information

for a human visitor to the university to reach the destination

(i.e., one of the buildings) as long as the almost correct

starting point is given. It is, however, very challenging for a

robot to localize and navigate itself using such a map due to

various uncertainties included in the map.

Some previous works deal with navigation using hand-

drawn maps. Chronis and Skubic [1] proposed to use

sketched maps for directing robot navigation. A route is

extracted from a sketched path in the form of landmark states

with corresponding actions (e.g., “turn the next corner”).

This work is adequate for a simple environment, but does

not deal with real complex environments. Yun and Miura

[23] analyzed hand-drawn maps and extracted four key

uncertainties in them, that is, those in dimension, position,

shape, and existence, all of which are included in the above

map shown in Fig. 1.

We divide the above uncertainties into two categories:

existence and geometric. The existence uncertainty means

some of objects are not drawn in the map; the above map

1Note that whether a map is drawn by freehand is not an issue here. The
important point is that this map is drawn without any references.
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includes only main buildings but not other objects such as

small structures and trees. The geometric uncertainty is the

one regarding geometric properties of buildings.

We have developed a stereo-based Monte Carlo localiza-

tion method [13] that can cope with the existence uncertainty.

The method uses a map which describes geometrically-

correct outlines of buildings, and addresses the issue of

making correspondence between the lines and stereo data.

We proposed to use a view-based object recognition for

extracting only stereo data from buildings for better corre-

spondence. The method is extended in this paper so that it

can cope also with the geometric uncertainty, especially ones

in dimension and position.

The proposed method takes a SLAM-based approach. A

hand-drawn line drawing map is used as an initial estimate

for building position and dimension and is gradually refined

through a stereo-based SLAM process in accordance with

the estimation of robot trajectory. We implement the method

using a FastSLAM combined with a Particle Swarm opti-

mization (PSO) for map refinement. This novel algorithm

called FastSLAM/PSOM (FastSLAM with PSO-based Map-

ping) has been successfully applied to outdoor localization

using fairly rough line drawing maps.

The rest of the paper is organized as follows. Sec. II briefly

explains our previous localization method. Sec. III explains

a PSO-based mapping and the FastSLAM/PSOM algorithm.

Sec. IV shows experimental results. Sec. V describes con-

clusions and discusses future work.

II. STEREO-BASED MONTE CARLO LOCALIZATION

USING A LINE-DRAWING MAP

This section briefly explains our stereo-based Monte Carlo

localization method [13]. The issue here is how to make

correspondence between visual data and a line drawing map.

A. Stereo data acquisition and building extraction

Lines in the map represent building wall positions. It is

therefore necessary to reliably detect walls for map matching.

In indoor corridor scenes, it is relatively easy to extract wall

positions using conventional 2D laser range finders. In usual

outdoor scenes, however, buildings are sometimes obstructed

by various objects such as trees and bushes, and may be

difficult to extract reliably due to a fixed-height scanning

plane. High-definition 3D laser range finders can be used

instead, but they are still expensive.

We therefore use a stereo camera (Point Grey Research,

Bumblebee XB3, 66 [deg.] horizontal field of view) for range

measurements. The camera is mounted on a pan-tilt head

(FLIR Motion Control Systems PTU-D46) and stereo data

are taken at six panning positions while the robot is stopping.

This gives the robot an omnidirectional view for reliable

localization.

To extract stereo data only from buildings, we use an

SVM-based classifier proposed by Miura and Yamamoto

[14], which has been shown to be effective in view-based

localization under various weather and seasons. We divide

an input image into 16 × 16 windows and classify each

Fig. 2. Building extraction results. Windows with purple “X” marks are
judged as building.

(a) Scene and

observation position.

(b) Local map without

building extraction.

(c) Local map with building

extraction.

Fig. 3. Effect of building extraction on the local map.

window using several image features; for building, we use

the normalized color (r, g, b), an edge density, the peak

value of the voting in Hough transform, and the variance

of edge directions. Fig. 2 shows some building extraction

results. Although some regions other than buildings are also

extracted, the overall result is acceptable because a complete

classification is not a necessary condition for Monte Carlo

localization.

B. Local map generation

The obtained stereo data are converted into a 2D local grid

map for matching with a line drawing map. The local map is

robot-centered and the size of each cell is 0.1 [m]× 0.1 [m].
Each of stereo data points, which is originally represented

in the camera coordinates, is transformed into the robot

local coordinates and then voted on the grid map. Each

cell accumulates the votes. Finally, a Gaussian smoothing

is applied to the local map to consider the discretization of

the grid map. Fig. 3 shows the local map with and without

building extraction, generated from the image set shown in

Fig. 2; many of the data from large trees are deleted correctly

in Fig. 3(c).

C. Monte Carlo localization

The state vector to be estimated is represented by a 2D

robot pose in the world coordinates. We use a standard Monte

Carlo localization algorithm [20]. Likelihood of each particle

is given by comparing the local grid map and the input line

drawing map. Using the position of a particle, lines visible

from that point are calculated and mapped onto the local

map using the pose of the particle. The values in the local

map are first summed up where the mapped lines exist. This

summed value is discounted by the effective ratio of lines,

which is the ratio of pixels on the lines with non-zero values

to those with zero values, to be used as a likelihood.

203



III. FASTSLAM WITH PARTICLE SWARM

OPTIMIZATION-BASED MAPPING

Localization using a hand-drawn building map requires

correspondence between buildings in the map and those

in the scene. Since the map includes a large amount of

uncertainty, however, this correspondence is not easy to

establish without correction of the map. We thus apply a

SLAM (simultaneous localization and mapping) approach to

solve this problem, with the input hand-drawn map being an

initial estimate.

A. FastSLAM

The full SLAM problem is to estimate the following

posterior [20]:

p(x1:t, m | z1:t, u1:t), (1)

where x1:t is a sequence of robot poses, m is a map, z1:t

is a sequence of observations, and u1:t is that of control

commands. We then factorize this expression as follows:

p(x1:t, m | z1:t, u1:t)

= p(x1:t | z1:t, u1:t) · p(m |x1:t, z1:t). (2)

This factorization decomposes the full SLAM problem into

two sequential estimation problems: (1) estimating the robot

path using observation and control sequences and (2) making

a map with known robot path and observations. This greatly

reduces the computational cost of the SLAM problem.

Particle filters based on this factorization are called Rao-

Blackwellized particle filters, and SLAM algorithms using

this type of particle filters are collectively called FastSLAM

[16], [4].

B. Particle Swarm Optimization

Bayes filters such as the Kalman filter are usually used for

the map estimation part of FastSLAM. The initial distribution

of the map parameters (e.g., landmark positions) is given

from an initial guess or some background knowledge; this

distribution should include the true parameter in it in the

Bayesian formulation. In our hand-drawn map-based naviga-

tion, however, building positions and shapes in the map may

sometimes be very largely deviated as shown in Fig. 1, and if

we use a distribution large enough to cover possible deviation

of building parameters, it may fail to converge due to a

too large search space. We therefore propose to use Particle

Swarm Optimization (PSO) [6], [21] as an approximation of

map state estimate.

PSO is an optimization algorithm based on the evolu-

tionary computation paradigm and can efficiently search a

large space for optimal values. There are several attempts

to apply PSO for SLAM or mapping problems. PSO is

used for map estimation [12] or pose estimation [15] for

an alternate estimation of pose and map. Lee et al. [10] used

PSO to improve the proposal density in the motion estimation

phase of FastSLAM. We use PSO for map refinement in the

FastSLAM framework.

PSO controls a set of particles in a state space by adjusting

the velocity vector of each particle. Each particle makes

w

(xc, yc)

direction of robot movement

Fig. 4. Parameters representing a building.

use of its history as well as the knowledge gained by the

swarm as a whole. The outline of a basic PSO algorithm is

as follows [21]:

1) Start with an initial set of particles, distributed accord-

ing to the initial knowledge.

2) Calculate the velocity vector for each particle in the

swarm.

3) Update the position of each particle using the velocity

vector.

4) Go to step 2 and repeat until a termination condition

is satisfied.

The position update is carried out by:

x
i
k+1 = x

i
k + v

i
k+1, (3)

where x
i
k+1 represents the position of particle i at iteration

k+1 and v
i
k+1 represents the corresponding velocity vector.

A commonly used scheme for updating the velocity vector

is:

v
i
k+1 = wv

i
k + c1r1(p

i − x
i
k) + c2r2(p

g
k − x

i
k), (4)

where r1 and r2 are random numbers between 0 and 1, p
i

is the best position found by particle i so far, and p
g
k is the

best position in the swarm at time k.

There are three parameters in eq. (4). The inertial param-

eter w determines PSO’s global/local behavior. Two trust

parameters, c1 and c2, determine how much confidence the

current particle has in itself (c1) and in the swarm (c2).

C. PSO for map estimation

We here deal with a scene where buildings are placed in

two rows, as shown in Fig. 1, and the robot moves between

them. We then represent each building by its position (xc, yc)
and width w as shown in Fig. 4. Each PSO particle moves in

this three-dimensional search space. The initial swarm (i.e.,

a set of PSO particles) is determined by a Gaussian sampling

using the values in the input hand-drawn map as means. The

variances are determined by analyzing a set of map samples

actually drawn by several people.

PSO is performed as one of the steps of the FastSLAM.

We choose buildings which are considered visible from the

current robot position, and perform PSO only for them;

particle sets for the other buildings are kept unchanged. The

visibility is judged based on the mean distance between the

robot and a building and on the measurable range of stereo.

Since the PSO iteration is one of the steps in the outer

SLAM iteration, it is not desirable to run PSO until a

complete convergence; more information will possibly be

obtained in subsequent observations. We therefore set a

maximum number of PSO iterations in order to keep a certain

level of diversity of PSO particles after each observation.
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(a) 1st step.

(b) 2nd step.

(c) 3rd step.

(d) 4th step.

(e) 5th step.

Fig. 5. Building parameter estimation using PSO. The rightmost two
buildings and the lower-middle one are considered visible and updated.

Fig. 5 shows an example of PSO process. The robot

position is indicated by a red mark and only three buildings

on the right are judged as visible and are refined. We used

the following parameter values: w = 0.5, c1 = 0.8, c2 = 1.0.

The number of PSO particles in one swarm was 10 and the

maximum number of iteration was set to 10.

D. FastSLAM/PSOM algorithm

We call our new SLAM algorithm FastSLAM/PSOM

(FastSLAM with PSO mapping). This algorithm manages

two kinds of particles, SLAM particles and PSO particles.

Each SLAM particle holds a robot pose and a map. A map

is a set of swarms, each of which consists of PSO particles

representing the corresponding building parameters.

Algorithm 1: FastSLAM/PSOM

1 Input a hand-drawn map;

2 for each SLAM particle do

3 Generate the initial set of swarms by a probabilistic

sampling;

4 Get observation and odometry;

5 for each SLAM particle do

6 Sample the current pose based on the odometry

reading;

7 Determine a set Bvisible of visible buildings;

8 for each building b ∈ Bvisible do

9 Run PSO;

10 Update the best latest map;

11 Calculate the likelihood based on the current pose

and the latest map;

12 Resample the SLAM particles;

13 Go back to line 4;

TABLE I

PROCESSING TIME PER FRAME.

# of PSO particles # of SLAM particles processing time [sec.]

10 50 26

10 100 46

10 150 64

20 50 50

20 100 106

20 150 126

Alg. 1 shows the algorithm of FastSLAM/PSOM, which

is similar to usual FastSLAM algorithms, but has an inner

loop for PSO map estimation.

To calculate the likelihood (line 11), we use the best latest

map for each SLAM particle. The best map is generated by

extracting the PSO particle with the highest likelihood from

each swarm and compiling them into one map.

In resampling step (line 12), we avoid to generate infeasi-

ble estimates by setting constraints on particle status, that is,

we do not accept SLAM particles which cause the following

two cases: (1) two buildings overlap with each other; (2) the

robot intersects with one of the buildings.

IV. EXPERIMENTAL RESULTS

We perform two experiments. One is off-line localization

using the data acquired by moving an actual robot in our

campus. The other is simulation-based analysis of the Fast-

SLAM/PSOM algorithm.

Table I compiles the processing time per one frame with

various combination of the numbers of SLAM and PSO

particles. The processing time is almost proportional to the

numbers because particles can basically be processed in

parallel and the number of PSO iterations is fixed. In the

experiments below, we use 100 and 20 particles for SLAM

and PSO, respectively.

A. Localization results for real data

We asked a few students of our laboratory to draw a part

of our campus using a GUI-based drawing tool. What they
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(a) hand-drawn map 1.

(b) SLAM result for map 1.

(c) hand-drawn map 2.

(d) SLAM result for map 2.

(e) hand-drawn map 3.

(f) SLAM result for map 3.

Fig. 6. SLAM result for three hand-drawn maps.

drew are six specified buildings and one landmark which is

used as a starting position. They drew a map only with their

memory (without seeing any maps or aerial images), but the

scale of the map was given, indicated in the drawing tool.

Fig. 6 shows the SLAM results for three input hand-

(a) Base map.

(b) Generated map with σ = 5 [m].

(c) Generated map with σ = 12.5 [m].

Fig. 7. Base map and generated maps with added uncertainty.
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Fig. 8. Mean absolute errors of the horizontal position (xc) and width (w)
of the buildings for different added noises. Building labels, N1, N2, and
N3, correspond to the upper three buildings from right to left in Fig. 7(a),
and S1, S2, and S3 for the lower three ones.

drawn maps. Each figure shows an input hand-drawn map

superimposed on a true map or a SLAM result superimposed

on an aerial image. In spite of large uncertainties in the input

maps, the building sizes and positions are considered to be

recovered reasonably well.

B. Quantitative evaluation of FastSLAM/PSOM

We then try to quantitatively evaluate the performance of

FastSLAM/PSOM by providing it maps with different mag-

nitudes of uncertainty. We here use simulated observation

and motion data for controlling the amount of uncertainty

and for getting the true value.

We generated uncertain maps by adding perturbations to

a base map, which is also approximated map with rectan-

gular building shapes but is almost geometrically correct.

Perturbations are added to position (xc, yc) and width w and

controlled by a standard deviation. Fig. 7 shows the base map

and some of generated maps with different uncertainties.

Fig. 8 shows the change of the averaged absolute error
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input map SLAM result

input map SLAM result

(a) success case.

(b) failure case.

Fig. 9. A successful and a failed SLAM result for maps with σ = 15.0 [m].

TABLE II

SUCCESS RATIO WITH DIFFERENT MAP UNCERTAINTIES.

σ of added noise [m] 1.0 5.0 10.0 12.5 15.0

success/trials 5/5 5/5 4/5 1/5 1/5

of the horizontal position and the width of six buildings

according to the increase of the added errors, up to about

25% of building widths, where we can see an increasing

tendency of the errors.

We also examined the success ratio of the proposed

method for different added errors. We here judge the SLAM

successful when all estimated buildings overlap with the

corresponding true ones. Fig. 9 shows a successful and a

failed SLAM result. Table II shows the success ratio drops

as the uncertainty increases. Using more particles certainly

improves the success ratio, but requires more computation.

V. CONCLUSIONS AND DISCUSSION

We have developed a stereo-based outdoor localization

method using a hand-drawn line drawing building map with

large uncertainties. The method adopts FastSLAM with a

particle swarm optimization for map refinement. This new

method, FastSLAM/PSOM, has been shown to be effective

for outdoor localization for an actual mobile robot.

Navigation of a mobile robot further requires path plan-

ning and obstacle avoidance. We suppose that a path to take

is also described in a hand-drawn map. Since the path is

usually specified with respect to buildings, and since the

building position and size are refined through the SLAM

process, the path should also be modified accordingly. It

is also necessary to speed up the computation of the Fast-

SLAM/PSOM for navigation by, for example, employing

a rigorous parallel computation. Other future work include

recognition of largely-deformed (i.e., not uniformly scaled)

or scale-free maps, and use of landmarks in the map.
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