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a b s t r a c t 

This paper describes an efficient generation of large-scale dataset of human depth images with body part 

labels. The size of image datasets has recently been increasingly important as it is shown to be strongly 

related to the performance of learning-based classifiers. In human pose recognition, many datasets for 

ordinary poses like standing, walking, and doing gestures have already been developed and effectively 

utilized. However, those for unusual ones like lying fainted and crouching do not exist. Pose recognition 

for such cases may have a large potential applicability to various assistive scenarios. Moreover, locating 

each body part could also be important for an accurate care and diagnosis or anomaly detection. We 

therefore develop a method of generating body part-annotated depth images in various body shapes and 

poses, which are handled by a flexible human body model and a motion capture system, respectively. 

We constructed a dataset of 10,076 images with eight body types for various sitting poses. The effective- 

ness of generated dataset is verified by part labeling tasks with a fully convolutional network (FCN) for 

synthetic and real test data. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The percentage of the elderly increases every year in the world

1] and developed countries are going to suffer from so-called ag-

ng society; it is reported that the population of the over-sixty will

e one third of the total population in 2050 and this is recognized

s one of the serious social issues. Assistive technologies are ex-

ected to support the elderly in various application scenarios. One

ossible technological application is a robot which takes care of

eople in care houses. Human pose recognition is one of the nec-

ssary functions of such robots, which contributes to an accurate

are and diagnosis or anomaly detection. 

Many human pose estimation methods have been proposed.

elzenszwalb et al. [2] dealt with an image-based human pose es-

imation using a pictorial structure representation [3] , in which a

hole body is represented as a collection of parts with their de-

ormable geometrical relationships. Many improvements to this ap-

roach have then been proposed. To achieve a better performance,

amanan et al. [4] improved the accuracy of part detection and

errari et al. [5] limited the search area using GrabCut [6] . 

As low-cost depth sensors like RGB-D cameras are developed,

hotton et al. [7] developed a method of estimating human poses
∗ Corresponding author. 

E-mail addresses: nishi@aisl.cs.tut.ac.jp (K. Nishi), jun.miura@tut.jp (J. Miura). 

p  

a  

g  

ttp://dx.doi.org/10.1016/j.patcog.2017.06.006 

031-3203/© 2017 Elsevier Ltd. All rights reserved. 

Please cite this article as: K. Nishi, J. Miura, Generation of human depth

tion, Pattern Recognition (2017), http://dx.doi.org/10.1016/j.patcog.2017.
n a depth image. The method first assigns body part labels to

ach pixel by using a simple depth difference between two points

s a feature, and adopting a random forest classifier. It then esti-

ates the pose of every part based on the assigned labels. Fore-

round/background separation is easily handled by using depth

ata. These previous works basically deal with pose estimation in

rdinary poses. 

In actual applications, unusual poses, such as lying and crouch-

ng, must also be considered. Ardiyanto et al. [8] applied a human

ose estimation to a fallen person monitoring and rescue scenario.

heir system continuously tracks the skeleton of a person using

n environmental RGB-D camera and can therefore recognize the

ose even after falling; such environmental cameras need to be in-

talled in advance. Suppose a situation that a mobile service robot

atrols a residence or a nursing home to see if any emergency sit-

ation occurs. Without environmental cameras, the robot has to

ecognize the human state including his/her pose only using on-

oard sensors. Therefore a pose estimation method for such ap-

lications must be able to estimate unusual poses. This is still a

hallenging problem which has not been fully solved by existing

pproaches. Wang et al. [9] improved the method by Felzenszwalb

t al. [2] in human region detection to cope with lying person

ose estimation using a color image. Although the method shows

 good performance, it might be weak in the situation where fore-

round/background separation is difficult due to, for example, a
 images with body part labels for complex human pose recogni- 
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Fig. 1. Outline of generating depth images with body part labels. 

Fig. 2. Attaching skeleton information to the model. 

Fig. 3. Converting VICON measurements to skeleton motion data. 

Fig. 4. Generated depth images with body parts labels. First row: generated label images. Second row: generated depth images. 
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Fig. 5. Network architecture. 

Fig. 6. The change of the training loss. 
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ad illumination condition and where more complex poses with

elf-occlusions occur. 

Convolutional neural networks (CNNs) [10] have recently been

ery successful in various recognition tasks including human pose

stimation. Pose estimation methods using CNNs are divided into

wo types. One is to directly estimate hunan joint positions. To-

hev et al. [11] take this approach and use FLIC dataset [12] which

rovides human color images with joint positions. The other is to

stimate the pose by classifying each pixels into body parts, as in

he case of Shotton et al. [7] . Oliveira et al. [13] take this approach

nd train a fully convolutional network (FCN) [14] using the PAS-

AL Parts dataset [15] which provides human color images with

ody part labels. Although these works exhibit good performances,

hey rely on color images and may be sensitive to changes illu-

ination, clothing, and skin color. They could also face a privacy

ssue. 

Use of depth images is a promising alternative to solve these

roblems. However, this leads another big problem, that is, to con-

truct a large dataset of annotated depth images. Nishi and Miura

16] generated a set of depth images with head position annota-

ion for several lying poses from omnidirectional viewpoints using

 large rotation table and an RGB-D camera. This approach can be

pplicable only to a small-sized dataset generation. We can use an-

otation tools like LabelMe [17,18] for color images, but a similar

pproach is difficult to apply to depth images. Skeleton tracking

echniques [19,20] could be a possible way but these are applica-

le only to normal poses but not to unusual poses under consider-

tion. 

Since the annotating real depth images is difficult, we adopt

omputer modeling and computer graphics techniques for gener-

B

Please cite this article as: K. Nishi, J. Miura, Generation of human depth

tion, Pattern Recognition (2017), http://dx.doi.org/10.1016/j.patcog.2017.
ting annotated depth images [7] . The issues are then how to con-

truct human models with various body shapes and how to make

he models take various poses. Manually producing such variations

s extremely hard when constructing a large-scale dataset. There-

ore we propose a novel approach that combines a flexible, pa-

ameterized body model, a motion capture system, and computer

raphics tools in order to generate a large number of body part-

nnotated depth images efficiently. We evaluate the constructed

ataset by conducting body part labeling experiments using an

CN for synthetic and real depth images. 

The rest of the paper is organized as follows. Section 2 de-

cribes the detailed procedure of dataset generation. Section 3 ex-

lains the FCN that we used for evaluation. Section 4 describes

xperimental results to show the effectiveness of the dataset.

ection 5 concludes the paper and discusses future work. 

. Data generation 

Fig. 1 shows the outline of the proposed dataset generation

ethod. The first step is to generate human body models. We use

Y Human Model [21] that can deal with various body shapes.

ther human models [22,23] can be used. Since this model has

nly shape information, at the second step, we attach part labels

nd skeleton information, for generating annotated depth images

nd for controlling the pose with joint angles, respectively. The

hird step is to collect human motion data using a VICON motion

apture system [24] and to apply them to the body models. The

ast step is to generate human depth images with body part labels.

We use Maya [25] for the second and the last step, and Motion-

uilder [26] for the third step. 
 images with body part labels for complex human pose recogni- 
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Fig. 7. Change of the part labeling results through training. 

Table 1 

Parameters of the generated human body models. 

Model No. Height (cm) Weight (kg) Waist breadth (cm) Param 1st Param 4th 

0 149.2 36.6 22.7 120.0 0.0 

1 155.3 45.0 24.2 80.0 0.0 

2 172.6 51.9 23.7 0.0 40.0 

3 171.4 56.8 25.2 0.0 20.0 

4 169.6 61.7 26.6 0.0 0.0 

5 167.7 66.6 27.7 0.0 -20.0 

6 166.1 71.5 29.0 0.0 -40.0 

7 182.8 78.4 28.8 -80.0 0.0 
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2.1. Human model generation 

The variety of data is crucial for learning-based approaches. We

used KY Human Model [21] for generating a variety of human body

models. KY Human Model was constructed by choosing 17 out of

49 human body data in the AIST/HQL database [27] , and analyzing

them using PCA (principal component analysis). The constructed

KY Human Model has eleven parameters to adjust for changing the

body shape. In this paper, we adjusted the first and the fourth pa-

rameter which mainly affect the height and the width of the body,

respectively, and leave the other nine parameters be zero (i.e., the
Please cite this article as: K. Nishi, J. Miura, Generation of human dept

tion, Pattern Recognition (2017), http://dx.doi.org/10.1016/j.patcog.2017.
ean value). Table 1 shows the parameter pairs and the corre-

ponding body dimensions for the eight models used in this paper.

.2. Adding body part labels and skeleton information to the 

enerated shape model 

The eight models mentioned above only have shape data. We

hus attach part labels and skeleton information to them. Part la-

els are attached as follows. We consider the following eleven

arts: head, torso, left/right upper arm, left/right forearm, hip,

eft/right upper leg, left/right lower leg. These labels are repre-
h images with body part labels for complex human pose recogni- 
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Fig. 8. Result for synthetic data. First column: generated synthetic depth images 

for test. Second column: generated label images. Third column: labeling results. 
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ented by respective distinctive colors in the model. When attach-

ng a color to a body part using Maya, we choose SurfaceShader

aterial whose rendered appearance is constant irrespective of il-

umination conditions. These colors in a rendered image are con-

erted to label ID’s to generate a labeled image. 

Skeleton information is attached as follows. For changing the

ose, Maya needs the sizes and the positions of the following parts

s a skeleton: head, neck, spine, hip, shoulders, upper arms, fore-

rms, wrists, upper legs, lower legs. These parts are defined by

he joint positions. We first define a rough skeleton model (see

ig. 2 (a)) and put it on the human model (see Fig. 2 (b)). Then, we

anually adjust joint positions so that they matches with those
Fig. 9. Generating flow for depth and 

Please cite this article as: K. Nishi, J. Miura, Generation of human depth

tion, Pattern Recognition (2017), http://dx.doi.org/10.1016/j.patcog.2017.
n the human model. Fig. 2 (c) shows a scene of adjusting the left

rist position. 

.3. Adding recorded motion data 

Generating natural pose data by manually adjusting joint angles

s very difficult. We thus take a more intuitive approach. That is,

e use VICON motion capture system [24] to collect a large num-

er of natural poses and give them to the human body model. Our

ICON system can track ball markers at 50 fps and export the mo-

ion of each marker as a sequence of 3D positions. Fig. 3 (a) shows

 snapshot of the sequence. 

We use MotionBuilder [26] to convert marker positions at a

ime to joint angles in the human model. For this conversion,

e give the marker positions in the human body to Motion-

uilder. Fig. 3 (b) and (c) show the marker positions on the human

odel and the corresponding skeleton model, respectively. Since

his skeleton model is already attached to the human model, we

an generate any pose data by actually taking that pose. 

.4. Generating depth images with part labels 

The steps explained above produce a set of labeled human

odels with various poses. We then render the models also us-

ng Maya. The viewpoint is set at the pose of a real camera on the

op of our robot. Fig. 4 shows examples of generated images; each

air of a color-labeled image and a depth image corresponds to a

uman model and a pose. Each model number corresponds to that

n Table 1 . We can see that an enough variety of models and poses

an be generated. 

In this paper, the input and the output of a pose estimation

ystem are a depth image and an ID-labeled image, respectively.

herefore we generate a large number of the pairs of depth and

D-labeled images to construct a dataset. 

. Recognition of human parts using FCN 

.1. Network architecture 

We use a fully convolutional network (FCN) [14] for the part

abeling task for depth images. FCNs do not have fully-connected

ayers, unlike usual convolutional neural networks (CNNs). Oliveira

t al. [13] applied an FCN to a part labeling task for color images

nd showed an outstanding performance. The network has fifteen
body label images in real scene. 

 images with body part labels for complex human pose recogni- 
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Table 2 

Confusion matrix for synthetic data. 

Table 3 

Confusion matrix for real data. 
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convolution layers and five deconvolution layers. Convolution lay-

ers extract features and the size of image decreases as they go

through the layers. Deconvolution layers are then applied to the

final output of convolution layers to have a labeled image with the

same size as the input one. To compensate for the missing details,

each deconvolution layer additionally uses the output from the cor-

responding pooling layer. Before adding a pooling layer output, it

is convoluted and extracted for making the layer be the same size

as the corresponding deconvolution layer. 
Please cite this article as: K. Nishi, J. Miura, Generation of human dept

tion, Pattern Recognition (2017), http://dx.doi.org/10.1016/j.patcog.2017.
We constructed our FCN based on the one by Oliveira et al.

ig. 5 shows the architecture of our network, which differs from

heirs only in the size of inputs and output layers. We use the

epth images with 212 × 212 pixels and twelve classes (eleven

arts and one background). We therefore use 212 × 212 × 1 nodes

or the input and 212 × 212 × 12 nodes for the output. We obtain

welve score maps, each of which indicates pixel-wise scores for

he corresponding class. The final result (that is, a labeled image)

s given by choosing the class with the highest score at each pixel.
h images with body part labels for complex human pose recogni- 
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Fig. 10. Result on real data by using a color-coded clothing. First column: generated 3D point cloud with color and thermal information. Second column: Extracted depth 

data fort testing. Third column: target part labels generated from the colored point cloud. Fourth column: labeling results. 
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.2. Network training 

We deal with scenes where persons sit on a sofa with vari-

us poses. 10,076 depth images with part labels are generated as

 dataset from the eight human models with various sitting poses.

he dataset contains relatively static pose data such as drinking,

eading a book, and using a gadget, and more dynamic pose data

uch as swinging the body, arms and legs. To apply the images

o the FCN, we extract the person region in the depth images,

hich are randomly flipped horizontally, and normalize the size

o 212 × 212 pixels. We also normalize the depth value, from the

ange [0 mm, 20 0 0 mm] to [0, 1]. We applied the stochastic gra-

ient descent (SGD) optimizer with momentum [28] for training.

he learning rate and the momentum are set to 10 −10 and 0.99,

espectively; these values are the same with the one used in [13] .

ach mini-batch consists of twelve images. We implemented the

etwork using Chainer [29] and ran it on a single GeForce GTX TI-

AN X for 22 days. 

Fig. 6 shows the change of the training loss during train-

ng. Although the training loss monotonically decreases at each

poch, the improvement is saturated around epoch 800 (11 days).

ig. 7 shows how the discriminative power increases as the train-

ng proceeds. The figure shows the labeling result at each selected

poch. Premature networks classify the body region poorly, but as

he training proceeds, the network is refined gradually so that a

r  

Please cite this article as: K. Nishi, J. Miura, Generation of human depth

tion, Pattern Recognition (2017), http://dx.doi.org/10.1016/j.patcog.2017.
ore correct classification is performed. We here give some con-

ecture about the training process based on the classification re-

ults. Between epoch 0 and 50, the network learned that pixels

ith depth data constitute the body region. Since the torso is the

argest body part, all body regions are classified as torso. Between

poch 50 and 300, the arms and the legs region are labeled as

ixtures of yellow (left lower leg) and white (right lower leg). It

eans the networks learned that rod-like region are recognized

s either of the legs. Between epoch 300 and 400, the network

earned that all regions adjacent to the torso region are head, but

his is partially corrected between epoch 400 and 600 such that

he regions above the torso become head and those under the

orso become hip. As the training proceeds, the other parts are also

earned correctly, basically from the central parts to the peripheral

nes. As shown in Fig. 6 , the results after about epoch 800 are al-

ost identical as the learning is considered saturated. 

. Experiments 

.1. Experiments using synthetic data 

We collected motion data and generated another set of 4984

nnotated depth images of the sit-on-a-sofa scene for testing.

ig. 8 shows example recognition results; parts labels are mostly

orrectly assigned. Table 2 shows the confusion matrix, summa-

izing the pixel-wise comparison results for the assigned and the
 images with body part labels for complex human pose recogni- 
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Fig. 11. Good labeling results on real data. First column: test scenes. Second column: generated thermal point clouds. Third column: extracted human region using thermal 

information. Fourth column: generated depth data for testing. Fifth column: labeling results. 
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correct labels. The recognition rates are relatively low for the fore-

arms probably because the variations of their positions are larger

than the other parts. 

4.2. Evaluation using a color-coded clothing 

4.2.1. Color-coded clothing 

The previous subsection quantitatively evaluated the effective-

ness of the proposed dataset and the FCN using simulated test

data. We would like to do the quantitative evaluation also for a

real scene. For this purpose, we need to have a dataset of anno-

tated depth images constructed from real data. In the case of a

person with normal clothing, however, the labeling should be done

manually and is tedious and time consuming. To make this process

much easier, we used a color-coded tight-fit clothing so that each

part of the body can easily be distinguished using a color image. 

In this paper, we use a 3D point cloud with thermal data for

extracting the region of a person in a real scene. Point cloud data

are obtained by a pair of a depth camera (KinectV2, Microsoft) and

a far infrared (FIR) camera (PI200, Optris). The relative pose be-

tween the cameras is calibrated in advance [30,31] . In a room with

a normal temperature, we can extract a person region relatively

easily by extracting pixels with a temperature within some prede-

termined range (currently, 25 °C ∼ 35 °C). 

Fig. 9 shows the developed clothing and the process of gener-

ating annotated depth images. First, a 3D point cloud with color

and thermal information is generated. Next, the 3D points of the

human body are extracted using thermal data, and they are then
Please cite this article as: K. Nishi, J. Miura, Generation of human dept

tion, Pattern Recognition (2017), http://dx.doi.org/10.1016/j.patcog.2017.
egmented using color. Since the segmentation is not complete, the

egmented regions are manually corrected as body parts and put

o the corresponding depth image as the annotation. We collected

45 annotated depth images for eight persons. It takes about one

inute to make one annotated depth image. 

.2.2. Result of evaluation 

We conducted experiments for the real test data using the FCN

rained for the simulated dataset. Fig. 10 shows example labeling

esults. The labeling is basically acceptable but some parts are in-

orrectly labeled, mostly when they have a large positional devia-

ion from the training dataset. 

Table 3 is the confusion matrix showing a quantitative evalu-

tion result. By examining the confusion states, we can see that

hen a part is incorrectly labeled, it is usually labeled as its neigh-

oring part. For example, 22% of the head and 25% of the hip are

isclassified as the torso. This shows that an overall structure of

arts is correctly recovered but precise boundaries are not. In body

ose estimation, relative poses between parts are more important

han the precise boundary information. We thus conclude the com-

ination of our dataset and the FCN is effective for human pose

stimation. 

.3. Experiments using real data 

Fig. 11 shows example labeling results. The columns indicate in-

ut scenes, thermal images, extracted person regions in the ther-

al images, extracted depth image regions, and part labeling re-

ults, respectively, from left to right. Using thermal data, person
h images with body part labels for complex human pose recogni- 
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Fig. 12. Labeling results with poor human region extraction. First column: test scenes. Second column: generated thermal point clouds. Third column: Extracted human 

region using thermal information. Fourth column: generated depth data for testing. Fifth column: labeling results. 

Fig. 13. Generated depth images with body parts labels for recumbent poses. First row: generated label images. Second row: generated depth images. 
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egions can be extracted even when they touch surrounding ob-

ects. 

However, when the person region extraction fails to some ex-

ent, the recognition results will be degraded as shown in Fig. 12 .

n these cases, some parts of the region are missing due to,

or example, occlusions and unexpected surface temperatures. We

hink this degradation in recognition is due to the lack of training

ata with incomplete region extractions. Adding such data to the

ataset could increase the robustness of the recognition. 

.4. Experiments for unusual poses 

We deal with a scene where persons are in recumbent posi-

ions. We took pose data for various recumbent positions includ-

ng supine and lateral ones, applied them to the human models,

nd generated 326,984 depth images with part labels with 360-

egree viewing direction. Fig. 13 shows examples of generated im-
Please cite this article as: K. Nishi, J. Miura, Generation of human depth

tion, Pattern Recognition (2017), http://dx.doi.org/10.1016/j.patcog.2017.
ges; each pair of a color-labeled image and a depth image corre-

ponds to a human model and a pose. We trained the same FCN

sing the generated dataset. We used one GeForce GTX TITAN X

nd two NVIDIA TITAN X’s for training for 21 days. 

Fig. 14 shows example of labeling results on real data. Esti-

ated parts labels are mostly correctly assigned. 

. Conclusions and discussion 

This paper presented an efficient procedure of generating a

ataset of human body depth images with part labels, which is

uitable for training convolutional neural networks (CNNs) in a

epth image-based human pose estimation scenario. To generate

ata for various body shapes and poses, we first generate a vari-

ty of body shape models and then add two types information:

keleton and part labels. The former is to easily generate arbitrary

odel poses using the joint angle data obtained by a motion cap-
 images with body part labels for complex human pose recogni- 
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Fig. 14. Results on real data for recumbent poses. First column: test scenes. Second column: generated thermal point clouds. Third column: extracted human region using 

thermal information. Fourth column: generated depth data for testing. Fifth column: labeling results. 
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ture system. The latter is to render body depth images with part

label annotations. A dataset is generated and evaluated for a sit-

ting scenario. A fully-convolutional network (FCN) was trained us-

ing the dataset and applied to part labeling tasks for both synthetic

and real data. Another dataset was generated for recumbent poses,

as examples of unusual poses, and evaluated using the same FCN.

Evaluation results show the effectiveness of the datasets. 

We are interested in developing a human support robot that

can recognize a human state and perform appropriate assistive ac-

tions. Pose recognition is one of the necessary functions of such

a robot and must be able to handle a large variety of poses in-

cluding unusual ones such as falling and crouching. We are now

extending the dataset to include various possible poses. Moreover,

since a part of the body region may be missing in a depth image

due to self-occlusion and occlusion by other objects, adding data

for such cases is also planned. 

Evaluation of the dataset is done by the recognition perfor-

mance of an FCN trained using the dataset. Although the FCN has

been shown to be very effective in part labeling tasks for both

color and depth images, we need to seek other network architec-

tures which could achieve a better performance. 

We are now working on making the results of the research be

publicly available as follows. One is the dataset itself [32] . The

datasets described in the paper is already available at this website,

and we are planning to add more datasets as they are generated.

These datasets can be used for train any network architectures for

the part labeling task. The other type of data we are planning to

make available is a set of human models with skeleton and part
Please cite this article as: K. Nishi, J. Miura, Generation of human dept

tion, Pattern Recognition (2017), http://dx.doi.org/10.1016/j.patcog.2017.
abel information. This makes it possible for the users to generate

 new dataset with poses they want to deal with. 
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