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Abstract— This paper describes the navigation of a mobile
robot in unknown static environments using an omnidirec-
tional stereo and a laser range finder. The robot detects
obstacles by the sensors, estimates the ego-motion, integrates
the sensor data to generate a probabilistic occupancy map,
and plans a safe motion. This paper focuses on the ego-motion
estimation and the data integration for map generation. We
extend our previous methods to increase the robustness of
navigation. Experimental results show the feasibility of our
navigation method.

I. INTRODUCTION

Vision-based navigation of mobile robots is one of the
active research areas in robotics. Many useful techniques
have been developed such as landmark-based navigation
[5], scan matching-based navigation [9], statistical localiza-
tion [4], map generation [11], and simultaneous localization
and mapping [1], [8].

We have been working on an autonomous robot system
with omnidirectional stereo [6], [7]. We have developed a
map generation method using the omnidirectional stereo
and a laser range finder [10]. This map generation method
has an advantage of being able to recognize complex
environments by compensating the drawback of one sensor
by the data from the other.

The method basically works as follows; if an object
is detected, the corresponding grids of the map increase
their probabilities of obstacle existence and the grids cor-
responding to the space in front of the object decrease the
probabilities. In this way, we expect that erroneously ob-
served obstacles are deleted by the subsequent observations
of the true obstacles behind. The method considered only
2D positions of obstacles because a full 3D reconstruction
will be very costly. This, however, sometimes caused a
problem that a true obstacle was erroneously deleted by
observing other obstacles behind it. This paper, therefore,
improves the method so that true obstacles are not deleted
by considering the heights and the visibilities of objects.

For temporal integration of sensor data obtained while a
robot moves, ego-motion estimation between observation
points is necessary. Our previous estimation method used
the correspondence between point features in two consecu-
tive range data, and was not fully reliable due to occasional
false correspondences. This paper also improves the ego-
motion estimation method such that it robustly searches for
the correspondences and it uses line features when point
features are scarce.

These two improvements increase the robustness of
navigation of our robot. The experimental results show the

effectiveness of the improved system in the navigation in
unknown environments.

II. PREVIOUS MAP GENERATION METHOD

This section briefly describes our previous map gener-
ation method using an omnidirectional stereo and a laser
range finder. Please refer to [10] for the details.

A. Two Range Sensors

Our stereo system uses a pair of vertically-aligned omni-
directional cameras (see Fig. 1). The system can generate a
disparity image of 360x50 in size and 40 in disparity range
in every about 0.1 [s] (see Fig. 2). We also use a SICK laser
range finder (LRF), which is set at the front of the robot so
that it scans the horizontal plane at the height of 35 [cm]
from the floor (see Fig. 1). The resolution used is 1.0 [deg]
per point (i.e., 181 measurements for 180 degrees).

B. Map Generation Algorithm

We keep a separate map for each sensor. We use as a map
a probabilistic occupancy grid representation [2]. Since
the two sensors may detect different objects or different
parts of an object at a 2D position, a direct integration
of probability values by the Bayes’ rule is not appropriate
[10]. We, therefore, perform temporal integration of sensor
data for each map separately, and integrate them using a
set of logical rules.

1) Temporal integration of sensor data: The probabil-
ity of each grid of a map is updated as follows. From
one observation, we determine the attribute of each grid:
occupied, free, and unknown (see Fig. 3). The figure shows
the attribute determination for a region within one angular
resolution. R is the observed distance (by omnidirectional
stereo or LRF) to the nearest obstacle, and Rmin and Rmax

indicate the uncertainty in range measurement1. The region
between Rmin and Rmax is labeled as occupied. The
region before the occupied region is labeled as free. The
region behind the occupied region is labeled as unknown.

Let O be the event that an obstacle is detected. O occurs
at occupied grids; the inverse event O occurs at free grids.
For these grids, the update of the probability is carried out
as follows. Let E be the event that an obstacle exist, and let
P (E) be the probability that an obstacle exist (at a grid).
The new probability map to be obtained by integrating a
new observation is given by the conditional probabilities:

1Refer to [6] for the uncertainty estimate of omnidirectional stereo. The
uncertainty in LRF measurement is constant regardless of the measured
value.
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Fig. 1. Our mobile robot.

(a) Panoramic image.

(b) Panoramic disparity image obtained from (a).

Fig. 2. Omnidirectional stereo generates a panoramic disparity image.
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Fig. 3. Determination of grid attributes.

P (E|O) and P (E|O). These probabilities are calculated
by the Bayes’ theorem as follows:

P (E|O) =
P (O|E)P (E)

P (O|E)P (E) + P (O|E)P (E)
, (1)

P (E|O) =
P (O|E)P (E)

P (O|E)P (E) + P (O|E)P (E)
, (2)

where P (E) is the prior probability and E is the propo-
sition that an obstacle does not exist. Among the terms in
the above equations, P (O|E) and P (O|E) are observation
models [10]; P (O|E) = 1 − P (O|E); P (O|E) = 1 −
P (O|E); P (E) = 1 − P (E). The integration operation
for each grid is performed independently of the others (the
independence assumption).

2) Integration of two maps: The two probabilistic maps
are integrated by first classifying each grid of each map
into four classes and then integrating the two classification
results into the final free space map.

The classification is carried out in two steps. In the first
step, we use two thresholds. If the occupancy probability of
a grid is larger than the higher threshold (currently, 0.7), the
grid is classified as obstacle; if the probability is less than
the lower threshold (currently, 0.2), the grid is classified as
free space; otherwise, classified as undecided. We further
classify undecided grids into two subclasses2.

The second step is for discriminating the following two
cases. (1) The occupancy of a grid is undecided because
enough information has not been obtained although the
robot has observed there many times. A typical situation
is the one where the omnidirectional stereo cannot obtain
range data for textureless objects. For a grid in the direction

2In the original map generation method[10], these two types of unde-
cided were not distinguished.

of such an object, its class remains undecided even if
the stereo has tried to observe the object many times. In
this case, we believe in the LRF’s interpretation. (2) The
occupancy is undecided because enough observation has
not been made yet. Since we use a probabilistic uncertainty
model and integrate observations statistically, each sensor
needs a certain number of observations to determine the
occupancy (i.e., free space or obstacle) of a grid with con-
fidence. Therefore, if the number of observations of a grid
is small, we have to wait until the situation becomes clearer
by further observing it. We discriminate the two cases using
a threshold for the number of observations. If the number
is larger than the threshold (case (1)), we classify a grid as
undecided with observation; otherwise undecided without
observation. The number of observations is incremented
when a grid has event O or O (see Sec. II-B.1), or when a
grid is in the direction for which any range measurement
is not obtained. The threshold for stereo is five and that
for LRF is one.

From the classification results, if both maps says a grid is
free space, or if one map says free space and the other says
undecided with observation, then the grid is determined to
be free in the final map. Otherwise, the grid is determined
to be occupied. The resultant free space map is used for
the path planning of the mobile robot.

III. SELECTIVE PROBABILITY UPDATE WITH

VISIBILITY CHECK USING OBJECT HEIGHT

The map generation method described in the previous
section has a problem that a true obstacle is sometimes
erroneously deleted in the map for stereo. Fig. 4 shows
a typical situation; a robot is approaching obstacles with
repeatedly observing them. When the robot is distant from
the obstacles (see the left figure), the lower obstacle is
observable and the corresponding occupancy probabilities
increase. When the robot comes near (see the right figure),
however, the lower obstacle goes out of the robot’s field
of view. If the taller obstacle is observed behind the lower
one, the grids for the lower one are considered to be free
and their probabilities will decrease; the robot may think
those grids are traversable. This problem comes from the
strategy that only 2D range information is used in map
generation. The same problem may arise when the robot
fails to detect the front obstacle due to, for example, stereo
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Fig. 5. Visibility check.

matching failure even if the obstacle is not out of sight.
To cope with this problem, we keep the height of

obstacles, and check the visibility of obstacles behind the
previously-recognized obstacles. That is, if the line of
sight to the current observed point does not intersect the
previously-recognized obstacles, then the space in front of
the current observed point is labeled as unknown (i.e., no
probability updates are performed for the space); otherwise,
the space is labeled as free and the above-mentioned
probability updates are carried out. In the case of Fig. 5,
if obstacles exist only in the region below the line of sight
(region b in the figure), the probabilities in front of the
observed point do not change; otherwise (i.e., obstacles
exist in the upper region (region a)) the probabilities are
updated.

Every grid which has been recognized as an obstacle
keeps the mean and the variance of the past observed
heights. Suppose that the robot of height H observes an
obstacle with height h at distance d as shown in Fig. 5.
A previously-observed obstacle at distance d1 with mean
height µh1 and variance σ2

h1
is considered not to conflict

with the current observation if the following inequality
holds:

µh1 + 2.0 σh1 ≤ (h − H)d1

d
+ H. (3)

If all previously-observed obstacles in the space in front
of the newly-observed obstacle satisfy this inequality, the
probability updates are not performed in that space.

IV. EGO-MOTION ESTIMATION

Ego-motion estimation is indispensable for integrating
range data obtained at different positions. Odometry is
often used for ego-motion estimation but such a dead
reckoning suffers from accumulated positional errors. We
here, therefore, investigate the use of data from an external
sensor, an LRF, for ego-motion estimation.

In our previous work [10], we used distinctive points
(e.g., legs of tables and chairs and corners of furniture)
in LRF data and estimated the ego-motion from the cor-

Fig. 6. Extracted feature points in LRF data.

Fig. 7. Extracted lines in LRF data.

respondence of such points. Since the correspondences
are based only on the relative distances, however, there
were sometimes incorrect matches which degraded the
ego-motion estimation results. To exclude such incorrect
matches, this paper adopts a robust matching algorithm for
finding correspondence. In addition, we use line features
as well as point ones because some area in typical indoor
environments may has few distinctive points, for example,
in the case of corridors.

The method described here uses only LRF data and
does not integrate them with odometry data, but such an
integration can easily be incorporated into our method by,
for example, using the Kalman filter.

A. Ego-motion Estimation by Point-to-Point Correspon-
dence

Se et al. [13] proposed a RANSAC [3]-based method
for matching features. They extracted visual features called
SIFT (scale invariant feature transform) and find correspon-
dence between features in the map and the those in the
current image for global localization. We apply a similar
approach to finding correspondence of point features in
LRF data. Figs. 6 and 7 show examples of extracted point
and line features.

For an ego-motion parameter vector (∆x,∆y, ∆θ), a
feature at (Xt, Y t) at the current frame is transformed into
(X̃t−1, Ỹ t−1) in the previous frame using the following
equation (see Fig. 8):(

X̃t−1

Ỹ t−1

)
=

(
cos ∆θ sin ∆θ
− sin∆θ cos ∆θ

) (
Xt

Y t

)
+

(
∆x
∆y

)
.

For each point (Xt
i , Y

t
i ) in the current frame, we search

for the corresponding point (Xt−1
i , Y t−1

i ) in the previous
frame. Let (X̃t−1

i , Ỹ t−1
i ) be the transformed point obtained

by using the above equation. The necessary condition for
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Fig. 8. Ego-motion estimation using point features.

these points corresponding to each other is then given by:

dp2
i =

(
X̃t−1

i − Xt−1
i

)2

+
(
Ỹ t−1

i − Y t−1
i

)2

< tdist, (4)

where dp2
i is the squared distance between the points and

tdist is a threshold. Using only this condition for making
correspondences may result in false correspondences. So
we use the following RANSAC-like algorithm.

1) Choose two pairs of points and check if the distance
between the points in one frame is similar to that
in the other frame. If the difference of the distances
is less than a threshold, proceed to the next step.
Otherwise, choose another two pairs of points.

2) Using the selected pairs of points, calculate the ego-
motion using eqs. (6-8).

3) Using the calculated ego-motion to transform other
points in the current frame to the previous one, and
see if each transformed point has a corresponding
point which satisfies the condition on the distance
for correspondence (eq. (4)).

4) Count the number of points for which the corre-
sponding points are found.

5) If all possible pairs are tested, then determine the
ego-motion as the one gains the maximum number
of corresponding points. Otherwise, go back to the
first step.

Since the number of matched pairs is relatively small in
our case (around 10 to 15), we test all possible pairs, unlike
the original RANSAC.

Once a set of Np matched points is obtained, we cal-
culate the best ego-motion which minimizes the following
sum of the squared distances:

Sp =
Np∑
i=1

dp2
i . (5)

This minimization problem has the following analytical
solution [10]:

∆θ = tan−1

Np

[
Xt−1

i Y t
i

]−Np

[
Xt

i Y
t−1
i

]
−[

Xt−1
i

]
[Y t

i ]+
[
Y t−1

i

]
[Xt

i ]
Np

[
Xt−1

i Xt
i

]
+Np

[
Y t−1

i Y t
i

]
−[

Xt−1
i

]
[Xt

i ]−
[
Y t−1

i

]
[Y t

i ]

, (6)

∆x=

[
Xt−1

i

] − [Xt
i ] cos ∆θ − [Y t

i ] sin ∆θ

Np
, (7)

∆y =

[
Y t−1

i

]
+ [Xt

i ] sin ∆θ − [Y t
i ] cos ∆θ

Np
, (8)

where [·] indicates the summation from 1 to Np.

B. Use of Line-to-Line Correspondence

There are often places in indoor environments where
point features are scarce such as corridors. So we also use
line features as well as point features. Lines are extracted in
LRF data as follows. We first extract candidates of points
on lines by using k-curvature. That is, for each measured
point, take a pair of points which are k points apart from
the measured point, and draw two lines connecting the
measured point and one of the point pair. If the angle
between the lines is less than a threshold, then the mea-
sured point is a candidate point on a line. Such extracted
candidates are clustered into line candidates and each of
the line candidates is then verified by fitting a line to its
points and by estimating the residual.

A line detected in one frame and another line detected in
the subsequent frame are considered to be matched if their
center points are near enough and the relative direction is
small enough. Since the number of detected lines are not
large in our environment, such a simple matching method
works well.

Let the ith line at the previous frame be ρi = X cos φi+
Y sin φi and the points of its corresponding line at the
current frame be {X t

j(i), Y
t
j (i)} (j(i) = 1, . . . , Ni). For

an ego-motion (∆x,∆y, ∆θ), after transforming the points
on the line to the current frame to the previous one using
eq. (4), we evaluate the squared distance between this ith
pair of lines by:

dl2i =
Ni∑

j(i)=1

(
X̃t−1

j(i) cos φi + Ỹ t−1
j(i) sin φi − ρi

)2

. (9)

Then for Nl pairs of lines, the sum of the squared distances
is given by:

Sl =
Nl∑
i=1

dl2i . (10)

C. Use of Both Types of Correspondence

We would like to minimize the following sum of squared
distances:

Spl = Sp + Sl

=
Np∑
i=1

dp2
i +

Nl∑
i=1

dl2i . (11)

Since we cannot obtain an analytical solution of this
minimization problem, we take the following two-step
procedure.

We first determine ∆θ. From point-to-point correspon-
dences, we obtain ∆θ as eq. (6). We also obtain it from
line-to-line correspondence as the mean of directional
differences of line pairs. We calculate the weighted mean of
these two values as ∆θ, in which the number of LRF data
points is used as the weight. Once the rotational component
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Fig. 9. Ego-motion estimation with comparison with odometry.
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Fig. 10. An example robot motion.

is determined, we search the ∆X-∆Y space for the best
translational component which minimizes eq. (11).

D. Ego-motion Estimation Experiment

Fig. 9 shows the result of ego-motion estimation for the
robot motion shown in Fig. 10. There are many points
features inside the room, while in the corridor, only line
features are available. We compared the estimation result
obtained by the proposed method with that calculated from
odometry data. The figure shows that the proposed method
is comparable to the dead reckoning by odometry, although
position estimation by odometry suffers from accumulation
errors. Since the ego-motion estimation is used for integrat-
ing observation data during a short period for local map
generation, the proposed ego-motion estimation method
shows a reasonable performance; this is also indicated by
a navigation result shown in the next section.

V. NAVIGATION EXPERIMENT

We conducted navigation experiments in our laboratory.
The robot repeatedly updates the map and plans a collision-
free motion towards a specified destination. The robot
maintains local probabilistic and free space maps in the
robot-centered coordinate; each map is composed of 200×
200 grids, each of which has the size of 5 [cm] × 5 [cm].
The robot plans a safe motion inside the free space by
using a heuristic path planner [12], which generates a
path composed of up to two circular segments, and by an
adaptive speed control method [12].

Fig. 11(a)-(d) shows a result of map generation and
navigation. In each row, figures indicate a snapshot of ex-
periment, the probabilistic map for omnidirectional stereo,
that for the laser range finder (LRF), and the integrated free
space map, from left to right. Triangles in the maps indicate
the robot position. In probabilistic maps, brighter pixels

indicate higher probability of obstacle existence. White
areas in the free space maps indicate free spaces.

In rows (a) and (b), a partition with a blackout curtain,
which is indicated by gray circles in the free space maps, is
not fully recognized by the omnidirectional stereo because
image features are scarce. Since the LRF recognizes it
clearly, however, the partition is recognized as an obstacle
in the free space map. On the other hand, in rows (c) and
(d), concerning the table, which is again indicated by gray
circles in the free space maps, the stereo recognizes its table
top clearly, while the LRF detects only its legs. As a result,
the table region is correctly recognized as an obstacle in
the final free space map. The robot was able to safely move
around in unknown environments, for which only a single
sensor may not be sufficient.

We then compare the map generation results for the
improved method (considering the height of objects) and
the previous one (not considering the height). Row (e)
in Fig. 11 indicates the stereo probabilistic map and the
integrated free space map at point (d) generated by the
previous method. Comparing these two results, the table on
the right of the robot is clearly visible in the free space map
generated by the improved method, while the table almost
disappears in the map by the previous method. For the
other places, both methods do not have distinct differences.
It is, therefore, concluded that the improved method which
considers high information in map updating can generate
a more reliable map than the previous one.

VI. CONCLUSIONS AND DISCUSSION

This paper has described the navigation of a mobile robot
in unknown environments using an omnidirectional stereo
and a laser range finder. We have improved our previous
method in the following two points. One is to consider the
height of obstacles in map generation. By checking the vis-
ibility of a previously-recognized obstacle in comparison
with the current obstacle, we determine if the information
that the space before the current obstacle is free has a
conflict with the current map information and selectively
update the probability in the space. The other improvement
is about the ego-motion estimation method. By employing
a RANSAC-like point feature matching method and by
additionally using line features, we can robustly estimate
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Fig. 11. A map generation and navigation example and a comparison with the previous method.

the ego-motion both in complex in-room environments and
in simple, feature-scarce corridor environments.

We currently deal with static environments. A future
work is to extend the method to cope with dynamic obsta-
cles by, for example, adopting obstacle detection method
such as [7].
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