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Abstract— This paper describes a calibration method of
an omnidirectional stereo system. The system uses a pair
of vertically-aligned catadioptric omnidirectional cameras,
each of which is composed of a perspective camera and
a hyperboloidal mirror, thus providing a single projection
point. We divide the calibration into two steps. The first step
estimates the image center and the aspect ratio by fitting
an ellipse to the mirror boundary in the image. The second
step estimates the focal length and the camera pose (position
and orientation) including scale by using a calibration pat-
tern and epipolar geometry. Experimental results show the
effectiveness of the proposed calibration method.

I. INTRODUCTION

Detection of obstacles and free spaces is an essential
function of the vision system for mobile robots. Even if
a robot is given a map of the environment, this function
is indispensable to cope with unknown, possibly dynamic,
obstacles or map errors. Omnidirectional stereo is a suitable
sensing method for such vision systems, because it can
acquire images and ranges of surrounding areas simultane-
ously. We have been developing an omnidirectional stereo
system and applying it to mobile robot navigation [7], [8],
[10], [13], [14].

Our stereo system uses a pair of vertically-aligned om-
nidirectional cameras (see Fig. 1). Each omnidirectional
camera, called HyperOmni Vision [18], uses a hyperbolic
mirror with a perspective camera, thus providing a single
effective viewpoint at the focal point of the mirror [1]. An
input image of an omnidirectional camera is projected onto
a cylindrical image plane to generate a panoramic image.
A pair of such panoramic images has a nice property that
epipolar lines are vertical and in parallel; thus, efficient
stereo matching algorithms for the conventional stereo
configuration can be applied [5].

Fig. 1. Stereo setup and an example input image.

In using the omnidirectional stereo system, its calibration
is important, as in the case of conventional stereo systems
[9], [19]. This paper describes a calibration method of an

omnidirectional system and examines its effectiveness in
robot navigation, especially in free space map generation.

There have been many works on the calibration of
omnidirectional cameras. Some of them are for estimating
intrinsic parameters (including the mirror-camera relation-
ship in catadioptric cameras) [3], [6], [16], while others for
estimating extrinsic parameters [2] or epipolar geometry
[17]. Mičušik and Pajdla developed methods of calibrating
both intrinsic and extrinsic parameters [11], [12]. Geyer
and Daniilidis [4] developed a method for rectifying om-
nidirectional image pairs, generating a rectified pair of
normal perspective images.

In this paper, we develop a calibration method which
eventually generates a pair of rectified cylindrical images
whose epipolar lines are vertical and in parallel. The
proposed method calibrates both intrinsic parameters (as-
pect ratio, image center, and focal length) and extrinsic
parameters (6D pose) of omnidirectional cameras. Like
[11], we first estimate the image center and the aspect
ratio by fitting an ellipse to the mirror boundary in the
image. We then estimate the focal length and the camera
pose including scale using a calibration pattern as well as
epipolar geometry.

II. CAMERA MODEL

The omnidirectional camera we use is composed of
a hyperboloidal mirror with a perspective camera (see
Fig. 2). From this geometry, we obtain the following
relationship between scene position (X,Y, Z) and image
position (x, y):

x=
Xf(b2 − c2)

(b2 + c2) · (Z − c) − 2bc
√

(Z − c)2 +X2 + Y 2
,

y=
Y f(b2 − c2)

(b2 + c2) · (Z − c) − 2bc
√

(Z − c)2 +X2 + Y 2
, (1)

(
c =

√
a2 + b2

)

where a and b are the parameters of the mirror shape; c
is the half of the distance between the focal points of the
mirror and the camera; f is the focal length of the camera.
The origin of the camera coordinates is set at the right
midpoint of the two focal points. We hereafter represent
this projection as:

x = F (X ; f), (2)

where x = (x, y) is a 2D image position and X =
(X,Y, Z) is a 3D scene position. Since we assume the
mirror shape parameters, a and b (and thus c), are known
and correct, projection F is parameterized only by the focal
length f , which will be estimated.
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Fig. 2. Geometry of hyperboloidal projection [18].

III. CALIBRATION OF A SINGLE OMNIDIRECTIONAL

CAMERA

This section describes a method of estimating some of
intrinsic parameters and extrinsic parameters of a single
omnidirectional camera.

A. Parameters to be estimated

We assume that the symmetry axis of the mirror and the
optical axis of the camera are perfectly aligned, and that
the mirror shape parameters are known and correct. Under
these assumptions, we estimate the following parameters:

• image center, (Cx, Cy).
• aspect ratio, k.
• focal length, f .
• camera pose, R and t.

The calibration of an omnidirectional camera consists
of two steps. We first estimate the image center and
aspect ratio of the camera using the image of the mirror
boundary [11]. Once these parameters are estimated, we
then estimate the focal length and the camera pose using
a calibration pattern with known metric information.

B. Estimating Image Center and Aspect Ratio

The image center (Cx, Cy) is the intersection of the
optical axis with the image plane. We assume that the
image plane is perpendicular to the axis, and that the only
cause that makes the aspect ratio deviate from one is the
digitization error of the CCD array and the image capture
board (i.e., the difference of the horizontal and the vertical
digitization frequency). So the boundary of the mirror can
be represented by (see Fig. 3):

(x− Cx)2

A2
+

(y − Cy)2

B2
= 1. (3)

Four parameters, A,B,Cx, Cy will be estimated. By
putting a black plate on the top of the backside of the mir-
ror, the mirror boundary in the image is at the edge points
changing from black to gray in the radial direction. The
above ellipse equation is fitted to the extracted boundary
points.

In the case of our system, the vertical axis of the ellipse
becomes longer than the horizontal one (i.e., B > A). Let
F+ and F− be the two foci of the ellipse; their positions are
F+(Cx, Cy +

√
B2 −A2) and F−(Cx, Cy −√

B2 −A2).

F+

F-

C (Cx, Cy)

X (x, y)

A

B

Fig. 3. Ellipse and its two foci.

Fig. 4. Ellipse fitting to the lower camera image.

Since a point X(x, y) on the ellipse satisfies XF+ +
XF− = 2B, we obtain√

(Cx−x)2+(Cy−
√
B2−A2−y)2

+
√

(Cx−x)2+(Cy+
√
B2−A2−y)2 = 2B. (4)

For a set of extracted boundary points {(xi, yi)} (i =
1, . . . , N), the squared error χ2

c is defined as:

χ2
c =

N∑
i=1

d2i , (5)

di =
√

(Cx−xi)2+(Cy−
√
B2−A2−yi)2

+
√

(Cx−xi)2+(Cy +
√
B2−A2−yi)2−2B. (6)

We then apply the Levenberg-Marquardt method [15] to
search for the parameter values which minimizes this
squared error.

Fig. 4 shows the result of ellipse fitting to the lower cam-
era image. The calibration took about 0.03 [sec] in 15 itera-
tions with about 800 edge points. The estimated parameters
in this case are: A = 97.735, B = 100.590, (Cx, Cy) =
(174.415, 121.805) and the aspect ratio A/B = 0.9716.

C. Estimating Focal Length and Camera Pose

We use a calibration pattern to estimate the focal length
and the camera pose such that the squared error of the
feature positions predicted from these parameters and the
observed feature positions in the image is minimized (see
Fig. 5). Let Pi (at Xi) (i = 1, . . . ,M) be a set of feature
points on the calibration pattern, and let p∗i (at x∗

i ) and
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Fig. 6. The calibration pattern and the calibration result.

pi (at xi) be the predicted and the observed image position
of the ith feature, respectively.

We minimize the following squared error χ2
fp:

χ2
fp =

M∑
i=1

||x∗
i − xi||2. (7)

We represent the camera pose by position vector
(X0, Y0, Z0) of the camera coordinates and rotation angles
(θX , θY , θZ); the relationship between a scene point X
in the camera coordinates and its position in the global
coordinates XG is given by:

XG = T (X0, Y0, Z0)R(X, θX)R(Y, θY )R(Z, θZ)X (8)

=
(
R T
0 1

)
X = HX. (9)

Since the predicted position p∗i of each feature is calculated
from its scene position Pi, the above global transformation
from the world to the camera coordinates (eq. (9)), and
from the projection function (eq. (2)), the squared error
χ2

fp becomes the function of seven parameters of the focal
length and the camera pose:

χ2
fp(f,X0,Y0,Z0,θx,θy,θz)

=
M∑
i=1

||F (
H−1(X0,Y0,Z0,θX ,θY ,θZ)Xi; f

)−xi||2. (10)

We again apply a Levenberg-Marquardt method to
search for the parameter values which minimizes the above
squared error. Fig. 6 shows a result obtained by indepen-
dently calibrating two cameras. Black circles put on a wall
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Fig. 7. Epipolar geometry in omnidirectional stereo.

are used as features. The position of each circle in the
image is obtained by binarizing the input image and then
calculating the centroid of the corresponding black region.
In the figure, the predicted positions of the features are
backprojected on the input images.

IV. SIMULTANEOUS CALIBRATION OF A PAIR OF

OMNIDIRECTIONAL CAMERAS USING EPIPOLAR

GEOMETRY AND A CALIBRATION PATTERN

Estimation of the relative pose between two cameras
from their independently-calibrated (absolute) poses is pos-
sible but the estimation result may not be accurate enough
for stereo calculation, due to the additive characteristic of
the estimation errors. So we additionally use the epipolar
geometry for the cameras [2], [11], [12], [17] to improve
the accuracy.

We here follow the discussion by Chang and Hebert
[2]. Let 3D point P be projected to pu and pl in the
upper and the lower image through point Pu and Pl

on the corresponding mirror, respectively (see Fig. 7).
Since OMu, OMl, P, Pu, Pl are coplanar, we obtain the
following epipolar constraint:

Xt
uEX l = 0, (11)

where Xu and X l are the position of Pu and Pl in the local
coordinate systems centered at OMu and OMl, respectively,
and E = [t]×R is the essential matrix encoding the relative
pose (rotation R and translation t) between the two local
coordinate systems. Since the relative pose is parameterized
by a pair of the absolute poses, we obtain:

E = E(Xu
0 , Y

u
0 , Z

u
0 , θ

u
X , θ

u
Y , θ

u
Z ,

X l
0, Y

l
0 , Z

l
0, θ

l
X , θ

l
Y , θ

l
Z), (12)

where superscripts indicate the camera.
Considering the geometry of hyperbolic projection, the

points on the mirrors, Pu (at Xu) and Pl (at X l), are



represented as the function of their image points, pu (at
xu) and pl (at xl), respectively. Let the mapping from an
image point to a mirror point, which is parameterized by
the focal length, be:

X = I(x; f). (13)

Then we have the following epipolar geometry constraint
on a pair of image points, xu and xl:

de(xu,xl)
= I(xu; fu)tE(Xu

0 , . . . , θ
u
Z , X

l
0, . . . , θ

l
Z)I(xl; f l). (14)

For L pairs of matched points {xu
i ,x

l
i} (i = 1, . . . , L),

We define the squared error χ2
e as:

χ2
e =

L∑
i=1

{
de(xu

i ,x
l
i)

}2
. (15)

In order to simultaneously calibrate the whole stereo sys-
tem, we use the following squared error χ2:

χ2 = χ2
fpu + χ2

fpl + weχ
2
e, (16)

where χ2
fpu and χ2

fpl are the squared error for features on
the calibration pattern for the upper and the lower camera,
respectively, and we is a weight to balance the first two and
the last squared errors; actually, the weight is determined
such that it converts the error in the epipolar constraint (de)
in eq. (14) into the distance in the image at an average
position of the feature points used.

We first tried to estimate all 14 parameters (one focal
length and six pose parameters for each camera) using this
squared error; but the estimation result was not satisfactory.
This is probably due to a large uncertainty in the vertical
position and the focal lengths when estimating them from
the epipolar geometry constraint, which arises from the
specific camera placement of our system. That is, if the
two axes of the omnidirectional cameras are completely
aligned, all epipolar lines become radial lines in the image
and, therefore, we cannot determine the relative vertical
distance and the focal lengths from the epipolar constraint
(eq. (11)). Although the cameras are not completely aligned
actually, the uncertainty of these values could be large.

We, therefore, take the following two step approach. In
the first step, we estimate the focal length and the pose of
each camera independently, using the method described in
Sec. III-C. Then we fix the values of the focal lengths and
the vertical positions of both cameras and estimate the rest
10 parameters (i.e., X0, Y0, θX , θY , θZ for each camera)
by a Levenberg-Marquardt method using the squared error
in eq. (16).

V. PANORAMIC PROJECTION

To adopt standard stereo matching algorithms, we would
like to have a pair of panoramic images which has only
parallel epipolar lines. Usually we set a cylindrical image
plane for each camera to get a pair of desired panoramic
images. This works well as long as the two axes of the
cameras are aligned.
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Fig. 8. Cylindrical projection.

In the case where the axes of two cameras are not
aligned, however, this cylindrical projection should not be
done independently for each camera. To get a rectified pair
of cylindrical images we need to set a cylindrical image
plane whose axis is connecting the two effective focal
points of the cameras as shown in Fig. 8. The geometry
of this cylindrical image plane can be calculated by the
estimated extrinsic parameters (the poses of the cameras).

VI. EXPERIMENTAL RESULTS

We used 27 feature points on the calibration pattern
(shown in Fig. 6) for each camera, and other 26 feature
points for epipolar geometry evaluation. Starting from the
parameters for the ideal camera placements, the calibration
of seven parameters for each camera using the calibration
pattern took a few seconds, and the calibration using both
the pattern and epipolar geometry took another few seconds
using Athlon 2200+.

To test the feasibility of the calibration method, we
intentionally misaligned the cameras and performed the
calibration. The estimated parameters are listed in Table I.
Fig. 9 shows a typical calibration result. Fig. 9(a) compares
three pairs of panoramic images; the upper pair is generated
by assuming the complete alignment of the cameras, the
middle pair is generated using the parameters estimated by
the independent calibration method (Sec. III-C), and the
lower pair is generated using the parameters estimated by
the simultaneous calibration method (Sec. IV).

We first compare the upper (no calibration) and the
lower (simultaneous calibration) pairs. It is clear that at
many places (e.g., direction A), the vertical lines are
slanted in the upper pair. We also compared the measured
distance by the calibrated stereo with that by a laser range
finder (see Fig. 9(c)). For example, in the direction B, the
distance by the range finder is 190 [cm] and that by the



Table I
ESTIMATED PARAMETERS.

(a) Parameters obtained by independently calibrating the two cameras.

X0 [mm] Y0 [mm] Z0 [mm] θX [deg] θY [deg] θZ [deg] f [pixel]

upper 364.49 -322.05 1554.36 -3.26 -1.90 78.93 179.235
lower 367.59 -320.47 1255.15 6.02 -0.80 -25.76 179.856

(b) Parameters obtained by calibration using epipolar geometry.

X0 [mm] Y0 [mm] Z0 [mm] θX [deg] θY [deg] θZ [deg] f [pixel]

upper 375.88 -321.65 1554.36 -2.71 -2.86 77.47 179.235
lower 364.48 -318.82 1255.15 5.88 -0.68 -25.25 179.856

simultaneously calibrated stereo is about 195 [cm], but that
by the uncalibrated stereo is about 150 [cm]. We compared
the distances at many directions and confirmed that the
calibrated stereo can generate reasonable range information
for free space modeling.

We then compare the middle (independent calibration)
and the lower (simultaneous calibration) pairs. The mea-
sured distances are mostly correct in both cases, but due
to a larger directional difference (i.e., difference in the
horizontal position in panoramic images), the number of
pixels whose disparities are obtained is smaller in the
independent calibration than in the simultaneous one (3520
and 4453 in this case).

We applied the omnidirectional stereo system calibrated
by the proposed method to our map generation method
[10], [14] and succeeded in safe navigation in an unknown
environment.

VII. SUMMARY

This paper has presented a method of calibrating an
omnidirectional stereo system. We first estimate the image
center and the aspect ratio of each camera using the
mirror boundary in the image. Then, we estimate the
focal lengths and the poses of both cameras using both
a calibration pattern and epipolar geometry. These esti-
mations are done by an ordinary non-linear minimization
scheme (i.e., Levenberg-Marquardt) without any special
tunings; nevertheless, the performance is satisfactory for
the purpose of robot navigation.
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[11] B. Mičušik and T. Pajdla. Estimation of Omnidirectional Camera
Model from Epipolar Geometry. In Proceedings of 2003 IEEE Conf.
on Computer Vision and Pattern Recognition, pp. 485–490, 2003.
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Fig. 9. Evaluation of the calibration result.




