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Abstract— Recognizing road shape is one of the fundamental
functions for outdoor navigation of mobile robots and vehi-
cles. This function is crucial for safe control and used for
autonomous navigation combined with global localization using
maps or GNSS. This paper describes a method of estimating
the 3D structure of road boundaries using a 3D LiDAR
with a combination of scanline-wise 1D feature extraction and
temporal filtering by particle filter. In outdoor environments,
since the road shape changes not on a horizontal plane but
three-dimensionally, we model the road boundary shape with
a series of 3D segments and estimate its parameters repeatedly
with the feature extraction and particle filter. The proposed
method is tested in terms of the feature extraction performance
and the applicability of autonomous navigation.

I. INTRODUCTION

Autonomous navigation is one of the active research
topics in robotics. There are many application areas from
autonomous driving [1], [2] to delivery robots [3]. A common
pipeline for realizing autonomous navigation is a combina-
tion of sensor-based road recognition and road following
control [4], [5]. Although several attempts have been made
for end-to-end driving [6], [7], the pipeline currently seems
the most practical.

Road region recognition has been tackled for a long time.
Vision-based systems [8], [9], [10] have been developed,
recently with the advancement of deep learning technologies
and large-sized datasets like KITTI [11]. The use of LiDAR
(Light Detection and Ranging) is also popular for reducing
the effect of lighting conditions [12], [13].

In these approaches, the recognition results, especially
road boundary locations, tend to be noisy or sometimes
wholly wrong. Therefore the direct application of the recog-
nition results to robot control is occasionally risky. A tempo-
ral smoothing of control commands may address this issue,
but it is more desirable to address it in the recognition phase.

To cope with such an occasional recognition failure, we
have developed boundary estimation methods with a com-
bination of image processing and temporal filtering [14],
[15], [16]. In these works, we adopt a boundary continuity
constraint through a predefined but flexible boundary model,
thereby naturally handling occasional failures. This paper
extends such an approach in the following two points: use
of LiDAR and estimation of 3D shape of road boundaries.
The contributions of the paper are as follows:

• We develop a lightweight 1D feature extraction for
localizing road boundary points in each scanline.
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• We formulate the 3D road boundary model and its
updating process.

• We realized autonomous navigation on a non-planar
path with 3D trajectory reconstruction.

II. RELATED WORK

A. Visual road recognition

Borkar et al. [8] developed a lane detection method that
converts input images into the bird’s eye view ones and
detects boundary lines using RANSAC. Danescu and Nede-
vschi [9] developed a method of detecting lane boundaries
using stereo vision and particle filtering. Current visual sys-
tems frequently use semantic segmentation methods such as
[17]. Teichmann et al. [10] conducted road region extraction
using a multi-task learning approach.

B. LiDAR-based road recognition

LiDARs have also been popular sensors for autonomous
driving [18]. Sun et al. [13] developed a 3D LiDAR-based
road boundary detection method. It first excludes noise
points from obstacles, then extracts boundary points using a
predefined feature set, and finally fit a curve to those points.
The method performs frame-wise processing. The application
of deep learning methods has recently been popular. They
realize semantic segmentation using point cloud to image
conversion (e.g., [19], [20]) or point-based classification
(e.g., [21]). They require a dataset for training such as
SemanticKITTI [22].

C. LiDAR-camera integration for road recognition

Integration of different sensing modalities is an effective
way of increasing robustness. Matsushita and Miura [14]
developed a road boundary tracking method combining the
color and edge information from a camera and the shape
information from a 2D LiDAR. Caltagirone et al. [23]
proposed a LiDAR-camera fusion method. It first projects
point cloud on the camera image plane with up-sampling and
then combines the LiDAR image and the camera image using
FCN (fully-convolutional network)-based architectures.

III. BOUNDARY FEATURE EXTRACTION

A. Outline of feature extraction

Fig. 1 shows an example of LiDAR data for a road
scene. This data was taken by a 32-line LiDAR (HDL-
32E, Velodyne). We use the front-half data of the LiDAR
for navigation, as shown in Fig. 2. We extract scanline-wise
features from such LiDAR data by supposing that a scanline
will form a specific shape near road boundary regions.
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Fig. 1. A LiDAR data example. Fig. 2. Robot and LiDAR
setting.

Fig. 3. Process of feature extraction.

Fig. 3 illustrates the feature extraction process. We first
convert one scanline data to a fixed-size data sequence and
supply it to a neural network to get likelihood values. We
then calculate the likelihood for each (original) 3D point by
a simple interpolation from those likelihood values.

B. Neural network and dataset

Fig. 4 shows the structure of the network. The network
is an encoder-decoder type one for 1D data. The input is a
vector of (x,y,z,re f ), where (x,y,z) is the 3D location and
re f is the reflection intensity.

The data for training were collected by carrying the

Fig. 4. Network architecture.

(a) Example scene (b) LiDAR data

(c) Annotation data (d) Smoothed annotation data

Fig. 5. Process of training data generation.

Fig. 6. Peak extraction and evaluation.

LiDAR with a pack frame on cart paths in a nearby golf
course. The height of the LiDAR is about 2.0 [m]. Among
4,000 data collected, we sampled 142 data with a regular
interval. Fig. 5 shows an example data and annotation. We
take the following steps for dataset generation:

1) Choose at most one boundary point at each side of the
road for each scanline data (see Fig. 5(c)). We used an
annotation tool1 for choosing the points.

2) Apply a Gaussian smoothing with N(0.0,0.22) fol-
lowed by normalizing the maximum value to be 1.0
and letting the values less than 0.1 be zero.

3) We repeat the steps above not only for the frontal data
but also for backside ones to get more training data.
We get at most 64 lines of scans from one LiDAR
measurement.

We also do a data augmentation by a horizontal flip and
scale conversion of intensity values so that the size of the
final dataset becomes six times larger.

C. Training

We divide the dataset into the training data and the test
data with 8:2 ratio. The loss function used is the binary cross-
entropy:

Loss(y, ŷ) =−y log(ŷ)− (1− y) log(1− ŷ),

and the hyperparameters used are: 100 epochs, batch size is
16, Adam optimizer, training rate is 0.01.

D. Evaluation

We evaluate the feature extraction in the following two
criteria: detection rate and detected location accuracy. Fig. 6
illustrates the relationship between the labeled (i.e., ground
truth) point and the predicted peak point. We consider that
the boundary point is detected for the first criterion if the
peak is within some distance threshold th. For the second
one, we take the distance to the nearest boundary point as
the measure.

1) Results for Golf park data: Fig. 7 shows the prediction
results using the test dataset. In each subfigure, the left and
the right images show the predicted and the annotated result,
respectively. The color indicates the normalized confidence.
Boundaries are mostly correctly extracted. Fig. 11(c) shows
the case where the detection rate is lowest, where roadside
trees occlude many points near the boundary. Fig. 8 shows
the result on accuracy. We change the value of th and

1https://github.com/Hitachi-Automotive-And-Industry-Lab/semantic-
segmentation-editor



(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

Fig. 7. Prediction results of the proposed method for the golf park data.
Left: prediction, Right: Annotation.

Fig. 8. Boundary localization accuracy of the proposed method for the
golf park data.

calculated the cumulative frequency of correct detections.
From this result, about 90% of boundary points are detected
within 0.2 [m] accuracy, which is reasonably well considering
the averaged width of the road (2.0 [m]).

2) Comparison with a heuristic method: For comparison
purposes, we implemented a heuristic method for boundary
point detection. Similarly to [15], we assess the differences
in multiple features, that is, those in angle, height, and
reflection intensity. Let p, pl , and pr be the point under
consideration, the left reference point, and the right reference
point, respectively (see Fig. 9). Reference points are set at
1.0 [m] apart from p.

Let pz and pi be the z value and the intensity of a point.

Fig. 9. Reference points. Fig. 10. Sigmoid function.

(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

Fig. 11. Prediction results of the heuristic method for the golf park data.
Left: prediction, Right: Annotation.

Fig. 12. Boundary localization accuracy of the heuristic method for the
golf park data.

The likelihood L(p) is defined as:

L(p) = (La(p)+Lh(p)+Li(p))/3, (1)
La(p) = Normal(θp; µa,σ2

a ), (2)
Lh(p) = Sigmoid(|pz

l − pz
r|;kh,xh), (3)

Li(p) = Sigmoid(|pi
l − pi

r|;ki,xi), (4)

where Normal is the normal distribution with mean µa
and variance σ2

a , Sigmoid is the sigmoid function with
parameters k and x (see Fig. 10), and θp is the curvature
at point p, calculated by:

θp = arccos
(
(p− pl) · (p− pr)

|p− pl ||p− pr|

)
. (5)

From Fig. 11, we can see that the likelihood values are
large around boundary points, but we also see large-value
regions in the roadside areas. Concerning the accuracy (see
Fig. 12), only 70% of boundary points are detected within
0.2 [m] accuracy. Therefore, the proposed method achieves a
considerable improvement over the heuristic one.

3) Evaluation with SemanticKITTI: SemanticKITTI [22]
provides annotated point cloud data. We use the road-labeled
regions to generate the dataset for boundary points; more
specifically, extract a point sequence with the road label
longer than or equal to three and mark the endpoints on both
sides as boundary points. Although this simple procedure
can extract false boundary points at occluding boundaries,
we use the extraction result for training. For the testing, we



(a) Example scene

(b) Class labels (c) Road label

(d) Extracted boundary points (e) Gauss smoothed data

(f) Removal of false boundaries (g) Gauss smoothed data

Fig. 13. Dataset generation from SemanticKITTI

(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

Fig. 14. Prediction results of the proposed method for SemanticKITTI.
Left: prediction, Right: annotation.

manually remove such false boundary points. Fig. 13 shows
an example step of data generation. For the scene shown in
Fig. 13(a), Fig. 13(e) is the data for training (only Gaussian
smoothing applied), and Fig. 13(g) is the one for testing
(false boundary points removal and Gaussian smoothing).

For the evaluation using SemanticKITTI, we used only the
3D point location data due to a difference in reflection inten-
sity representation between our system and SemanticKITTI.
Fig. 14 shows the boundary point prediction results. Predic-
tion is good for Fig. 14(a) and are not satisfactory for the
others, especially in complex road shapes. Fig. 15 shows the
result on the accuracy. about 75% of boundary points are
detected within 0.2 [m] accuracy.

Fig. 15. Boundary localization accuracy of the proposed method for
SemanticKITTI.

IV. 3D ROAD BOUNDARY ESTIMATION

A. Overview

We develop a particle filter-based 3D road boundary
estimation method to cope with occasional boundary point
extraction failures. The effectiveness of such temporal filter-
ing has been shown in our previous work [15], [16]. Fig. 16
shows the architecture of the whole system. The left-hand
side in the diagram is for the boundary point extraction part
stated in the previous section, while the right-hand one is the
filtering part; those parts communicate with each other via
ROS topics.

B. Road boundary model and state vector

The road scenes we deal with in this work include 3D ones
with upward and downward road segments. Fig. 17 shows
the road model. The model is composed of quadrangular
segments. Each segment is represented by the left and the
right corner at the front segment: (xl ,yl ,zl) and (xr,yr,zr).
Assuming that zl = zr, we can consider two inclination angles
of the segment, cyaw and cpitch, as shown on the right of
the figure. The segment length h is fixed to 0.7 [m] and the
number of segments n = 6. By adding the robot pose change
from the previous pose, ∆x,∆y,∆z,∆roll,∆pitch,∆yaw, to the
segment parameters, we have the following state vector:

X = [U,S1,S2, ...,Sn+1]
T , (6)

U = [∆x,∆y,∆z,∆roll,∆pitch,∆yaw]T , (7)
Si = [xl

i ,y
l
i ,z

l
i ,x

r
i ,y

r
i ,z

r
i ]

T (zl
i = zr

i ). (8)

In other words, the robot and the road boundary are rep-
resented in the previous robot frame. The road boundary
paramters are updated after each estimation step of the
particle filter.

C. State prediction

The state prediction step considers two factors. One is the
robot motion, and the other is road shape change.

1) Prediction of robot pose change: We predict the robot
pose change as follows. Since the robot is supposed to move
on a locally-planar terrain, we use odometry data for predict-
ing ∆x, ∆y, ∆yaw. We set ∆z to the height difference between
the nearest two segments, S1 and S2, calculated by: ∆z =√

∆x2 +∆y2 · tan(cpitch). ∆z is set to zero from the constraint
zl = zr. The uncertainties for these pose change parameters



Fig. 16. System architecture.

Fig. 17. Road boundary model

are given by N(0.0,0.0052 [m2]) and N(0.0,0.00872 [rad2])
for the translational and the rotational motions, respectively.

2) Prediction of road shape change: We predict the road
shape change only when the robot passes the nearest segment
in the model. In such a case, we delete that segment and
add a new one at the farthest location. For keeping the
continuity of the segment, we calculate the parameters of
the new segment from the two farthest corner points Sn and
Sn+1 and their associated angles cpitch and cyaw just before
the update. Since we do not know exactly what segment will
come, we apply the following uncertainty models to dis-
tributing particles: N(cyaw,0.00872 [rad]) for the horizontal
orientation, N(0.0,0.0022 [rad]) for the vertical orientation,
and N(w,0.12 [m]) for the width.

Fig. 18 illustrates the road model update procedure. The
first step is to set line l with length h in parallel with the
centerline of the farthest segment. We then rotate l with the
sampled orientation to l′ (see Fig. 18(a)). The second step is
to set two corner points on the perpendicular line to l′ such

(a) Step 1

(b) Step 2

Fig. 18. Road model update steps.

that the width will be the sampled width (see Fig. 18(b)).
3) Weight calculation: We calculate the weight for each

particle by projecting the corresponding road boundary
model onto the LiDAR point cloud. Since each point has the
confidence value for being a boundary point as explained in
the previous section, we collect the points which are within
a certain distance r (currently, r = 0.3 [m]) from the left



Fig. 19. Our robot. Fig. 20. Control strategy.

and right boundary lines and use their confidence values,
weighted by their distances for calculating the weight for a
particle. We use the following expression:

w = wle f t ·wright , (9)

wle f t or right =
n

∑
i=1

[
1

Mi

Mi

∑
j=1

Con f (p j)

(
1−

dist(p j)

r

)]
,(10)

where n is the number of segments, Mi is the number of
nearby points for the ith segment, Con f (p) is the confidence
value, dist(p) is the distance to the corresponding segment
boundary line. The calculated weights are normalized over
all particles and used for resampling.

V. NAVIGATION EXPERIMENTS

A. Robot and control strategy

Fig. 19 shows the robot used for navigation experiments.
The mobile base is PatraFour (Toyota Motor East Japan Inc.),
equipped with a LiDAR (HDL-32e), a camera, and a GPS
receiver. We use RTK-GNSS for obtaining reference location
information. The specification of the PC is Intel Core i7-
7700HQ 2.8GHz, 16GB memory, and GeForce GTX 1070
Mobile GPU.

Fig. 20 illustrates the control strategy for road following.
We use the second pair of corners (i.e., S2) for guiding
the robot. The corner points are calculated as the weighted
averages of those points for all particles. The target tracing
line is set to pass the midpoints of the corners and be
perpendicular to the line connecting them. We then apply a
simple feedback control, in which the translational velocity
v is constant 0.25 [m/s] and the rotational velocity w is
calculated by:

w = kdd + kθ θ , (11)

where d is the distance between the robot and the target line,
θ is the angle between the robot orientation and the target
line; parameters are set as kd = 0.2, kθ = 0.4.

B. Navigation result

We here show the results of navigation experiments in
a park on our campus. Fig. 21(a) shows an aerial image
of the road used for the experiments. We set the number
of particles to 400. The processing speed for the boundary

(a) Road segment for the experiments

(b) Initial particle distribution

(c) Particle distribution at location 1

(d) Particle distribution at location 2

Fig. 21. Boundary estimation results.

point extraction was 10 [Hz] and that for the whole system
was about 3 [Hz].

Figs. 21(b) to 21(d) show the particle distributions at the
initial location, location 1, and location 2. The distributions
are reasonable at all locations.

Since the method repeatedly estimates the robot pose
change, we can recover the trajectory by accumulating the
changes. Fig. 22 shows the trajectory recovery results. On
the left, we compare the estimated trajectory with the one
from GPS and the one by pure odometry in the horizontal
plane. The trajectories by the proposed and the odometry-



Fig. 22. Trajectory recovery results. Left: comparison among the proposed,
the odometry-based, and the GPS-based method in the horizontal plane.
Right: 3D trajectory by the proposed method.

based method match with the GPS data reasonably well. At
the end part of the route (around location 2), the odometry-
based method gives a relatively large error (compare with
Fig. 21(a)), whereas the proposed method corrects it with
boundary detection and particle filtering. The 3D plot of
the trajectory is on the right. Since the GPS did not give
sufficient accuracy for estimating the height change on the
road, we cannot give a quantitative evaluation, but we can
say that the recovered 3D trajectory matches well with the
upward and the downward trend of the path (see Fig. 21(a))
qualitatively. This result shows the advantage of using the
3D road boundary model.

VI. CONCLUSIONS AND DISCUSSION

This paper has described a road boundary estimation
method for 3D road navigation with 1D deep feature extrac-
tion and particle filter-based 3D road model estimation. We
generated a dataset for feature model training and showed
that the feature extraction is accurate enough. The feature
extraction is also sufficiently fast because each scanline is
processed separately. We then constructed a 3D road model
with a series of segments and developed its update procedure.
The proposed method was applied to actual robot navigation
in our campus to show its feasibility in road boundary
estimation and robot trajectory recovery.

The current feature extraction model cannot handle com-
plex road shapes. Our 1D feature extraction trades the effi-
ciency and the detection ability. It is future work to consider
the relationship between features in adjacent scanlines in
feature extraction. It is also future work to extend the current
road model to more complex shapes such as branches and
crossings, as in [15].
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