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This paper describes an efficient generation of large-scale dataset of human depth images with body part
labels. The size of image datasets has recently been increasingly important as it is shown to be strongly
related to the performance of learning-based classifiers. In human pose recognition, many datasets for
ordinary poses like standing, walking, and doing gestures have already been developed and effectively
utilized. However, those for unusual ones like lying fainted and crouching do not exist. Pose recognition
for such cases may have a large potential applicability to various assistive scenarios. Moreover, locating
each body part could also be important for an accurate care and diagnosis or anomaly detection. We
therefore develop a method of generating body part-annotated depth images in various body shapes and
poses, which are handled by a flexible human body model and a motion capture system, respectively.
We constructed a dataset of 10,076 images with eight body types for various sitting poses. The effective-
ness of generated dataset is verified by part labeling tasks with a fully convolutional network (FCN) for
synthetic and real test data.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The percentage of the elderly increases every year in the world
[1] and developed countries are going to suffer from so-called ag-
ing society; it is reported that the population of the over-sixty will
be one third of the total population in 2050 and this is recognized
as one of the serious social issues. Assistive technologies are ex-
pected to support the elderly in various application scenarios. One
possible technological application is a robot which takes care of
people in care houses. Human pose recognition is one of the nec-
essary functions of such robots, which contributes to an accurate
care and diagnosis or anomaly detection.

Many human pose estimation methods have been proposed.
Felzenszwalb et al. [2] dealt with an image-based human pose es-
timation using a pictorial structure representation [3], in which a
whole body is represented as a collection of parts with their de-
formable geometrical relationships. Many improvements to this ap-
proach have then been proposed. To achieve a better performance,
Ramanan et al. [4] improved the accuracy of part detection and
Ferrari et al. [5] limited the search area using GrabCut [6].

As low-cost depth sensors like RGB-D cameras are developed,
Shotton et al. [7] developed a method of estimating human poses
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in a depth image. The method first assigns body part labels to
each pixel by using a simple depth difference between two points
as a feature, and adopting a random forest classifier. It then esti-
mates the pose of every part based on the assigned labels. Fore-
ground/background separation is easily handled by using depth
data. These previous works basically deal with pose estimation in
ordinary poses.

In actual applications, unusual poses, such as lying and crouch-
ing, must also be considered. Ardiyanto et al. [8] applied a human
pose estimation to a fallen person monitoring and rescue scenario.
Their system continuously tracks the skeleton of a person using
an environmental RGB-D camera and can therefore recognize the
pose even after falling; such environmental cameras need to be in-
stalled in advance. Suppose a situation that a mobile service robot
patrols a residence or a nursing home to see if any emergency sit-
uation occurs. Without environmental cameras, the robot has to
recognize the human state including his/her pose only using on-
board sensors. Therefore a pose estimation method for such ap-
plications must be able to estimate unusual poses. This is still a
challenging problem which has not been fully solved by existing
approaches. Wang et al. [9] improved the method by Felzenszwalb
et al. [2] in human region detection to cope with lying person
pose estimation using a color image. Although the method shows
a good performance, it might be weak in the situation where fore-
ground/background separation is difficult due to, for example, a
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Fig. 1. Outline of generating depth images with body part labels.
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Fig. 4. Generated depth images with body parts labels. First row: generated label images. Second row: generated depth images.
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Fig. 6. The change of the training loss.

bad illumination condition and where more complex poses with
self-occlusions occur.

Convolutional neural networks (CNNs) [10] have recently been
very successful in various recognition tasks including human pose
estimation. Pose estimation methods using CNNs are divided into
two types. One is to directly estimate hunan joint positions. To-
shev et al. [11] take this approach and use FLIC dataset [12] which
provides human color images with joint positions. The other is to
estimate the pose by classifying each pixels into body parts, as in
the case of Shotton et al. [7]. Oliveira et al. [13] take this approach
and train a fully convolutional network (FCN) [14] using the PAS-
CAL Parts dataset [15] which provides human color images with
body part labels. Although these works exhibit good performances,
they rely on color images and may be sensitive to changes illu-
mination, clothing, and skin color. They could also face a privacy
issue.

Use of depth images is a promising alternative to solve these
problems. However, this leads another big problem, that is, to con-
struct a large dataset of annotated depth images. Nishi and Miura
[16] generated a set of depth images with head position annota-
tion for several lying poses from omnidirectional viewpoints using
a large rotation table and an RGB-D camera. This approach can be
applicable only to a small-sized dataset generation. We can use an-
notation tools like LabelMe [17,18] for color images, but a similar
approach is difficult to apply to depth images. Skeleton tracking
techniques [19,20] could be a possible way but these are applica-
ble only to normal poses but not to unusual poses under consider-
ation.

Since the annotating real depth images is difficult, we adopt
computer modeling and computer graphics techniques for gener-

ating annotated depth images [7]. The issues are then how to con-
struct human models with various body shapes and how to make
the models take various poses. Manually producing such variations
is extremely hard when constructing a large-scale dataset. There-
fore we propose a novel approach that combines a flexible, pa-
rameterized body model, a motion capture system, and computer
graphics tools in order to generate a large number of body part-
annotated depth images efficiently. We evaluate the constructed
dataset by conducting body part labeling experiments using an
FCN for synthetic and real depth images.

The rest of the paper is organized as follows. Section 2 de-
scribes the detailed procedure of dataset generation. Section 3 ex-
plains the FCN that we used for evaluation. Section 4 describes
experimental results to show the effectiveness of the dataset.
Section 5 concludes the paper and discusses future work.

2. Data generation

Fig. 1 shows the outline of the proposed dataset generation
method. The first step is to generate human body models. We use
KY Human Model [21] that can deal with various body shapes.
Other human models [22,23] can be used. Since this model has
only shape information, at the second step, we attach part labels
and skeleton information, for generating annotated depth images
and for controlling the pose with joint angles, respectively. The
third step is to collect human motion data using a VICON motion
capture system [24] and to apply them to the body models. The
last step is to generate human depth images with body part labels.

We use Maya [25] for the second and the last step, and Motion-
Builder [26] for the third step.
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Fig. 7. Change of the part labeling results through training.

Table 1

Parameters of the generated human body models.
Model No. Height (cm)  Weight (kg)  Waist breadth (cm)  Param 1st  Param 4th
0 149.2 36.6 22.7 120.0 0.0
1 155.3 45.0 24.2 80.0 0.0
2 172.6 519 23.7 0.0 40.0
3 1714 56.8 25.2 0.0 20.0
4 169.6 61.7 26.6 0.0 0.0
5 167.7 66.6 27.7 0.0 -20.0
6 166.1 715 29.0 0.0 -40.0
7 182.8 78.4 28.8 -80.0 0.0

2.1. Human model generation

The variety of data is crucial for learning-based approaches. We
used KY Human Model [21] for generating a variety of human body
models. KY Human Model was constructed by choosing 17 out of
49 human body data in the AIST/HQL database [27], and analyzing
them using PCA (principal component analysis). The constructed
KY Human Model has eleven parameters to adjust for changing the
body shape. In this paper, we adjusted the first and the fourth pa-
rameter which mainly affect the height and the width of the body,
respectively, and leave the other nine parameters be zero (i.e., the

mean value). Table 1 shows the parameter pairs and the corre-
sponding body dimensions for the eight models used in this paper.

2.2. Adding body part labels and skeleton information to the
generated shape model

The eight models mentioned above only have shape data. We
thus attach part labels and skeleton information to them. Part la-
bels are attached as follows. We consider the following eleven
parts: head, torso, left/right upper arm, left/right forearm, hip,
left/right upper leg, left/right lower leg. These labels are repre-
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Fig. 8. Result for synthetic data. First column: generated synthetic depth images
for test. Second column: generated label images. Third column: labeling results.

sented by respective distinctive colors in the model. When attach-
ing a color to a body part using Maya, we choose SurfaceShader
material whose rendered appearance is constant irrespective of il-
lumination conditions. These colors in a rendered image are con-
verted to label ID’s to generate a labeled image.

Skeleton information is attached as follows. For changing the
pose, Maya needs the sizes and the positions of the following parts
as a skeleton: head, neck, spine, hip, shoulders, upper arms, fore-
arms, wrists, upper legs, lower legs. These parts are defined by
the joint positions. We first define a rough skeleton model (see
Fig. 2(a)) and put it on the human model (see Fig. 2(b)). Then, we
manually adjust joint positions so that they matches with those

Generating 3D point cloud with
color and thermal information

Extracting human area 3D point
cloud by using thermal information by using color information

in the human model. Fig. 2(c) shows a scene of adjusting the left
wrist position.

2.3. Adding recorded motion data

Generating natural pose data by manually adjusting joint angles
is very difficult. We thus take a more intuitive approach. That is,
we use VICON motion capture system [24] to collect a large num-
ber of natural poses and give them to the human body model. Our
VICON system can track ball markers at 50 fps and export the mo-
tion of each marker as a sequence of 3D positions. Fig. 3(a) shows
a snapshot of the sequence.

We use MotionBuilder [26] to convert marker positions at a
time to joint angles in the human model. For this conversion,
we give the marker positions in the human body to Motion-
Builder. Fig. 3(b) and (c) show the marker positions on the human
model and the corresponding skeleton model, respectively. Since
this skeleton model is already attached to the human model, we
can generate any pose data by actually taking that pose.

2.4. Generating depth images with part labels

The steps explained above produce a set of labeled human
models with various poses. We then render the models also us-
ing Maya. The viewpoint is set at the pose of a real camera on the
top of our robot. Fig. 4 shows examples of generated images; each
pair of a color-labeled image and a depth image corresponds to a
human model and a pose. Each model number corresponds to that
in Table 1. We can see that an enough variety of models and poses
can be generated.

In this paper, the input and the output of a pose estimation
system are a depth image and an ID-labeled image, respectively.
Therefore we generate a large number of the pairs of depth and
ID-labeled images to construct a dataset.

3. Recognition of human parts using FCN
3.1. Network architecture

We use a fully convolutional network (FCN) [14] for the part
labeling task for depth images. FCNs do not have fully-connected
layers, unlike usual convolutional neural networks (CNNs). Oliveira
et al. [13] applied an FCN to a part labeling task for color images
and showed an outstanding performance. The network has fifteen

Segmenting 3D point cloud

Defining label in each segmented

Depth image

Label image

3D point cloud by human

Fig. 9. Generating flow for depth and body label images in real scene.
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Confusion matrix for synthetic data.
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Table 3
Confusion matrix for real data.

LU arm
RU arm
LF arm

=}
]
5]
jus)
.6!

Head
Torso
LU arm
RU arm
LF arm
RF arm
Hip

LU leg
RU leg
LL leg
RL leg
BG

Actual

Predicted

RF arm

LU = Left upper, RU = Right upper, LF = Left fore, RF = Right fore.
LL = Left lower, RL = Right lower, BG = Background.

convolution layers and five deconvolution layers. Convolution lay-
ers extract features and the size of image decreases as they go
through the layers. Deconvolution layers are then applied to the
final output of convolution layers to have a labeled image with the
same size as the input one. To compensate for the missing details,
each deconvolution layer additionally uses the output from the cor-
responding pooling layer. Before adding a pooling layer output, it
is convoluted and extracted for making the layer be the same size
as the corresponding deconvolution layer.

We constructed our FCN based on the one by Oliveira et al.
Fig. 5 shows the architecture of our network, which differs from
theirs only in the size of inputs and output layers. We use the
depth images with 212 x 212 pixels and twelve classes (eleven
parts and one background). We therefore use 212 x 212 x 1 nodes
for the input and 212 x 212 x 12 nodes for the output. We obtain
twelve score maps, each of which indicates pixel-wise scores for
the corresponding class. The final result (that is, a labeled image)
is given by choosing the class with the highest score at each pixel.
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Fig. 10. Result on real data by using a color-coded clothing. First column: generated 3D point cloud with color and thermal information. Second column: Extracted depth
data fort testing. Third column: target part labels generated from the colored point cloud. Fourth column: labeling results.

3.2. Network training

We deal with scenes where persons sit on a sofa with vari-
ous poses. 10,076 depth images with part labels are generated as
a dataset from the eight human models with various sitting poses.
The dataset contains relatively static pose data such as drinking,
reading a book, and using a gadget, and more dynamic pose data
such as swinging the body, arms and legs. To apply the images
to the FCN, we extract the person region in the depth images,
which are randomly flipped horizontally, and normalize the size
to 212 x 212 pixels. We also normalize the depth value, from the
range [0mm, 2000 mm] to [0, 1]. We applied the stochastic gra-
dient descent (SGD) optimizer with momentum [28] for training.
The learning rate and the momentum are set to 10~10 and 0.99,
respectively; these values are the same with the one used in [13].
Each mini-batch consists of twelve images. We implemented the
network using Chainer [29] and ran it on a single GeForce GTX TI-
TAN X for 22 days.

Fig. 6 shows the change of the training loss during train-
ing. Although the training loss monotonically decreases at each
epoch, the improvement is saturated around epoch 800 (11 days).
Fig. 7 shows how the discriminative power increases as the train-
ing proceeds. The figure shows the labeling result at each selected
epoch. Premature networks classify the body region poorly, but as
the training proceeds, the network is refined gradually so that a

more correct classification is performed. We here give some con-
jecture about the training process based on the classification re-
sults. Between epoch 0 and 50, the network learned that pixels
with depth data constitute the body region. Since the torso is the
largest body part, all body regions are classified as torso. Between
epoch 50 and 300, the arms and the legs region are labeled as
mixtures of yellow (left lower leg) and white (right lower leg). It
means the networks learned that rod-like region are recognized
as either of the legs. Between epoch 300 and 400, the network
learned that all regions adjacent to the torso region are head, but
this is partially corrected between epoch 400 and 600 such that
the regions above the torso become head and those under the
torso become hip. As the training proceeds, the other parts are also
learned correctly, basically from the central parts to the peripheral
ones. As shown in Fig. 6, the results after about epoch 800 are al-
most identical as the learning is considered saturated.

4. Experiments
4.1. Experiments using synthetic data

We collected motion data and generated another set of 4984
annotated depth images of the sit-on-a-sofa scene for testing.
Fig. 8 shows example recognition results; parts labels are mostly
correctly assigned. Table 2 shows the confusion matrix, summa-
rizing the pixel-wise comparison results for the assigned and the
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correct labels. The recognition rates are relatively low for the fore-
arms probably because the variations of their positions are larger
than the other parts.

4.2. Evaluation using a color-coded clothing

4.2.1. Color-coded clothing

The previous subsection quantitatively evaluated the effective-
ness of the proposed dataset and the FCN using simulated test
data. We would like to do the quantitative evaluation also for a
real scene. For this purpose, we need to have a dataset of anno-
tated depth images constructed from real data. In the case of a
person with normal clothing, however, the labeling should be done
manually and is tedious and time consuming. To make this process
much easier, we used a color-coded tight-fit clothing so that each
part of the body can easily be distinguished using a color image.

In this paper, we use a 3D point cloud with thermal data for
extracting the region of a person in a real scene. Point cloud data
are obtained by a pair of a depth camera (KinectV2, Microsoft) and
a far infrared (FIR) camera (PI200, Optris). The relative pose be-
tween the cameras is calibrated in advance [30,31]. In a room with
a normal temperature, we can extract a person region relatively
easily by extracting pixels with a temperature within some prede-
termined range (currently, 25°C ~ 35°C).

Fig. 9 shows the developed clothing and the process of gener-
ating annotated depth images. First, a 3D point cloud with color
and thermal information is generated. Next, the 3D points of the
human body are extracted using thermal data, and they are then

ﬂ

Fig. 11. Good labeling results on real data. First column: test scenes. Second column: generated thermal point clouds. Third column: extracted human region using thermal
information. Fourth column: generated depth data for testing. Fifth column: labeling results.

segmented using color. Since the segmentation is not complete, the
segmented regions are manually corrected as body parts and put
to the corresponding depth image as the annotation. We collected
145 annotated depth images for eight persons. It takes about one
minute to make one annotated depth image.

4.2.2. Result of evaluation

We conducted experiments for the real test data using the FCN
trained for the simulated dataset. Fig. 10 shows example labeling
results. The labeling is basically acceptable but some parts are in-
correctly labeled, mostly when they have a large positional devia-
tion from the training dataset.

Table 3 is the confusion matrix showing a quantitative evalu-
ation result. By examining the confusion states, we can see that
when a part is incorrectly labeled, it is usually labeled as its neigh-
boring part. For example, 22% of the head and 25% of the hip are
misclassified as the torso. This shows that an overall structure of
parts is correctly recovered but precise boundaries are not. In body
pose estimation, relative poses between parts are more important
than the precise boundary information. We thus conclude the com-
bination of our dataset and the FCN is effective for human pose
estimation.

4.3. Experiments using real data

Fig. 11 shows example labeling results. The columns indicate in-
put scenes, thermal images, extracted person regions in the ther-
mal images, extracted depth image regions, and part labeling re-
sults, respectively, from left to right. Using thermal data, person

Please cite this article as: K. Nishi, J. Miura, Generation of human depth images with body part labels for complex human pose recogni-
tion, Pattern Recognition (2017), http://dx.doi.org/10.1016/j.patcog.2017.06.006



http://dx.doi.org/10.1016/j.patcog.2017.06.006

JID: PR

[m5G;June 10, 2017;17:23]

K. Nishi, J. Miura/Pattern Recognition 000 (2017) 1-12 9

Fig. 12. Labeling results with poor human region extraction. First column: test scenes. Second column: generated thermal point clouds. Third column: Extracted human
region using thermal information. Fourth column: generated depth data for testing. Fifth column: labeling results.

modell model2 model3

model0

Fig. 13. Generated depth images with body parts labels for recumbent poses.

regions can be extracted even when they touch surrounding ob-
jects.

However, when the person region extraction fails to some ex-
tent, the recognition results will be degraded as shown in Fig. 12.
In these cases, some parts of the region are missing due to,
for example, occlusions and unexpected surface temperatures. We
think this degradation in recognition is due to the lack of training
data with incomplete region extractions. Adding such data to the
dataset could increase the robustness of the recognition.

4.4. Experiments for unusual poses

We deal with a scene where persons are in recumbent posi-
tions. We took pose data for various recumbent positions includ-
ing supine and lateral ones, applied them to the human models,
and generated 326,984 depth images with part labels with 360-
degree viewing direction. Fig. 13 shows examples of generated im-

model4 model5 model6 model7

First row: generated label images. Second row: generated depth images.

ages; each pair of a color-labeled image and a depth image corre-
sponds to a human model and a pose. We trained the same FCN
using the generated dataset. We used one GeForce GTX TITAN X
and two NVIDIA TITAN X's for training for 21 days.

Fig. 14 shows example of labeling results on real data. Esti-
mated parts labels are mostly correctly assigned.

5. Conclusions and discussion

This paper presented an efficient procedure of generating a
dataset of human body depth images with part labels, which is
suitable for training convolutional neural networks (CNNs) in a
depth image-based human pose estimation scenario. To generate
data for various body shapes and poses, we first generate a vari-
ety of body shape models and then add two types information:
skeleton and part labels. The former is to easily generate arbitrary
model poses using the joint angle data obtained by a motion cap-
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Fig. 14. Results on real data for recumbent poses. First column: test scenes. Second column: generated thermal point clouds. Third column: extracted human region using
thermal information. Fourth column: generated depth data for testing. Fifth column: labeling results.

ture system. The latter is to render body depth images with part
label annotations. A dataset is generated and evaluated for a sit-
ting scenario. A fully-convolutional network (FCN) was trained us-
ing the dataset and applied to part labeling tasks for both synthetic
and real data. Another dataset was generated for recumbent poses,
as examples of unusual poses, and evaluated using the same FCN.
Evaluation results show the effectiveness of the datasets.

We are interested in developing a human support robot that
can recognize a human state and perform appropriate assistive ac-
tions. Pose recognition is one of the necessary functions of such
a robot and must be able to handle a large variety of poses in-
cluding unusual ones such as falling and crouching. We are now
extending the dataset to include various possible poses. Moreover,
since a part of the body region may be missing in a depth image
due to self-occlusion and occlusion by other objects, adding data
for such cases is also planned.

Evaluation of the dataset is done by the recognition perfor-
mance of an FCN trained using the dataset. Although the FCN has
been shown to be very effective in part labeling tasks for both
color and depth images, we need to seek other network architec-
tures which could achieve a better performance.

We are now working on making the results of the research be
publicly available as follows. One is the dataset itself [32]. The
datasets described in the paper is already available at this website,
and we are planning to add more datasets as they are generated.
These datasets can be used for train any network architectures for
the part labeling task. The other type of data we are planning to
make available is a set of human models with skeleton and part

label information. This makes it possible for the users to generate
a new dataset with poses they want to deal with.
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