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Abstract

This paper describes a method of controlling the robot
speed using a probabilistic occupancy map. It is usually nec-
essary for a robot to make sure that a target region is free
before entering there. If the robot is not confident the state
(free or occupied) of the region, the robot has to make enough
observations to be confident. If the distance to the region is
long, the robot can expect to have enough observations until
reaching there. If the distance is short, however, the robot may
have to slow down for making enough observations. Based on
this consideration, we develop a method for controlling the
robot speed by considering the state of a target region. The
method is applied to our mobile robot with an omnidirectional
stereo and a laser range finder. The robot successfully moved
around in an unknown environment with adaptively control-
ling its speed.

1 Introduction

Mobile robot navigation in unknown environments has
been one of the active research areas in robotics. Many re-
searches focus on generating a reliable map from uncertain
data obtained by internal (e.g., odometry) and external (e.g.,
vision and sonar) sensors [3, 5, 9]. The main objective of
these researches is to generate as an accurate map as possible.
Some dealt with observation (or motion) planning issues; in
these researches, the plan has been made for increasing the
quality of the map (e.g., [1]) or for exploring the unobserved
spaces (e.g., [2]), not for efficient navigation.

This paper is, different from the previous works, concerned
with realizing an efficient navigation in unknown environ-
ments. In the case of mobile robots, efficiency depends on
the path and the speed it takes. Among these two factors, we
focus on the speed control.

Moon et al. [7] proposed to control the speed based on the
size of the nearby free space considering the uncertainty of
motion and visual localization. They treated the tradeoff be-
tween the safety and the efficiency. That is, a fast movement
is efficient but may be unsafe due to a large cumulative mo-
tion uncertainty; on the other hand, a slow movement is safe

because many observations can be made but is not efficient.
They proposed a safety criterion to check if the current speed
is safe for the nearby free space, and selected the maximum
safe speed. Although their method dealt with only completely
known environments, the basic idea of considering the trade-
off can be applied to our problem of determining the speed
based on a partially uncertain map.

It is usually necessary for a robot to make sure that a tar-
get region is free before entering there. Therefore, in order to
move into a region which has not been certainly determined
as free, the robot needs further observations of the region. If
the distance to such an undecided region is long, the robot can
expect to observe it many times and, therefore, to have a con-
fident interpretation of the region until the robot reaches the
region, even if the robot moves relatively fast. If the distance
is short, on the other hand, the robot may have to reduce the
speed in order to make an enough number of observations be-
fore reaching there. Based on this consideration, we propose
to control the robot speed using the distance to the undecided
region which the robot moves into next. Using this method,
we can realize a robot motion of slowing down near an un-
certain area such as the one beyond a corner or the one where
enough range information has not been obtained so far; such a
motion is exactly the same as what we do in walking through
(partially) unknown environments.

We experimentally test the proposed control method using
our mobile robot with an omnidirectional stereo and a laser
range finder (see Fig. 1). We use a map generation method
[6] which generates a free space map by integrating two prob-
abilistic occupancy maps for both sensors.

2 Speed Control Using a Safety Criterion

This section explains the outline of our method for deter-
mining the robot speed from a map describing free spaces,
obstacle regions, and undecided regions.

Fig. 2 illustrates an example situation where as a robot
moves forward, the free region expands in the same direction
with the accumulation of newly observed data. In order to
be confident with the vacancy of a currently-unknown region
(called an undecided region), the robot needs to observe it
several times due to observation uncertainties. If the distance
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(a) Input omnidirectional image
(lower camera).

(b) Panoramic image converted from (a).

(c) panoramic disparity image obtained from (b).

Figure 3. Omnidirectional stereo generates a panoramic disparity image.
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robot.
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Figure 2. Free
and undecided
regions.

to the region is long, the robot expects to make an enough
number of observations to be confident until it reaches there.
If the distance is short, however, the robot needs to move
slowly so that it can sufficiently observe the region. We apply
the strategy of selecting the fastest safe speed to this situation.

We first define a safety criterion for judging whether a
speed is safe. Let � be the minimum number of observa-
tions of an undecided region required to enter there. Also let�

be the distance to the region and � be the time for one ob-
servation (considered to be constant). Since the robot has to
observe at least � times before traveling by distance

�
, the

safety criterion is:

�
� ��� �	� (1)

where � is a robot speed; speed � is safe if this inequality
holds. Then, the fastest safe speed ��

��� is:

��

����� �
�	�	� (2)

If ��

��� is larger than the robot’s fastest speed ���
���� , the robot
moves at � �
���� ; otherwise it moves at ��

��� .

To adopt this speed control method, we need to determine� and
�
. � is determined by considering the observation and

the map uncertainty model. Sec 4.4 explains how to deter-
mine � from the models.

�
is the length of a safe path, which

is the result of a path planning described in Sec. 5.

Figure 4. An example LRF measurement. The
black triangle indicates the position and the di-
rection of the robot.

3 Two Range Sensors

3.1 Real-time Omnidirectional Stereo

The stereo system uses a pair of vertically-aligned omni-
directional cameras (see Fig. 1). The input images are con-
verted to panoramic images, in which epipolar lines become
vertical and in parallel; thus, efficient stereo matching algo-
rithms for the conventional stereo configuration can be ap-
plied. The system can generate the disparity image of 360x50
in size and 40 in disparity range in every � �������  "! Fig. 3
shows the panoramic conversion and disparity calculation. In
the disparity image (bottom right), larger disparities (nearer
points) are drawn in brighter color. Since the objective of
mapping is to recognize the free space, we extract the nearest
obstacle in each direction. Refer to [4] for the detail.

3.2 Laser Range Finder (LRF)

We use a SICK laser range finder (LRF), which is set at the
front of the robot so that it scans the horizontal plane at the
height of #%$ � &�'(! from the floor (see Fig. 1). The resolution
used is ��� � �

�%)�*
! per point (i.e., 181 measurements for ��� �degrees). The accuracy of each measurement is +,$ � &�'-! . Fig.

4 shows the line of measurements corresponding to the scene
shown in Fig. 3.

4 Map Generation by Integrating Two Sensors

This section briefly describes a map generation method
used in this research. The method was originally developed in
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Figure 5. Determination of grid attributes.

[6], which generates a free space map by integrating two prob-
abilistic occupancy maps for the two kinds of sensors. We
have slightly modified the original map generation method to
discriminate the following two cases; a grid’s occupancy is
undecided because (1) enough observation has not been made
yet or (2) enough information has not been obtained although
enough observation has been made. This modification will be
explained in Sec. 4.4. Refer to [6] for the detail of the original
method.

4.1 Temporal integration of sensor data

We use as a map a probabilistic occupancy grid representa-
tion [3]. To integrate the uncertain data, we use forward sen-
sor model[8] which describes the physics of the environment,
from causes (occupancy) to effects (measurements). We also
adopt the independence assumption; i.e., update the probabil-
ity of a grid independently of other grids. This assumption
seems reasonable when each sensor has a fairly fine angular
resolution.

4.2 Interpretation of range data and integration
formula

From one observation, we determine the attribute of each
grid; possible attributes are: occupied, free, and unknown (see
Fig. 5). The figure shows the attribute determination for a re-
gion within one angular resolution. . is the observed distance
(by omnidirectional stereo or LRF) to the nearest obstacle,
and . 
0/�1 and . 

��� indicate the uncertainty in range mea-
surement1. The region between . 
�/21 and . 

��� is labeled as
occupied. The region before the occupied region is labeled as
free. The region behind the occupied region is labeled as un-
known. In the case of stereo, all regions corresponding to the
directions in which any obstacles are not detected (possibly
due to the failure of stereo matching) are labeled as unknown.

Let 3 be the event that an obstacle is detected. 3 occurs
at occupied grids; the inverse event 3 occurs at free grids.
For such grids, the update of the probability is carried out as
follows.

Let 4 be the event that an obstacle exist, and let 57684�9 be
the probability that an obstacle exist (at a grid). The new prob-
ability map to be obtained by integrating a new observation is

1Refer to [4] for the uncertainty estimate of omnidirectional stereo. The
uncertainty in LRF measurement is constant regardless of the measured
value.
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Figure 6. Stereo uncertainty model, 576:37; 4�9 .
given by the conditional probabilities: 576:4(; 3<9 and 57684-; 3=9 .
These probabilities are calculated by the Bayes’ theorem as
follows:

57684(; 3<9 � 576:37; 4�9>576:4�9
576?37; 4@9>57684@9BAC576:37; 4�9>576 4@9 � (3)

57684(; 3=9 � 576 3D; 4�9>576:4�9
576 3D; 4�9>576:4�9EAC576 37; 4�9>576 4@9 � (4)

where 576:4�9 is the prior probability and 4 is the proposi-
tion that an obstacle does not exist. Among the terms in the
above equations, 576:37; 4�9 and 576:37; 4@9 are observation mod-
els described below; 576 3D; 4�9 � �=F 576:37; 4�9 ; 576 3D; 4�9 �
�GF 576?37; 4H9 ; 576 4�9 � �GF 57684�9 . Integration for each grid
is performed independently of the others (the independence
assumption).

4.3 Probabilistic models of sensor uncertainty

4.3.1 Stereo uncertainty model

576:37; 4�9 is the probability that an obstacle is observed when
it actually exists. In the case of stereo, the possibility of in-
correct matches is considered to rises as an obstacle becomes
distant and its size in the image decreases. Since the size is in-
versely proportional to the distance, we assume that 576?37; 4@9
is also inversely proportional to the distance. Fig. 6 shows the
definition of 576?37; 4�9 for stereo, which is constructed by con-
sidering the observable range of the omnidirectional stereo
and the experimental results. 576:37; 4@9 corresponds to the case
where a false object is detected due to a false stereo matching,
and is set to � � �%$ .
4.3.2 LRF uncertainty model

The measurement of the LRF is fairly reliable and the relia-
bility does not depend on the distance to obstacles. Therefore
we set 576:37; 4�9 to � � I and 576:37; 4@9 to � � ��$ .

4.4 Integration of two maps

The two probabilistic grid maps are integrated as follows.
Since the two sensors may detect different parts of an object, a
direct integration of probability values is not appropriate [6].
We therefore first classify each grid of a map into four classes
and then integrate the classification result into the final free
space map.
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Table 1. The integration rule.
OB: obstacle FS: free space
UD J�K : undecided with observation
UD JML : undecided without observation

stereo
OB UD NPO UD NRQ FS

L OB OB OB OB OB
R UD NPO OB OB OB OB
F UD NRQ OB OB OB FS

FS OB OB FS FS

We use two thresholds for the first classification. If the oc-
cupancy probability of a grid is larger than the higher thresh-
old (currently, � �TS ), the grid is classified as obstacle; if the
probability is less than the lower threshold (currently, � �VU ),the grid is classified as free space; otherwise, classified as un-
decided. This classification into three was used in the original
version [6]. In this paper, we further classify undecided into
two classes.

The second classification is for discriminating the follow-
ing two cases. (1) The occupancy of a grid is undecided be-
cause enough information has not been obtained although the
robot observes there many times. A typical situation is that
the omnidirectional stereo cannot obtain range data for tex-
tureless objects. For a grid in the direction of such an ob-
ject, its class remains undecided even if the stereo tries to
observe the object many times. In this case, we believe in
the LRF’s interpretation. (2) The occupancy is undecided be-
cause enough observation has not been made yet. Since we
use a probabilistic uncertainty model and integrate observa-
tions statistically, each sensors needs some observations to
determine the occupancy of a grid with confidence (i.e., free
space or obstacle). Therefore, if the number of observations
of a grid is small, we have to wait until the situation becomes
clearer by further observing it. We discriminate the two cases
using a threshold for the number of observations. If the num-
ber is larger than the threshold (case (1)), we classify a grid as
undecided with observation; otherwise undecided without ob-
servation. The number of observations is incremented when
a grid has event 3 or 3 (see Sec. 4.2), or when a grid is in the
direction for which any range measurement is not obtained.

To determine the threshold for the number of observations,
we examine how the occupancy probability changes as more
observations are obtained, using the observation uncertainty
models and the probabilistic integration rules. A typical ex-
amination result is that if the robot is initially $���� � &�'-! distant
from a front object, and if the robot moves at $�� � &�'XW�Y[Z]\%'

)
!while observing the object using stereo, five observations are

needed to make the grids in front of the object be classified
as free. From this and other examination results, we currently
use five as the threshold for stereo. In a similar way, we de-
termined to use one as the threshold for LRF.

These thresholds for the number of observations are based
on an optimistic prediction that the front object is always
properly observed. If at least one out of five observations
(in the case of stereo) fails due to some reason, the state of
the grids in front of the object may not be determined as

table door

Figure 7. An example scene.

stereo
probabilistic map

LRF
probabilistic map

integrated
free space map

Figure 8. Probabilistic maps and a free space
map. Black and white triangles indicate the
robot position and orientation.

free. In such a case, however, since the distance to the un-
decided region becomes shorter than expected and, therefore,
the robot speed is controlled accordingly, the robot can still
move safely.

After the classification, the robot integrates the two clas-
sification results from both sensors into the free space map
using the rule shown in Table 1. The classification and inte-
gration processes are carried out every frame, after updating
both probabilistic maps. The resultant free space map is used
for the path planning of the mobile robot.

4.5 Map generation example

Fig. 7 shows an example scene where the robot moved
along the arrow. Fig. 8 shows the maps generated after the
movement. In the probabilistic maps, brightness indicates the
probability. The maps are drawn in the robot coordinates.
The table in front of the robot was correctly recognized by
the stereo, while the LRF only detected only its legs. On the
other hand, the recognition by the stereo of the region near the
door on the right failed at many positions because features are
scarce on the door, while the LRF correctly recognized the
region. In spite of recognition failures by one of the sensors
at several positions, the integrated map reasonably represents
the free space.

5 A Heuristic Path Planner

This section explains a heuristic motion planner used for
determining a safe path towards a destination. The robot
keeps a local free space map around the robot. We give the
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Figure 9. Find a feasible via point. Gray regions
indicate obstacles.
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Figure 10. Safety check of a path.

robot the destination in the world coordinates. If the desti-
nation is in the local map, the robot use it for path planning.
Otherwise, the robot selects a temporary destination which
is in the free space and nearest to the given destination, and
uses it for path planning. Since our robot is driven by two
powered wheels, it always moves on a circular path. So the
planner searches for a sequence of safe circular paths among
free spaces.

Fig. 9 illustrates the process of path planning by our plan-
ner. First the planner searches for a circular path which con-
nects the current position and the destination and whose tan-
gent line at the current position is the same as the current ori-
entation of the robot (arc 5_^]`a^cb,^ in the figure). If this path
is safe, it is selected. Otherwise, the planner first searches
for the point on the circular path which is farthest from the
free space ( `d^ is selected) and draws a line perpendicular to
the tangent line of the circular path there, and selects another
temporary destination ( b@e ) on the line in the free space which
is nearest to the point ( ` ^ ). For this temporary destination, the
planner repeats the same operation until a safe circular path is
found (try arc 5 ^ ` e b e , select b=f , and find 5 ^ b<f ). If a path
is found but the endpoint of the path is a selected via points,

G

G
V

0

1
0

Figure 11. A path planning result.

this process is iterated with the selected via point ( b f ) be-
ing the initial position and the original destination ( b=^ ) as the
destination. Currently we limit the maximum iteration of this
process to two; in a complex environment, the endpoint of the
planned path may not be the destination.

The obstacle region in Fig. 9 is made by expanding the
original obstacle region by two types of margins; one is for
considering the motion uncertainty (currently set to U � � &�'-! );the other is for considering the size of the robot. Since the
shape of the horizontal section of our robot is rectangle, we
use as the margin a half of the width of the robot. However,
since this margin may not be appropriate depending on the
relative position of the robot and an obstacle, the planner ver-
ifies the safety of a path by checking collision on every point
on the path using the robot shape, as shown in Fig. 10. If
the collision is detected on the path, the planner goes back to
the selection of via points; that is, the planner selects another
via point near the previous one but at a further point from the
obstacle, and tries to find a feasible path as explained above.

Fig. 11 shows an example of path planning. The pointb,^ is the destination, the point `d^ is the point on the initial
circular path towards b<^ which is farthest from the free space,
and the point b e is the selected temporary destination. Note
that the black regions are the original occupied ones and are
not expanded by the motion uncertainty nor the robot‘s half
width.

6 Navigation Experiment

Fig. 12 shows a navigation result. In Fig. 12, the robot
began moving from the start point, moved along the arrow
shown in the figure, and finally arrived at the goal point. The
observation cycle is � � gd�  

)
&h! and the robot’s maximum speed

is ��� � � 'XW� "! . Fig. 13 shows snapshots of the navigation exper-
iment.

Fig. 14 shows free space maps and planned paths in the
navigation. At point (a), the planned path was long enough to
enable the robot to move fast. At point (b), since the observed
area was narrow, the robot could plan only a short path and
slowed down. At point (c), the robot could observe a wide
area, so it moved fast again. At point (d), similar to the case
at point (b), the robot slowed down. The total moving distance
was about #�� � '-! and the total time was about g $ �  

)
&h! .
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Figure 12. A navigation result.

7 Conclusion

This paper has proposed a method of controlling the robot
speed based on the distance to undecided regions in a proba-
bilistic occupancy map. From the models of observation un-
certainty and data integration, we derive the number of ob-
servations needed to make a target region be free with confi-
dence. This number is then used to determine the maximum
safe speed. The method has been successfully applied to a
mobile robot navigation in an unknown environment.

Currently we treat the reliability of undecided regions uni-
formly; that is, the necessary number of observation is the
same for every undecided regions. The reliability of each
grid, however, should differ from each other depending on
the observation history of the grid. A future work is to con-
sider this factor in speed control. Another future work is to
integrate the proposed strategy with the motion control based
on the size of the nearby free space [7]. In the current ex-
periments, we deal with only the situation where the nearby
free space is sufficiently large. By this integration, a safe and
efficient navigation will be realized in various environments.
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