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Abstract— This paper describes a method of simultaneously
estimating the road region and the ego-motion for outdoor
mobile robots. Temporal integration of sensor data is effective
for robust estimation of road region. To integrate sensor data
obtained at multiple places, the robot’s ego-motion has to be
estimated simultaneously. It is also necessary to use multiple
sensors for reliable estimation because road boundary features
from one sensor, such as white lines and curbs, are not always
available. In addition, to cope with the change of the road type,
we prepare multiple road models for estimation. We implement
this multi sensor-based, simultaneous estimation of road region
and ego-motion using a particle filter. We also devise a technique
for generating new particles to cope with gradual road type
changes. The proposed method has been successfully applied
to autonomous navigation in various road scenes. Application
to other types of roads such as intersections is also discussed.

I. INTRODUCTION

Research on ITS (Intelligent Transportation Systems) has
recently been active. One of the objectives of ITS research
is to realize safe driving by, for example, driver assistance
systems like lane departure warning. Development of au-
tonomous robots like guide robots has also been widely
conducted. These systems require an ability to recognize
traversable regions such as road regions.

GPS systems, combined with an accurate map, can provide
location information. But for safe driving, local information
on the road region such as curbs, road and lane boundary
lines, and road shoulders, should be utilized, and such
information can only be obtained on-site. It is, therefore,
necessary to estimate road regions using external sensors
such as vision and range finders.

Many works use vision for detecting road boundaries [1],
[2], but such boundaries are not always easily detectable.
Others use range finders to detect road boundaries from their
shape information. If we use a 2D scanning range fingers,
guardrails or clear curbs should exist [3], [4], [5].

Road region detection only from the latest observation
is vulnerable to occasional sensing failures or missing of
features, such as shadows in the image or discontinuity
of curbs. It is, therefore, necessary to temporally integrate
sensor data for reliable detection.

Wijesoma et al. [3] developed a method of detecting and
estimating road boundary from a sequence of curb positions
detected by a laser range finder looking slightly downwards.
They estimated road boundary parameters using Kalman

filter. This method assumes that curb positions on both sides
are obtained clearly from the laser data and the vehicle
motion is correct. Kirchner and Heinrich [4] proposed a
method of estimating road boundary parameters using a
sequence of horizontal laser-scanned data. They used a 3rd
order polynomial boundary model as an approximation of
clothoid curves, and estimated its parameters using Kalman
filter. They estimated only road boundary parameters by
assuming a correct vehicle motion. In addition, since they
use horizontal scanned data, some objects (e.g., guardrails)
should exist at the roadside along the road. Cramer and
Wanielik [5] proposed a similar method of estimating road
boundary parameters.

Since an accurate ego-motion estimation only from inter-
nal sensors (i.e., dead reckoning) is difficult, it is necessary
to estimate the ego-motion as well as the road region
using external sensors. There are various road scenes and,
therefore, appropriate features to estimate the road region
may be different from place to place. For example, curbs may
be removed at the entrance of shops; lanes are sometimes
almost erased in an old road; unpaved roads may be detected
by using only color differences between the road region and
the roadside region. We, therefore, use multiple sensors and
features to estimate the road region robustly.

Some previous works have used multiple sensors for
navigation. Langer and Jochem [6] performed a fusion of
radar and vision data for detecting roadway obstacles. Miura
et al. [7] developed a method of reliable free space detection
by integrating an omni-directional stereo and a laser range
finder. However, the purpose of these works is not road
region detection but obstacle detection.

This paper deals with simultaneous estimation of road
region and ego-motion using vision and laser range data.
We implement the estimation method using a particle filter.
To cope with a gradual change of road type, we prepare
multiple road models and devise a technique for generating
new particles corresponding to such multiple models.

The rest of the paper is organized as follows. Sec.II
presents a system overview. Sec. III defines the road models
and the state vector. Sec. IV explains the processing of range
and image data and the calculation of likelihood of a state.
Sec. V explains the particle filter-based data integration and
the model generation. Sec. VI presents experimental results
of the method for various road scenes. Sec.VII summarizes
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Fig. 1. System overview.

the paper and discusses future work.

II. SYSTEM OVERVIEW

Fig. 1 shows an overview of the system. After each
iteration, a set of particles is kept in the system. Each particle
contains a robot pose and the parameters of a road model
with respect to the current origin. The state transition step
performs the following two operations. One is the coordinate
transformation using an estimated ego-motion by odometry.
The other is road model generation based on the prediction of
possible road type changes. The observation prediction step
calculates what observation will be obtained from the robot
position and the road parameters. The likelihood calculation
step processes range and image data to extract features and
calculates the likelihood of each particle from such features
and the predicted observation for the particle. The final step
is the resampling.

III. ROAD MODELS AND STATE VECTORS

Two-dimensional shape of the road can be classified
roughly into straight lines and curves. Usually a clothoid
curve, whose curvature changes smoothly, is used in the
connected part of a straight line and a curve. Since the
objective of the method is not estimating an accurate road
shape but get an estimate which is sufficient for safe and
efficient autonomous driving, we use only straight lines and
circles as the models of road shape.

We connect two consecutive road models so that their
tangents coincide with each other at the connection point.
To avoid a frequent switch of road models due to errors in
observations, we switch the road model, if necessary, only
when the robot advances by a certain distance. Currently we
set the distance to �� ���; this is the same as the maximum
observation range. When the robot crosses a potential model-
switching point, the new road models are generated (See Sec.
V for the details).

For a simultaneous estimation of ego-motion and road
region, the state vector includes parameters for both. The
elements of the state vector are represented with respect to
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Fig. 2. Road models.

the local origin, which is defined by the pose at the previous
time step. The origin is updated in the state transition step
in Fig. 1.

The robot pose is represented by its 2D position, �� � and
orientation, �. Concerning the road parameters, we use the
gradient and the intercept for representing straight lines, and
the center position and the radius for circles. Road param-
eters are divided into the front part before the switching
point and the rear part beyond the point. We also use �
and � as the road width and the distance to the switching
point, respectively. Fig. 2 shows five road models used in
this paper. Road boundaries may sometimes be detected at
different positions in range and image data. In such a case,
the boundary for range data usually exists outside the one
for image data (see Fig. 3, for example). So we explicitly
represent and estimate the gap between the boundaries, both
on the right and the left side of the road.

IV. IMAGE AND RANGE DATA PROCESSING FOR

LIKELIHOOD CALCULATION

This section explains how to calculate the likelihood of
each particle given a set of image and range data. We do
not explicitly extract road boundaries but derive likelihood
functions to be used for the calculation.

A. Range Data Processing

We use a SICK laser range finder (LRF). The LRF is set at
the height of ���� ��� looking downward by 5 degrees (see
Fig. 4). Let � and 	 be the height and the depression angle
of LRF, and let 
 and � be the distance and the direction of
a data point on the laser scanning plane. Then the position
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��� �� �� of that point is given by:

� 	 
 
���� (1)

� 	 
 �
� �
	� (2)

� 	 �� 
 �
� 
��	� (3)

At a curb position, a range data set has an L-shape but the
data points are connected. The connectivity of data points
are judged if the distance between a consecutive pair of
data points is less than � ���. A set of connected data
points including the central one is analyzed to find L-shapes.
We calculate the angle at each point from the two sets
of the five neighboring points on both sides. A likelihood
function of the angle, which assesses how likely a point is
on the curb position, is then defined with a Gaussian; its
mean and standard deviation are set to �� ���� and �� ����,
respectively.

L-shape features may appear at places other than curb
positions; for example, such a feature exists at the boundary
of a pavement and a building wall. To exclude such spurious
road boundaries, we use height information. We suppose that
the robot is on a horizontal road plane, as shown in Fig.
4. In actual road scenes, however, since the gradient of the
road can change, we consider the effect of such a change
by considering the distribution of possible � positions (in
the forward direction) of the road surface in the LRF data.
The distribution is modeled as a Gaussian, whose mean and
standard deviation are set to �� ���	 	 ��� ��� and � ���,
respectively.

We discretize the range of the horizontal position � with
��� ��� intervals. For each interval, we calculate the products
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Fig. 5. LRF data and calculated likelihood values.

of the two likelihood values for data points in the interval,
and take the maximum product as the likelihood for that
interval. For an interval with no data, we calculate the
likelihood by linear interpolation. Fig. 5 shows an example
of likelihood calculation of the intervals.

We use this distribution of likelihood values to calculate
the likelihood of each particle (i.e., each state vector). From
the robot position and the road parameters of a particle, we
can calculate the horizontal positions of road boundaries,
which are actually the intersections of the laser scanning
plane and the right and the left road boundary. The likelihood
of the particle for laser data is then given by the product of
the likelihood values at both horizontal positions.

B. Image Processing

We use a LadyBug2 (Pointgrey Research Inc.) omnidirec-
tional camera system. This system has 5 CCD cameras, two
of which are used in this research to cover the field of view of
about ��� ����. We capture a pair of ���� ��� images. We
use two visual cues: road boundary lines and the boundaries
between road and roadside regions. We use the intensity
gradient images for the first cue and the color gradient
images for the second one. The magnitude of gradient for
each cue corresponds to the likelihood of the road boundary.

An intensity gradient image is obtained by applying a
series of � � � median filter, a sobel filter, and a �� � ��
smoothing filter. Fig. 6(b) shows the magnitude-of-gradient
image obtained from the input image shown in Fig. 6(a).

Color gradient images are calculated as follows. We use
the CIE L*a*b* color space, which fits well with the human
perception. We model the color of a road surface with a
Gaussian in the 2D color space and estimate it on-line. We
sample color data in the estimated road region from the
latest five frames, 100 samples from each frame. Using the
estimated Gaussians, we make the image whose pixel values
indicate how likely each pixel belongs to the road regions
(see Fig. 6(c)). From this images, we calculate the color
gradient of a pixel from the four regions of �� � � pixels
around that pixel (see Fig. 7). Let �� be the averaged value
of region �. At the left boundaries, since the gradient is
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Fig. 6. Calculation of intensity and color gradient.
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rightward, we calculate the magnitude of gradient as:

������ � ��� �� � ��� �� � ��� �� � ���� (4)

The magnitude of gradient for the right boundaries is
calculated similarly. Fig.6(d) shows the gradient image of
road boundaries (red: left, blue: right).

The likelihood of a particle for image data is calculated
as follows. Road boundary points in the image coordinates
can be calculated from the road parameters and the robot
pose of the particle. The averaged value � of the magnitude
on these points is then calculated and input to the following
sigmoid function to calculate the likelihood:


��� 	
�

� � �������������
� (5)

where � and �� are experimentally determined parameters.

V. A PARTICLE FILTER-BASED ESTIMATION ALGORITHM

A. State Transition

1) Ego-motion prediction: This step performs the coor-
dinate transformation (see Sec. II) using odometry data and
perturbs the robot pose part of each particle with an estimated
odometry error. We currently use a very approximate error
estimate; for a one meter movement, we use the standard
deviations of ��� ���, ��� ���, and ��� ����� for �, �, and
�, respectively. These values are set to proportional to the
moving distance.

2) Road Model Update: As we stated in Sec. II, we switch
the road model only when the robot advances by �� ���, and
when the robot crosses a potential model-switching point,
the new road models are generated. Each road model has
two parts, the front and the rear part (see Sec. III). When
the robot crosses a model-switching point, the rear part of
the current model is transferred to the front part of a new
model and a new rear part is attached. Since we cannot know
in advance what type of road appears in the rear part, we
generate all of the following as the rear road type: the line
and a set of circles. The curvatures of circles are limited to
��� 	 ����� ����� ����� ����� ���� �����. For a particle which
is judged to cross the switching point, multiple descendant
particles are generated corresponding to various read road
types. The weight ������	 of a newly generated particle is
set to ���
	�, the inverse of the number of newly generated
particles. For a particle which is not judged to cross, the
weight is one.

3) Road parameter prediction: In Sec. III, we defined
road parameters. Among them, a road width and a gap
between boundaries from range and image data may change
as the robot moves. In addition, since we generate circular
road models at the rear road part with a limited set of
curvatures, as described above, we need to gradually adjust
the curvature to the observation. We therefore estimate on-
line the width, the gap, and the curvature, and fix the other
road parameters for each particle.

B. Likelihood Calculation

The weight of each particle is calculated by the weight
determined in the state transition and the likelihood values
for range and image data.

The likelihood values may become very small due to a
discontinuity of curb or cast shadows. Such a value makes
the weight of a particle very small and that particle will most
likely be deleted. To avoid this, we detect outliers using the
likelihood value for each sensor at each side. If the maximum
likelihood value for four combinations of the sensor and the
side is less than a threshold (currently, ���), the particle under
consideration is judged as an outlier and is deleted. The final
weight ���	� for an inlier particle is given by the product
of the likelihood values 
����	 and 
��� for image and range
data and the weight ������	 determined at the update step,
that is,

���	� 	 �
����	 � 
��� � � ������	� (6)

After calculating the weights, we perform a usual resam-
pling step.

VI. EXPERIMENTAL RESULT

This section describes the experimental results conducted
at two locations in our campus (See Fig.8). The first location
is on a straight road partially with curbs. The second one is
on a curved road with cast shadows.



(a) First experiment. (b) Second experiment.

Fig. 8. Location of the experiments.

(a) Input image.
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Fig. 9. Observation at step 55.
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Fig. 10. Estimation result at step 55.

A. Straight Road

Fig. 8(a) shows the location of the first experiment. We
manually moved the robot along the road and obtained
130 sets of range, image, and odometry data. The data are
processed off-line with the number of particles being 500. At
first there are curbs on both sides, but as the robot moves,
there appears a parking space on the left (see Fig. 9(a)). At
the entrance of the space, there are no curbs and, in this
case, LRF data are not effective for detecting the left road
boundary (see Fig. 9(b)). The right road boundary is, on
the other hand, clearly detectable. If we have information
on curb position at least on one side, we can estimate the
road parameters by using predicted road models. Image data
are also effective in this case, as shown in Fig. 9(c),(d).
By integrating multiple information from both sensors, we

(a) Input image.
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Fig. 11. Observation at step 40.
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Fig. 12. Estimation result at step 40.
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Fig. 13. Estimation results of global road shape.

can robustly estimate the road region. Fig. 10 shows the
estimation result when the data shown in Fig. 9 was obtained
at step 55. The left figure superimposes the road boundaries
obtained from the particles after resampling on the input
image. We assign the three primary colors to represent the
likelihood of each piece of information as follows:

� R: likelihood using color gradient,
� G: likelihood using intensity gradient,
� B: likelihood using range data.

So for example, a purple line indicate that information
of color gradient and range data supports the line. Fig.
10(b) shows a kind of certainty distribution of road regions,
obtained from the current set of particles, in the robot local
coordindates (the green semicircle is the robot); brighter



(a) Input image.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-6 -4 -2  0  2  4  6
 0

 0.2

 0.4

 0.6

 0.8

 1

Y
 [

m
]

L
ik

el
ih

oo
d

X [m]

Raw range data
Likelihood

(b) Likelihood values by range data.

(c) Intensity gradient image. (d) Color gradient image.

Fig. 14. Observation at step 38.
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Fig. 15. Estimation result at step 38.

pixels indicate higher certainties. The center position of the
road is also shown in red, which could be a guide for
controlling the robot motion.

Figs. 11 and 12 are the input image, range and gradient
information, and the estimation result at step 40. Cues on the
right side are undetectable due to a branch. On the left side,
a curb gradually moves outside towards a parking space, so
many left curves survive as the estimated road boundaries.
A few steps later, however, a left boundary for the intensity
gradient become clearly detectable, and only straight line
road models survive (see Fig. 10).

Each particle is split into a set of decendant particles at the
road model update step, and a limited number of particles
survive after the resampling. By tracing back from the current
set of particles, we can obtain the global road shape and the
motion history. Fig. 13(a) shows the result obtained at step
55. The global shape of road boundaries and the robot motion
histoties from the surviving particles are shown. Colors of
road boundaries indicate road types (straight, left curve, and
right curve). The history obtained from odometry is also
shown for comparison. Fig. 13(b) shows the result at the final
step. Incorrect road models at step 55 have been eliminated
and the straight shape of the road is clearly recovered.

B. Curves and Shadow

Fig. 8(b) shows the location of the second experiment. The
road includes curved parts and strong shadows are cast on

(a)Input image.
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Fig. 16. Observation at step 94.
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Estimated road boundaries.
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Fig. 17. Estimation result at step 94

many locations. We obtained 180 sets of data in this case.
At step 38, strong shadows are cast on the road surface
(see Fig. 14(a)); this makes it difficult to detect the right
road boundary using colors (see figure (d)). The intensity
gradient information is not very effective, either (see figure
(c)). The curbs are clearly observable in the LRF data (see
figure (b)), and this make it possible to correctly estimate
the road region, as shown in Fig. 15.

Figs. 16 and 17 are the input image, range and gradient
information, and the estimation result at step 94. Again, a
strong sunlight makes it difficult to detect road boundaries
using color, but LRF data on both sides and the intensity
gradient on the left are mainly used for road region estima-
tion.

Figs. 18 and 19 are the data at step 129. Because a branch
exists on the left side and a right side curb is undetectable,
there is no cue for the estimation. This results in a diffision
of the estimated road boundaries (see Fig. 19). A few steps
later, however, the range and image data on the left side
become effective to make the boundaries converge.

Fig. 20 shows the estimation results of the global road
shape and the motion history at step 94 and at the final step.
The approximate shape of the road is well recovered.

The number of particles certainly affect the estimation
performance. We quantitatively examined their relationship
for the two experimental situations. We ran the system 20
times for each number of particles and calculated the success
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Fig. 18. Observation at step 129.
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Fig. 19. Estimation result at step 129

rate. We judged if the estimation result is successful by visual
inspection. Fig. 21 shows the result. The computation time
of the proposed estimation method is about ��� ���� per step
using 500 particles. The number of particles depends on the
accuracy of dead reckoning and a model variety. Increasing
the accuracy by using, for example, gyroscope, would reduce
the number of particles thus reducing the computation time.

We combined the estimation method with a simple robot
control procedure to perform the experiments of autonomous
driving. Fig. 22 shows some snapshots of the experiments.
The robot was able to robustly move autonmously in various
road environments.

VII. CONCLUSION

This paper has described a new method of simultaneously
estimating the road region and the robot ego-motion. The
method effectively integrates two sources of information,
vision and range finder, using a particle filter with new likeli-
hood functions. It can also cope with the change of road types
by devising a method of generating particles (hypotheses)
corresponding possible road changes. The method has been
tested in various real environments to show its effectiveness.

To cope with more various environments, we are planning
to extend the method in the following two ways. One is to
use more features to cope with various scenes. Human can
recognize a road region even when no clear boundaries exist
using some features which can separate road and non-road
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Fig. 22. Autonomous driving.

regions. Seeking and testing effective features are necessary.
The other way is to add more various road models such
as crossings and parking spaces where we cannot observe
continuous road boundaries.
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